A General Solution of Pell's Equation

RahilMiraj
Class - XI, SaradaVidyapith (H.S.), Sri Ramakrishna Pally, Sonarpur, Kolkata 700150, West Bengal, India

Abstract

Pell's equation is a quadratic Diophantine equation with two unknowns. I provide a general solution of this equation.

Keywords: Pell's Equation ; General Solution

I. INTRODUCTION

Pell's equation is anwell known Diophantine equation of the form [1]

$$
x^{2}-d y^{2}=1
$$

where $x, y \in \mathbb{Z}$ and d is a given natural number, which is not a square.
This type of equation was also found in ancient Indian Mathematics as named 'Vargaprakriti'. The great Indian Mathematician Baudhayana noted that $\mathrm{x}=577$ and $\mathrm{y}=408$ is a solution of the equation $x^{2}-2 y^{2}=1$ in $4^{\text {th }}$ century and later Brahmagupta in $7^{\text {th }}$ century and Bhaskaracharya in $12^{\text {th }}$ century also studied on it.

II. EXISTING SOLUTIONS

If one is able to find a specific solutions x_{1} and y_{1}, then using it one can obtain infinite number of solutions through the following formulae :

$$
x_{n}=\frac{z^{n}+\bar{z}^{n}}{2} \quad ; \quad y_{n}=\frac{z^{n}-\bar{z}^{n}}{2 \sqrt{d}}
$$

where

$$
z=\left(x_{1}+y_{1} \sqrt{d}\right) \quad \text { and } \quad \bar{z}=\left(x_{1}-y_{1} \sqrt{d}\right) \quad \text { for } n \geq 1 .
$$

But we have to find x_{1} and y_{1} analytically.

III. NEW ANALYTICAL METHOD OF THE SOLUTION

Let us consider the Pell's equation

$$
\begin{gathered}
x^{2}-d y^{2}=1 \\
\text { or, } 4 x^{2}-4 d y^{2}=4 \\
\text { or, } 4 x^{2}-\left(y^{2}+d\right)^{2}+\left(y^{2}-d\right)^{2}=4 \\
\text { or, }(2 x)^{2}+\left(y^{2}-d\right)^{2}=\left(y^{2}+d\right)^{2}+2^{2}
\end{gathered}
$$

This equation is of the form

$$
a^{2}+b^{2}=r^{2}+s^{2},
$$

whose general solutions are given by

$$
\begin{array}{ll}
a=(m n+p q) & , \quad b=(m p-n q), \\
r=(m p+n q) \quad, \quad s=(m n-p q) .
\end{array}
$$

So putting these values, we get

$$
\begin{aligned}
& x=\frac{1}{2}(m n+p q) \quad, \quad y^{2}=m p \\
& d=n q \quad \text { and } \quad 2=(m n-p q) .
\end{aligned}
$$

We have two known quantities dand2, so one can easily get

$$
x=(m n-1) \quad, \quad y=\sqrt{\frac{m^{2} n^{2}-2 m n}{d}} .
$$

Setting $\mathrm{mn}=\mathrm{t}$, we get the general one parameter solution as

$$
x=t-1 \quad \text { and } \quad y=\sqrt{\frac{t^{2}-2 t}{d}}
$$

where $t>2 \& d \mid t(t-2)$ and the quotient must be a perfect square of an integer.

IV.EXAMPLES

Now we provide some examples:
Example - 1: Solve for positive integers $x^{2}-2 y^{2}=1$.
Answer:Here the general solutions are $\mathrm{x}=\mathrm{t}-1$ and $y=\sqrt{\frac{t^{2}-2 t}{2}}$ for suitable choice of t . If one chooses $\mathrm{t}=4$, then one obtain $\mathrm{x}=3$ and $\mathrm{y}=2$.

Similarly, for the other values of t say, $t=18$ and $t=100$, one will find $x=17 \& y=12$ and $x=99 \& y=70$ respectively and so on.

In the ancient time ($4^{\text {th }}$ century $)$ Baudhayana obtained the solutions of the above equation as $x=577$ and $y=$ 408. Here just we have to choose $t=578$.

Example - 2: Solve for positive integers $x^{2}-3 y^{2}=1$.
Answer :Again we have the general solutions $\mathrm{x}=\mathrm{t}-1$ and $y=\sqrt{\frac{t^{2}-2 t}{3}}$. If we choose $\mathrm{t}=3,8,7$ respectively, then we can obtain $x=2 \& y=1 ; x=7 \& y=4 ; x=26 \& y=15$ respectively.

Example - 3 : Solve for positive integers $x^{2}-5 y^{2}=1$.
Answer : If we choose $t=10,62$ then we can obtain $x=9 \& y=4 ; x=161 \& y=72$ respectively.

Example - 4 : Solve for positive integers $x^{2}-92 y^{2}=1$.
Answer :In the seventh century Brahmagupta obtained the solutions $x=1151$ and $y=120$. If we choose $t=1152$ then we can obtain the same solution.

Example - 5: Solve for positive integers $x^{2}-61 y^{2}=1$.
Answer: In the twelfth century Bhaskara found the solutions $x=1766319049$ and $y=226153980$. If we choose t $=1766319050$ then we can obtain the same solution.

V. CONCLUDING REMARKS

The choice of t depends on the value of d.
As $\sqrt{\frac{t^{2}-2 t}{d}}$ be an integer, so we just have to choose such a t, for which $d \mid t(t-2)$ and the quotient be a perfect square of an integer.

Also I can provide some general form of t for some specific form of d
If d is of the form $\left(k^{2}+1\right)$, then t is of the form $2\left(k^{2}+1\right)$.
If d is of the form $\left(k^{2}-1\right)$, then t is of the form $(k+1)$.
If d is of the form $\left(k^{2}+2\right)$, then t is of the form $\left(k^{2}+2\right)$.
If d is of the form $\left(k^{2}-2\right)$, then t is of the form k^{2}.
[here, k is a positive integer]
These are some specific forms of t. In a future work, one can try to find a general form t as a function of d.

ACKNOWLEDGEMENTS

I would like to thank my father Prof. Dr. FarookRahaman for several illuminating discussions.

REFERENCES

[1] An Introduction to Diophantine Equations, TituAndreescu, DorinAndrica and Ion Cucurezeanu, Birkh"auser (2010).

