Relation between Zeroes and Coefficients of a Polynomial

S R Yeldi ${ }^{\# 1}$, Sai Srujan Yeldi ${ }^{* 2}$, Nikitha Yeldi ${ }^{3}$
\# PGT (Mathematics), Jawahar Navodaya Vidyalaya, Kurnool, Andhra Pradesh, India
Class: $10^{\text {th }}, ~ J N V$, Kurnool, A.P, India
I B.Tech, S V University, Tirupati, A.P, India.

Abstract

Understanding the relationship between zeroes and coefficients of a given polynomial of any order. Establishing the relationship between zeroes and coefficients of a given polynomial.

Keywords - Zeroes of a Polynomial

I. INTRODUCTION

Polynomial:

A function $p(x)$ of the form $\mathrm{p}(x)=\mathrm{a}_{0}+\mathrm{a}_{1} x+\mathrm{a}_{2} x^{2}+\ldots \ldots .+\mathrm{a}_{\mathrm{n}} x^{\mathrm{n}}$, where $\mathrm{a}_{0}, \mathrm{a}_{1}, \mathrm{a}_{2}, \ldots \ldots . . \mathrm{a}_{\mathrm{n}}$ are real numbers and n is a non-negative integer is called a 'polynomial in x over reals'.
The highest exponent of the variable involved in a polynomial is called its Degree.
A polynomial of first degree is called a linear polynomial. Ex: $a x+b, a \neq 0$.
A polynomial of second degree is called a Quadratic polynomial. Ex: $a x^{2}+b x+c, a \neq 0$.
A polynomial of third degree is called a Cubic polynomial. Ex: $a x^{3}+b x^{2}+c x+d, a \neq 0$.
The value obtained by substituting $x=\alpha$ in a polynomial is called the value of the polynomial at $x=\alpha$.
The value obtained by substituting $x=\alpha$ in a polynomial is zero then $x=\alpha$ is called the zero of the polynomial. Every linear polynomial has at the most one zero.
Every quadratic polynomial can have at the most two zeroes.
Similarly a cubic polynomial has three zeroes, a biquadratic ($4^{\text {th }}$ degree) polynomial has 4 zeroes, a $5^{\text {th }}$ degree polynomial has 5 zeroes and so on.

II. ZEROES OF A POLYNOMIAL

Zero of a linear polynomial $\mathrm{a} x+\mathrm{b}$ is $x=\frac{-\bar{b}}{a}$.
Zeroes of a quadratic polynomial $\mathrm{a} x^{2}+\mathrm{b} x+\mathrm{c}$ are $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$.
Let the two zeroes of a quadratic polynomial are α and β. Now
Sum of the zeroes $=\alpha+\beta=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}+\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}=\frac{-b}{a}=\frac{- \text { coefficient of } x}{\text { coefficient of } x^{2}}$.
Product of zeroes $=\alpha \times \beta=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} \times \frac{-b-\sqrt{b^{2}-4 a c}}{2 a}=\frac{c}{a}=\frac{\text { constant term }}{\text { coefficient of } x^{2}}$.
The general form of a cubic polynomial is $a x^{3}+b x^{2}+c x+d, a \neq 0$. It has at most three zeroes. Let the three zeroes be $\boldsymbol{\alpha}_{v} \boldsymbol{\beta}$ and $\boldsymbol{\gamma}$, then
Sum of the zeroes $=\boldsymbol{\alpha}+\boldsymbol{\beta}+\boldsymbol{\gamma}=\frac{\text {-coefficient of } x^{2}}{\text { coefficient of } x^{3}}$
Sum of the product of zeroes taken two at a time $=\boldsymbol{\alpha} \boldsymbol{\beta}+\boldsymbol{\beta} \boldsymbol{\gamma}+\boldsymbol{\gamma} \boldsymbol{\alpha}=\frac{\text { coefficient of } x}{\text { coefficient of } x^{3}}$.
Product of zeroes $=\boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma}=\frac{\text { constant term }}{\text { coefficient of } x^{3}}$.
The general form of a biquadratic polynomial is $a x^{4}+b x^{3}+c x^{2}+d x+c, a \neq 0$. It has at most four zeroes. Let the four zeroes are $\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma}$ and $\bar{\delta}$ then
Sum of the zeroes $=\boldsymbol{\alpha}+\boldsymbol{\beta}+\boldsymbol{\gamma}+\boldsymbol{\delta}=\frac{\text {-coefficient of } x^{3}}{\text { coefficient of } x^{4}}$
Sum of the product of zeroes taken three at a time ${ }^{*}=\alpha \boldsymbol{\beta} \boldsymbol{\gamma}+\boldsymbol{\alpha} \boldsymbol{\beta} \delta+\boldsymbol{\alpha} \boldsymbol{\gamma} \delta+\beta \boldsymbol{\beta} \delta=\frac{\text { coefficient of } x^{2}}{\text { coefficient of } x^{4}}$.
($*$ This can be done in $4 \boldsymbol{c}_{3}=\frac{4 \times 3 \times 2}{3 \times 2 \times 1}=4$ ways)
Sum of the product of zeroes taken two at a time ${ }^{*}=\alpha \beta+\alpha \gamma+\alpha \delta+\beta \gamma+\beta \delta+\gamma \delta=-\frac{\text { coefficient of } x}{\text { coefficient of } x^{4}}$.
($*$ This can be done in $4 \boldsymbol{c}_{2}=\frac{4 \times 3}{2 \times 1}=6$ ways)
Product of zeroes $=\boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma} \boldsymbol{\delta}=\frac{\text { constant term }}{\text { coefficient of } x^{4}}$.

The general form of a fifth degree polynomial is $a x^{5}+b x^{4}+c x^{3}+d x^{2}+c x+e, a \neq 0$. It has at most five zeroes.
Let the five zeroes are $\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma}_{s} \boldsymbol{\delta}$ and $\boldsymbol{\tau}$ then
Sum of the zeroes $=\boldsymbol{\alpha}+\boldsymbol{\beta}+\boldsymbol{\gamma}+\boldsymbol{\delta}+\boldsymbol{\tau}=-\frac{\text { coefficient of } x^{4}}{\text { coefficient of } x^{5}}$
Sum of the product of zeroes taken four at a time* $=\alpha \beta Y \delta+\alpha \beta Y \tau+\alpha \beta \delta \tau+\alpha Y \delta \tau+\beta Y \delta \tau=\frac{\text { coefficient of } x^{3}}{\text { coefficient of } x^{5}}$.
($*$ This can be done in $5 \boldsymbol{c}_{4}=\frac{5 \times 4 \times 3 \times 2}{4 \times 3 \times 2 \times 1}=5$ ways)
Sum of the product of zeroes taken three at a time* $=$

$$
\alpha \beta Y+\alpha \beta \delta+\alpha \beta \tau+\alpha Y \delta+\alpha Y \tau+\alpha \delta \tau+\beta \gamma \delta+\beta Y \tau+\beta \delta \tau+\gamma \delta \tau=-\frac{\text { coefficient of } x^{2}}{\text { coefficient of } x^{5}}
$$

(*This can be done in $5 \boldsymbol{c}_{3}=10$ ways)
Sum of the product of zeroes taken two at a time* $=$

$$
\alpha \beta+\alpha Y+\alpha \delta+\alpha \tau+\beta Y+\beta \delta+\beta \tau+\gamma \delta+\gamma \tau+\delta \tau=\frac{\text { coefficient of } x}{\text { coefficient of } x^{5}} .
$$

(*This can be done in $5 \boldsymbol{c}_{2}=10$ ways)
Product of zeroes $=\boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma} \boldsymbol{\delta} \boldsymbol{\tau}=-\frac{\text { constant term }}{\text { coefficient of } x^{5}}$.
Similarly in this way we can find out the relationship between zeroes of a polynomial and coefficients of the polynomial of any non-negative integral degree polynomial.
Eg: Consider the polynomial $x^{6}-21 x^{5}+175 x^{4}-735 x^{3}+1624 x^{2}-1764 x+720$.
The degree of the polynomial is 6 . So it has 6 zeroes. Let the six zeroes be $\alpha \beta \boldsymbol{\gamma} \boldsymbol{\delta} \boldsymbol{\tau}$ and $\boldsymbol{\sigma}$.
Its zeroes are 1, 2, 3, 4, 5 and 6 .
Coefficient of x^{6} (The coefficient of highest exponent of variable) $=1$,
Coefficient of $x^{5}=-21$,
Coefficient of $x^{4}=175$,
Coefficient of $x^{3}=-735$, Coefficient of $x^{2}=1624$,
Coefficient of $x=-1764$, Constant $=720$.
Relation between zeroes and coefficients:
Sum of zeroes $=1+2+3+4+5+6=21$
$-\frac{\text { coefficient of } x^{5}}{\text { coefficient of } x^{6}}=\frac{-(-21)}{1}=21$.
Product of zeroes $=1 \times 2 \times 3 \times 4 \times 5 \times 6=720$
$\frac{\text { constant term }}{\text { coefficient of } x^{6}}=\frac{720}{1}$.

III. CONCLUSION

A polynomial of nth degree has ' n ' zeroes, then
sum of the zeroes $=-\frac{\text { coefficient of }(n-1) \text { th degres term }}{\text { coesficient of } n \text {th degres term }}$
$\frac{\text { coefficient of }(n-2) \text { th degree term }}{\text { coefficient of } n \text {th degree term }}$
Sum of the product of zeroes taken $(\mathrm{n}-2)$ at a time $=-\frac{\text { coefficient of }(n-3) \text { rddegreeterm }}{\text { coefficient of } n \text { thdegres term }}$
$\frac{\text { coef ficient of }(n-4) \text { th degree term }}{\text { coeff icient of } n \text {th degree term }}$ and so on.

REFERENCES

[^0]
[^0]: [1] A text book of Mathematics for class 10, NCERT.

