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Abstract  

          In public key cryptography, discrete logarithm problem plays a vital part. In this paper we contemplate the 

discrete logarithm issue in circulant matrices over a limited field. 
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I. INTRODUCTION 
 

        A Menezes and Y-H Wu [4] assert that working with the discrete logarithm issue in matrices offers no real 

change from working with a limited field. Numerous creators, including A.. Mahalanobis [1], rehashed that claim. It is 

presently a typical learning that for functional purposes, the discrete logarithm issue in non-singular matrices does not 

merit taking a gander at. 

In this note, we give a counterexample to the previously mentioned basic knowledge and demonstrate that matrices 

over a limited field can be utilized successfully to deliver a quick and secure cryptosystem. This approach can be 

viewed as working with the MOR cryptosystem [2], with limited dimensional vector spaces over a limited field. 

In this note, we are managing the discrete logarithm issue in matrices over a limited field, i.e., given a non-singular 

𝒇 × 𝒇matrixP and Q=𝑷𝒎over 𝑲𝒒,register the private key 𝒎; where 𝒒 is an intensity of a prime 𝒑. One can 

without much of a stretch form any cryptosystem that uses the discrete logarithm issue, similar to the Diffie– Hellman 

key exchange or the ElGamal cryptosystem, utilizing the discrete logarithm issue in matrices. There are numerous 

perspectives to the security of a cryptosystem. In this paper we will just manage the computational parts of taking 

care of a discrete logarithm issue. 

The center of the Menezes– Wu calculation [4, Algorithm 2] is to register the charecteristic polynomial 𝝀𝑷(𝒚)ofP. 

The latent values of P, which are the zeros of 𝝀𝑷 𝒚 have a place with the splitting field of 𝝀𝑷 𝒚 .Thezeroes of 

𝝀𝒒 𝒚 likewise have a place with the same splitting field. At that point to take care of the discrete logarithm issue, one 

needs to take care of the individual discrete logarithm issues in the latent values and after that utilization of the Chinese 

remainder hypothesis. The security of the discrete logarithm issue depends on the degree of the extension of the 

splitting field. Since tackling a discrete logarithm issue relies upon the extent of the field, we can get phenomenal 

security by taking 𝒇 expansive (around 20) and pick P to such an extent that 𝝀𝑷(𝒚)is irreducible. However, all 

things considered product of matrix turns out to be extremely costly and we are in an ideal situation working with the 

limited field 𝑭𝒒𝒇 .This is the contention of Menezes and Wu [4]. In this paper, we manage a specific kind of 

non-singular matricesi.e  the circulant matrices We appear, that for these matrices, squaring is free andmultiplication 

is simple. At the point when this is the situation, the above contention is never again substantial and we have 

conceivable outcomes of an effective cryptosystem that is secure with sensible parameters and is quick. Utilizing the 

broadened Euclidean calculation, registering the inverse of a circulant matrix is simple, that makes a cryptosystem 

based on circulant matrices fast and secure. 

When working with the discrete logarithm issue in matrices, one ought to be watchful of the way that the determinant 

of a matrix is a multiplicative function to the ground field. This can simply lessen the discrete logarithm issue in 

matrices to a discrete logarithm issue in the ground field. This can be effectively avoided by 
 

(i)   Choose Psuch that determinant of Pis 1. 

In this note, the Roman numerals (i), (ii)……..,(v), are the set of conditions on the circulant matrix P. All matrices 

are over a limited field. 
 

II. CIRCULANT MATRICES 

 

The reader is reminded that here all fields (is denoted by) are finite with characteristic p. 

Definition 2.1.Over a field𝑲, a 𝒇 × 𝒇matrix is known as circulant, only if every row excepting first row, is right 

circular shift of row above. Thus circulant matrix is known by its first row. Similarly, a circulant matrix can also be defined 
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by columns. 
 

         Despite the fact that a circulant matrix is a two dimensional, it behaves much like a one dimensional; given 

by first row or first column. We will mean a circulant matrix M with first row(𝑚0, 𝑚1, 𝑚2 ∷∷∷∷ 𝑚𝑓−1)by 

𝐌 = 𝑐𝑖𝑟 𝑚0, 𝑚1, 𝑚2 ∷∷∷∷∷∷∷ 𝑚𝑓−1 . 

𝐴𝑛 𝑒𝑥𝑎𝑚𝑝𝑙𝑒 𝑜𝑓    5 × 5   𝑚𝑎𝑡𝑟𝑖𝑥 𝑖𝑠 

 
 
 
 
 
𝑚0 𝑚1 𝑚2

𝑚4 𝑚0 𝑚1

𝑚3 𝑚4 𝑚0

𝑚3 𝑚4

𝑚2 𝑚3

𝑚1 𝑚2
𝑚2 𝑚3 𝑚4

𝑚1 𝑚2 𝑚3

𝑚0 𝑚1

𝑚4 𝑚0 
 
 
 
 

 

 

It is anything but difficult to see that all the (sub) diagonals of a circulant matrix are steady. This reality proves to 

be useful. Let 𝑨 = 𝒄𝒊𝒓 𝟎;  𝟏;  𝟎; … . . 𝟎  𝑏𝑒 𝑎 𝒇 × 𝒇circulant matrix, at that point plainly 𝑨𝒅 =  𝟏  . We can 

compose 𝐌 = 𝒎𝟎𝑰 + 𝒎𝟏𝑨 + 𝒎𝟐𝑨
𝟐 +∙∙∙∙∙∙∙∙∙ +𝒎𝒇−𝟏𝑨

𝒇−𝟏One can characterize a representer polynomial relating 

to the circulant matrix 𝐌as 𝝋𝑴 =  𝒎𝟎𝑰 + 𝒎𝟏𝒚 + 𝒎𝟐𝒚
𝟐 +∙∙∙∙∙∙∙∙∙ +𝒎𝒇−𝟏𝒚

𝒇−𝟏 This demonstrates thatcirculant 

shape acommutative ring with respect to matrix multiplication and matrix addition and is isomorphicto (the 

isomorphism being matrix to representer polynomial)
 𝑲 (𝑿) 

𝒚𝒅−𝟏
, see [7] 

 

A. How to square a circulant matrix? 

           Let 𝑩 =   𝑐𝑖𝑟(𝑏0, 𝑏1, 𝑏2 ∷∷∷∷∷∷ 𝑏𝑓−1 )be a circulant matrixe over a field of latent2. Wedemonstrate 

that to process 𝐵2we need to compute 𝑏𝑖
2
for eachiin(0,1,2,3::::::::f-1) Then B=cir(𝑏𝜃(0)

2, 𝑏𝜃(1)
2, 𝑏𝜃(2)

2 ∷∷∷∷

𝑏𝜃(𝑓−1)
2)where 𝜃is a permutation of (0,1,2,3::::::::.f-1). This was also observed by Silverman [6,p.180] 

Theorem 2.2.If the characteristic of the field Kis 2, and fis an odd integer, then squaring a 𝒇 × 𝒇 circulant 

matrix P is same as squaring ffield elements. 

Proof.We utilize the standard technique for matrix multiplication; where one registers the spot result of the 

𝑖𝑡 row with the 𝑗𝑡column for the component at the convergence of the 𝑖𝑡 rowand the 𝑗𝑡columnof the product 

matrix. As we saw before the circulant matrix are shut under multiplication and a circulant matrix is given by its 

first line. Taking these into account, if the circulant matrix is𝑩 =   𝑐𝑖𝑟(𝑏0, 𝑏1, 𝑏2 ∷∷∷∷∷ 𝑏𝑓−1 )we see that the first 

element of the first row of the product, is the dot product of (𝑏0, 𝑏1, 𝑏2 ∷∷∷∷∷∷ 𝑏𝑓−1 ) with the first 

column (𝑏0, 𝑏𝑓−1, ∷∷∷∷∷ 𝑏1 ) 
𝑇
. The first column can be thought of as the map 𝑎𝑖 → 𝑎−𝑖𝑚𝑜𝑑 𝑓    for i =(0; 1; : : 

: ; . f- 1) 

For each 𝑗in [0; 1; 2; : : : ; f–1], the map is given by𝑎𝑖 → 𝑎𝑗−𝑖𝑚𝑜𝑑 𝑓Now notice that if 𝑖 →  𝑗 −  𝑖 mod f , then 

𝑗 − 𝑖  →  𝑖mod f .   This proves that there are pairs formed in the dot product, which makes it root when working 

in latent2. 
 

      The main thing that departures shaping sets, are those 𝑖, for which 𝑖 = 𝑗 − 𝑖𝑚𝑜𝑑 𝑓.since𝑓 is odd, there is an 

inverse of 2 𝑚𝑜𝑑𝑓 and an interesting answer for  𝑖. 

 

    It is anything but difficult to see from the above verification, that once an odd number 𝑓 is settled, one can 

undoubtedly process the change 𝜃. The calculation of𝑓 diverse forces should be possible in parallel. 

 

III. THE DISCRETE LOGARITHM PROBLEM IN CIRCULANT MATRICES 

       As we saw previously, circulant frameworks can be spoken to in two diverse ways - one as a circulant 

lattice and different as a component of the ring R=
𝑭 (𝒚) 

𝒚𝒇−𝟏
 . In the later case, every component of R is a polynomial 

of degree 𝒇 −  𝟏 in K . The polynomial augmentation in R should be possible (in parallel) utilizing grid 

duplication. In the event that lattice increase is utilized to do the polynomial augmentation, at that point there is no 

compelling reason to do the lessening mod 𝒚𝒅 − 𝟏 
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These two representations lead to two different kinds of attack to the discrete logarithm problem: 

(a) The discrete logarithm problem in matrices. 

(b) The discrete logarithm problem in R. 

 

A. The discrete logarithm problem in matrices 

        As we comprehended from Menezes and Wu [4], understanding the discrete logarithm problem in 

non-solitary networks is attached to the biggest level of the unchangeable component of the trademark 

polynomial. The most ideal situation happens when the trademark polynomial is final. For circulant networks this 

isn't the situation. 

It is anything but difficult to see that the line aggregate, entirety of the considerable number of components 

consecutively, is consistent in a circulant network. This influences the column to whole an eigenvalue of the 

framework. Since this eigenvalue has a place with the ground field, the best way to get away from a discrete 

logarithm issue in the ground field is to make this eigenvalue, i.e., the line aggregate 1. So the circulant framework 

Pought to be picked with the accompanying properties: 

(ii) The matrix Phas row-sum 1. 

(iii) The polynomial 
𝛘𝐀

𝐲−𝟏
is irreducible. 

 

     In the above case the security of the discrete logarithm problem in Pis similar to that of the discrete 

logarithm problem in the finite field 𝑲𝒒𝒇— 1 
 

B. The discrete logarithm problem in
𝑲𝒒 (𝒚) 

𝒚𝒅−𝟏
 

 

        Notice that      
𝑲𝒒 (𝒚) 

𝒚𝒅−𝟏
≅

𝑲𝒒 (𝒚) 

𝒚−𝟏
×

𝑲𝒒 (𝒚) 

𝜳(𝒚)
 

WhereΨ 𝒚 =
𝒚𝒅−𝟏

𝒚−𝟏
and 𝑔𝑐𝑑(𝑑, 𝑞) = 1. So the discrete logarithm problem in

𝑭𝒒 (𝒚) 

𝒚𝒅−𝟏
reduces in to two different 

discrete logarithm problems, one in the field 𝑲𝒒and other in the ring
𝑲𝒒 (𝒚) 

𝜳(𝒚)
.The matrix Pcan be chosen in such 

a way thatthe representer polynomial 𝝀𝑷(𝒚)𝑚𝑜𝑑 (𝑦 − 1)is either 0 or 1and hence reveals noinformation about 

the private key m. Note that:𝝀𝑷(𝒚)𝑚𝑜𝑑 (𝑦 − 1)is 0 or 1isequivalent to the row-sum being 0 or 1respectively. 

If the row-sum is zero thecirculant matrix is singular; on the other hand if we assume the row-sum to be 

1(condition (ii)) then automatically 𝝀𝑷 𝒚 𝑚𝑜𝑑  𝑦 − 1 = 1. 𝚿 𝒚 is irreducible, then the discrete logarithm 

problem is a discrete logarithmproblem in the field 
𝑲𝒒 (𝒚) 

𝜳(𝒚)
. Hence the security of the discrete logarithm 

problem isthe same as that of the discrete logarithm problem in 𝑲𝒒𝒇— 1.The question remains, when 

isΨ  𝒚  𝒊𝒔 irreducible? We know that [8, Theorem2.45], 𝒚𝒅 − 𝟏 =  𝒇𝟏
𝒇 𝝀𝒅𝟏

 𝒚 where 𝝀𝒌 𝒚  is the 

𝒌𝒕𝒉cyclotomic polynomial. It follows that if d is prime, then   Ψ 𝒚 = 𝝀𝒅 𝒚 Then the question reduces to, 

when is the 𝒅𝒕𝒉cyclotomic polynomial irreducible, for a prime d ? It is known [8, Theorem 2.47] that 

the𝒅𝒕𝒉cyclotomic polynomial 𝝀𝒅 𝒚 is irreducible over Kqif and only if qis primitive mod f. 
 

We summarize the requirements on P, such that the discrete logarithm problem is as secure as the discrete 

logarithm problem in 𝑲𝒒𝒇— 1 

 

(iv) The integer f is prime. 

 

(v) qis primitive mod f. 

 

IV. USE THE DISCRETE LOGARITHM PROBLEM WITH 𝒇 × 𝒇CIRCULANT MATRICES 

    A snappy response to the above inquiry is that augmentation in R, which is isomorphic as a variable based 

math to 𝒇 × 𝒇circulant networks over 𝑲𝒒 can be substantially speedier! 

In executing the exponentiation in any gathering, the best known strategy is the popular square-and-increase 

calculation. Utilizing typical premise [8, Definition 2.32], in a limited field of latent2, squaring is shoddy; it is 

only a cyclic move of the bits. For our situation, utilizing Theorem 2.2, it is comparable. What about 

augmentation? 
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The subtle element of the many-sided quality of augmentation is bit included, yet very much contemplated. So we 

can avoid the points of interest here, and allude the per user to [3, 6]. The multifaceted nature of duplication in a 

limited field reliesupon the decision of premise. In the event that one uses an ordinary premise, the minimum 

unpredictability is achieved by an ideal typical premise [3, Chapter 5]. Inthat case, the intricacy of multiplication 

in the field 𝐊𝐪𝐟 is 𝟐𝒇 −1 [6, Theorem 5.1], where 𝑲𝒒 is a field of latent2. On account of R, that intricacy 

diminishes to 𝒇 [6, Example 3]. In R we get security of 𝑲𝒒𝒇— 1.So there is an undeniable preferred standpoint of 

working with the circulant frameworks than with a limited field – the many-sided quality of figuring the 

exponentiation decreases to half with just a single additional piece. Ultimately, one can utilize the stretched out 

Euclidean calculation to figure the reverse of a representer polynomial in R. In an ElGamal like cryptosystem, one 

needs to figure that opposite. This will make decoding quick. 
 

V. CONCLUSIONS 

       In this paper we contemplate the discrete logarithm issue in the ring of circulant matrices. On the off chance that 

the matrices are of size 𝒇 then we saw that under reasonable conditions, the discrete logarithm issue is as secure as 

the discrete logarithm issue in 𝑲𝒒𝒇— 1. Since increasing circulant matrix is less demanding, the discrete logarithm 

problem in circulant matrix is superior to the discrete logarithm issue in a limited field 𝑲𝒒𝒇— 1. 

There isn't much history of taking a gander at matrices for better (more secure) discrete logarithm issue. In this note 

the isomorphism of the circulant matrix with the variable based math R has diminished the focal issue of this work to 

that of a usage of finite fields. An approach to take a gander at R and this investigation of the discrete logarithm issue 

in R is, the finite field 𝑲𝒒𝒇— 1.is installed in R. In spite of the fact that this is a legitimate method for taking a gander 

at the current circumstance, it isn't the entire view. For instance, the issue with row sum entirety won't be 

straightforward, except if one takes a gander at matrix. Additionally this opens up the likelihood that there can be 

different matrices, designed matrices or a subgroup of the circulant matrices, other than the one with row total 1; in 

which we can improve the discrete logarithm issue. 
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