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Abstract  
             A connected graph G is termed hamiltonian laceable if there exists in it a hamiltonian path between 

every pair of distinct vertices at an odd distance. The brick product of even cycles C(2n,m,r) was introduced by 

Alspach et.al. in [1] to study hamiltonian laceability properties. In this paper, we prove that the triple cartesian 

product of the brick product graph C(2n,1,3) with cycle graph of order3 is hamiltonian laceable.  
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I. INTRODUCTION  

 

Let G is a finite, simple, connected and undirected graph. Let u and v be two vertices in G. The distance 

between u and v denoted by d(u,v) is the length of a shortest path in G. G is called a hamiltonian laceable graph 

if there exists a hamiltonian path between every pair of vertices at an odd distance in it. This definition was 

generalized in [4], where hamiltonian-t-laceable graphs were introduced. G is said to be a hamiltonian-t-laceable 

graph if there exists a hamiltonian path between every pair of vertices u and v in it that satisfy the property 

d(u,v)=t, where 1 ≤ t ≤ diamG. By definition, G is hamiltonian connected if it is hamiltonian-t-laceable for all t. 

Laceability properties of brick product graphs associated with even cycles was studied by Alspach et.al. in [1]. 

Inspired by this work, in this paper, we explore the laceability properties of the triple cartesian product of the 

two brick product graph C(2n,1,3) with cycle graph of order 3. We refer [3] for the standard definitions not 

provided in this paper. 

II. BRICK PRODUCT 

 

Let m, n and r be a positive integers. Let C2n=v0,v1,...,v2n-1,v0 denote a cycle of order 2n (v0,v1,...,v2n-1 are 

called cycle vertices). The (m.r)-brick-product of C2n, denoted by C(2n,m,r) is defined in two cases as follows.  

Case (i): For m=1, we require that r be odd and greater than 1. Then, C(2n,m,r) is obtained from C2n by adding 

chords (v2k , v2k+r), k=1,2,...,n, where the computation is performed modulo 2n. 

Case (ii): For m>1, we require that m+r be even. Then, C(2n,m,r) is obtained by first taking the disjoint union of 

m copies of C2n, namely C2n(1), C2n(2) . . . . . ,C2n(m), where for each i=1,2,...,m, C2n(i)=(vi, v0)(vi, v1)…....(vi, v2n). 

Next, for each odd i=1,2,...,m -1 and for each even k=1,2,...,2n -2, an edge (called a brick edge) is drawn to join                

(vi, vk) to (vi+1, vk), whereas, for each even i=1,2,...,m -1 and for each odd k=1,2,...,2n -1, an edge (also called a 

brick edge) is drawn to join (vi, vk) to (vi+1, vk). Finally, for each odd k=1,2,...,2n -1, an edge (called a hooking 

edge) is drawn to join (v1, vk) to (vm , vk+r). An edge in C(2n,m,r) which is neither a brick edge nor a hooking 

edge is called a flat edge. 

 
Figure 1. Brick product C(10,1,3) 
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Definition 2.1: Let P be a path between the vertices vi to vj in a graph G and let P   be a path between the 

vertices vi and vk. Then, the path P is the path obtained by extending the path P P   from vi to vj, to vk through 

the common vertex vi (i.e. if : ....
i j

P v v and : ....
j k

P v v then : ... ...
i j k

P P v v v ). 

 

Definition 2.2: The cartesian product G1 Х G2 of the graphs G1 and G2 is a graph such that the vertex set of               

G1 Х G2  is the cartesian product V(G1) × V(G2), and, any two vertices (u, u' ) and (v, v' ) are adjacent in G1 Х G2 if 

and only if either u = v and u' is adjacent to v' in G1, or  u' = v' and u is adjacent to v in G2.  

 The triple cartesian product G1 Х G2 Х G3 is defined analogously. 
 

III.  MAIN RESULTS 
 

In this section, we prove that the triple cartesian product of the two brick product graph C(2n,1,3) with a cycle 

graph of order 3, which is a graph with 8n3 vertices and has diameter = 4, is both hamiltonian-1-laceable and 

hamiltonian-3-laceable i.e., H is hamiltonian laceable. If G1, G2 are two copies of C(2n,1,3) and G3=C3 is a cycle 

graph of order 3, we denote by H the graph G1 Х G2 Х G3.    
 

Theorem 3.1: For n ≥ 3, the graph H is hamiltonian-1-laceable.  

Proof:   Let vi,j  , ,
'
i j

v  and 
.i j

v   be the cycle vertices of  G’1, G’2 and G’3 are the first, second and third copies of  

G1 Х G2 respectively, where i=0,1,2,...,2n -1.   

          
 

Figure 2: Graph G1 = G2= C(6,1,3) and its Cartesian product of G1 Х G2 
 

Claim 1: There exists a hamiltonian path between vi,j  and vi+1,j.   

Let 
1

P  be the path between vi,j and vi+2,j traversing on the cycle G’1 in anticlockwise direction that 

covers all the vertices except vi+1,j and let e=P2 be the edge (vi+2,j , v’i+3,j ). Since G’2 is hamiltonian laceable, 

there exists a hamiltonian path P3 between the vertices v’i+2,j  and v'i+3,j in G’2.  

Now, let e’=P4 be the edge (v’i+2,j , v”i+3,j). Again since G’3 is hamiltonian laceable, there exists a path 

P5 between the vertices v”i+2,j  and v”i+3,j .  

Then, clearly, the path
1 2 3 4 5 6

P P P P P P P      , where e”=P6=(vi+1,v”i+2) is a hamiltonian path 

between the vertices vi and vi+1 in H. 

 
 

Figure 3. Hamiltonian path between 
,i j

v  and 
1 ,i j

v


 in H  
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Claim 2: There exists a hamiltonian path between v2k ,j  and v2k+3,j , where k=1,2,3,...,n. 

Let 
1

P  be the path between v2k,j  and v2k+4,j traversing on the cycle G’1 in anticlockwise direction that 

covers all the vertices except v2k+3,j  and let e=P2 be the edge (v2k+2,j , v’m,j ). Since G’2 is hamiltonian laceable, 

there exists a hamiltonian path P3 between the vertices v’m,j  and v'm+1,j  in G’2.  

Now, let e’=P4 be the edge (v’m+1,j, v”l,j ). Again since G’3 is hamiltonian laceable, there exists a path 

P5 between the vertices v”l,j  and v”l+1,j .  

Then, clearly, the path
1 2 3 4 5 6

P P P P P P P      , where e”=P6=(v2k+3,j , v”l+1,j ) is a hamiltonian 

path between the vertices v2k,j   and v2k+3,j  in H. 

 

 
Figure 4. Hamiltonian path between 

2 ,k j
v  and 

2 3 ,k j
v


 in H  

 

Theorem 3.2: For 4n   the graph H is a hamiltonian-3-laceable. 

Proof: The vertices of H are as in theorem 3.1. 

Claim: There exists a hamiltonian path between vi,j  and vi+5,j. 

Let 
1

P  be the path between vi,j and vi+4,j traversing on the cycle G’1 in anticlockwise direction that 

covers all the vertices except vi+5,j and let e=P2 be the edge (vi+4,j , v’m,j ). Since G’2 is hamiltonian laceable, there 

exists a hamiltonian path P3 between the vertices v’m,j  and v'm+1,j  in G’2.  

Now, let e’=P4 be the edge (v’m+1,j , v”l,j). Again since G’3 is hamiltonian laceable, there exists a path 

P5 between the vertices v”l,j  and v”l+1,j .  

Then, clearly, the path
1 2 3 4 5 6

P P P P P P P      , where e”=P6=(vi+5,j ,v”l+1,j ) is a hamiltonian 

path between the vertices vi,j  and vi+5,j  in H. 

 

 
 

Figure 4. Hamiltonian path between 
,i j

v  and 
5 ,i j

v


 in H    . 5 ,
, 3

i j i j
d v v


  

IV. CONCLUSIONS 

 

In this paper, we show that the triple cartesian product of the two brick product graph C(2n,1,3) with 

cycle graph of order 3 (for all 3n  ) is hamiltonian laceable. The significance of hamiltonicity and hamiltonian 

laceability has been established in computer networks. This concludes that the existence of a hamiltonian path in 

such networks suffice to solve data communication problems. 
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