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Abstract  
          This study dealt with a theoretical analysis of two-phase flow and heat transfer in a horizontal channel in the 

presence of an applied electric field and inclined magnetic field has been investigated.  The inclined magnetic field 

is a strong magnetic field and the induced magnetic field is produced along the flow direction. The fluids in both 

phases were incompressible and the flow was assumed to be steady, one-dimensional and fully developed.  Further 

it is also assumed that the two fluids have different viscosities and thermal conductivities. In this paper, we have 

investigated the upper phase of the two fluids which is assumed to be electrically conducting and that of the lower 

phase is electrically non-conducting. The transport properties of the two fluids were taken to be constant and equal 

temperature. The analytical solutions for velocities, induced magnetic field and temperature distributions are 

obtained and are computed numerically for different heights and viscosity ratios for two fluids and for two values of 

electric load parameter 
e

R  .The computed results of velocity distributions, induced magnetic field strength and the 

temperature distributions are depicted graphically for distances from the fixed horizontal plates and for different 

angle of inclinations. 
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I. INRTODUCTION 

           
       The flow and heat transfer of electrically conducting fluids in channels under the effect of a transverse 

magnetic field occurs in magnetohydrodynamic (MHD) generators, pumps, accelerators and flowmeters and have 

applications in nuclear reactors, filtration, geothermal systems and others. Heat transfer in developing 

magnetohydrodynamic Poiseuille flow and variable transport properties carried out by Alireza, S. and Sahai, V.[1] 

       The magnetohydrodynamic (MHD) heat transfer in a two-phase flow with the fluid in one phase being 

electrically conducting has been studied by Lohrasbi and Sahai [2]. The flow through the generator channel has two 

regions: (a) gaseous suspension region containing slag and seed particles and (b) liquid phase consisting of 

condensed slag. Both phases are electrically conducting and have variable transport properties. 

       The coal-fire MHD generator channel is subjected to an unusually sever thermal environment. Postlethwaite and 

Sluyter [3] present an overview of the heat transfer problems associated with a MHD generator. The fluid mechanics 

and the heat transfer characteristics of generator channel are significantly influenced by the presence of magnetic 

field. The slag layers in the walls of the channel complicate the problem. Further the thermal energy is supplied to 

the conducting fluid through Ohmic heating. Thus the temperature field in an electrically conducting fluid in 

presence of a magnetic field differs from that in a non-conducting fluid. 

      Malashetty and Leela [4] have studied the problem of magnetohydrodynamic flow and heat transfer in a 

horizontal channel in a two-phase flow. He observed that in case of open circuit problem for negative values of the 

electric load parameter 
e

R  , the effect of increasing the Hartmann number M is to accelerate the velocity and to 

increase the temperature field in contrast to the short circuit case. Recently there have been some theoretical and 
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experimental works on the stratified laminar flow of two immiscible liquids in a horizontal pipe. The interest in 

these types of problems stems from the possibility of reducing the power required to pumping oil in a pipeline by 

suitable addition of water. Hartmann flow of a conducting fluid in a channel between two horizontal insulating 

plates of infinite extent with a layer of non-conducting fluid between upper channel wall and the conducting fluid 

has been studied by Shail [5]. He found that an increase of the order of 30% can obtained in the flow rate of the 

conducting fluid for suitable ratios of the depths and viscosities of the two fluids and realistic value of the Hartmann 

number. Setayesh and  Sahai [6] analyzed the magnetohydrodynamic heat transfer problem with variable transport 

properties. Malashetty and Umavathi [7] have studied the Two-Phase Magnetohydrodynamic flow and heat transfer 

in an inclined channel in which one phase being electrically conducting. He assumed that the transport properties of 

both fluids are constant. It is found that the velocity and temperature can be increased or decreased with suitable 

values of the ratios of viscosities, thermal conductivities, the heights and the angle of inclination. Singha and Deka 

[8] studied the laminar convection flow of a viscous electrically conducting incompressible fluid between two 

heated vertical parallel plates in presence of a uniform inclined magnetic field. It is found that with the increase of 

angle of inclination, velocity increases with different magnetic field strength. Further it is also observed that with the 

bigger strength of magnetic field variation of velocity with angle of inclination is bigger. So it is concluding that 

with large magnetic field strength if inclination of field is slightly changed we can expect large change in fluid 

velocity. The two-phase problem of magnetohydrodynamic flow and heat transfer in a parallel-plate channel is 

studied analytically by Singha and Deka [10].  It is observed that in case of open circuit problem for negative values 

of the electric load parameter
e

R , the effect of increasing the Hartmann number M is to accelerate the velocity and 

is to increase the temperature in contrast to the short case. P. Sri Ramachandra Murty and G. Balaji Prakash [11] 

have done a detailed analysis on MHD Two-Fluid Flow and Heat Transfer between Two Inclined Parallel Plates in a 

Rotating System. Recently Hasan Nihal Zaidi, Naseem Ahmad [12] have studied MHD Convection Flow of Two 

Immiscible Fluids in an Inclined Channel with Heat Generation / Absorption.   

     In the present paper, we have studied the Magnetohydrodynamics two-phase flow and heat transfer problem in a 

horizontal channel and it is considered in presence of a uniform inclined magnetic field. The fluids in the two-phase 

were assumed to be immiscible, incompressible, steady, one-dimensional and fully developed. Further it is also 

assumed that the two fluids have different viscosities and thermal conductivities. In this problem, we have 

investigated the upper phase of the two fluids which is assumed to be electrically conducting and that of the lower 

phase is electrically non-conducting. The transport properties of the two fluids were taken to be constant and equal 

temperature. The analytical solutions for velocities, induced magnetic field and temperature distributions are 

obtained and are computed numerically for different heights and viscosity ratios for two fluids and for two values of 

electric load parameter
e

R  . The computed results of velocity distributions, induced magnetic field strength and the 

temperature distributions are plotted distances from the fixed horizontal plates and for different angle of inclinations. 

Analytical solutions for velocity, induced field and the temperature distributions are obtained; skin frictional factors 

are computed for different angle of inclinations and for different magnetic field strengths. 

     Our study is motivated by the work of Singha and Deka [8] who investigated one- phase flow of a viscous 

electrically conducting incompressible fluid between two heated vertical parallel plates in presence of a uniform 

inclined magnetic field. In the present work, we have studied two-phase MHD flow and heat transfer in an inclined 

magnetic field. In our studies it has found that the volumetric flow rate in a channel may be controlled by the 

orientation of applied magnetic field.  

 
II. FORMULATION OF THE PROBLEM  

  
       The physical model shown in Fig.1, consists of two infinite parallel plates extending in the X  and Z -

direction. The region 
1

0 hy   , is occupied by a fluid of viscosity
1

 , electrical conductivity 
1

  , and thermal 

conductivity 
1

k   and the region 0
2

 yh  , is occupied by a layer of different (immiscible) fluid of viscosity 

2
   and thermal conductivity  

2
k  .The transport properties of both fluids are assumed to be constant. The fluid 

flows in the X  direction. A uniform magnetic field of strength 
0

B   is applied in the direction making an angle   

to the vertical line which in turn another magnetic field )( yB
x

  along the lines of motion. 
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 The fluid velocity and the magnetic field distributions are   
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where  cos  .The two bounding walls are maintained at constant temperature 
w

T  . 

The flow is assumed to be steady, laminar, incompressible and fully developed. The flow of both phases is assumed 

to be at a constant pressure gradient
x

p
P




 . 

Under these assumptions as stated above, the governing equation of motion, magnetic field and equation of energy 

for the two phases are 
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Here   represents the dissipation function given by  
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 and the third term in the right hand side of equation (2) is the magnetic body force and 


J  is the current density due 

to the magnetic field defined by 
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

Z  is the force due to buoyancy Z=  TTg 
0

                                                                                        (6) 

The gravitational body force 


Z  has been neglected in the equation (2).  

   

 Using the velocity and magnetic field distribution as stated above, the equations (1) to (4) are as follows: 

 

The equation of motion and energy for the two-phases reduces to  

  

                          .0
1

002

2

 






BuBE

dy

ud
P

z
                                                                     (7) 

      

                         .0
1

2

2

0

















dy

Bd

dy

du
B

x

e


                                                                                           (8) 

                          .
2

0

2

2

2

 uBE
y

u

y

T

x

T
uc

zp





























                                                      (9) 

 

III. BOUNDARY CONDITIONS 

 

The fluid and thermometric boundary conditions are unchanged by the addition of electromagnetic fields. The no 

slip condition requires that the velocity must vanish at the wall boundaries. In addition, the fluid velocity, sheering 

stress, temperature and heat flux must be continuous across the interface 0y . Boundary and interface conditions 

on 
1

u  , 
2

u  and 
x

B  are 
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    If the walls are maintained at constant temperatures the boundary conditions on  
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IV. VELOCITY AND MAGNETIC FIELD DISTRIBUTIONS 

 

  The governing equation for the velocity 
1

u   of phase-I can be written as  
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 The equation governing the velocity 
2

u  of the non-conducting lower phase-II may be obtained by setting  0
2
   

in equation (7) and is given by  
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The equation governing the magnetic field of the conducting upper phase-I can be written as  
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It is convenient to non-dimensionalize the above equations the following transformations will be used here: 
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Equations (12)-(14) becomes respectively,  
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 (The subscripts 1 and 2 refer to the upper and lower phases respectively). 

 

Where M is the Hartmann number, which is the measure of the strength of the applied magnetic field, 
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m

R  is the magnetic Reynolds number, 
em

huR 
111

  

 

  
e

R   is the electric field loading parameter.                                                                       

 

    is the ratio of the viscosities of the two fluids, 
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    is the ratio of the height of the two fluids, 
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  G is the non-dimensional pressure gradient.  

 

  The boundary conditions (10) reduces to                         
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Equations.(16)-(18) can be solved easily subject to the boundary conditions  (19). The exact solution for the velocity 

of the electrically conducting phase is given by  
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The corresponding solution for the velocity of the non-conducting fluid is given by 
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And the solution for the magnetic field of the electrically conducting phase is given by  
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V. TEMPERATURE DISTRIBUTION  

 

        Once the velocity distributions are known the temperature distributions for the two regions are determined by 

solving the energy equations subject to the appropriate boundary and interface conditions. 

   In the present problem, it is assumed that the two walls are maintained at constant and equal temperatures. The 

term involving  
x
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  in the energy equation (9) drops out for such a condition. The governing equation for the 

temperature  
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The temperature 
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T  of the non-conducting fluid in phase-II is similarly governed by the equation 

 

            0

2

2

2

22

2

2

2

2

















dy

du

dy

Td
k  .                                                                                                       (24) 

 

To non-dimensionalize the equations (23) and (24) the following transformations are used  
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Here 
w

T  is the common wall temperature. Equations (23) and (24) then reduces to the following form 
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Here    is the ratio of the thermal conductivities of the two fluids, 
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M is the non-dimensional Hartmann number, 

1

1

10




hBM   

 

In the non-dimensional form, the boundary conditions of the continuity of temperature and heat flux at the interface 

0y   becomes 
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In the present case, it is assumed that 
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Once the velocity distributions are known the temperature distributions for the two phases are determined using 

equations (26)-(28) and (20)-(21).  

 

The solutions of equations (26) and (27) is given by  
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VI. DISCUSSION OF THE RESULTS  

 

          The velocity and temperature distributions are now plotted graphically against the distances between the two 

plates. Both the cases are taken in to account, the case of electrical load parameter 0
e

R  and 0.1
e

R  . 

0
e

R  represents the short circuit case in which there is no electric field, and the flow is driven entirely by the 

applied pressure gradient. 

 

    In figure 2 the velocity distribution is plotted against the distances from the solid boundaries. It is clear from the 

figure 2 for the Phase-I(conducting fluid)  at liquid boundary 0y   the fluid velocity  0u  where as at solid 

boundary 1y   it is zero. This is the evidence that there is an enhancement volumetric flow rate in the channel due 

to the presence of liquid boundary. This flow rate will be increased when the angle of inclination of imposed 

magnetic field with vertical line of the channel is increased. This observation is important for the probable 

application in the pumping of conducting liquid along with the immiscible liquid. This shows that beside the 

minimizing power requirement for pumping the question of controlling flow rate by changing imposed magnetic 

field direction. Here some effect is established in fig.4 for different electrical load parameter
e

R  . 

    In earlier work [3] it has been pointed out that, the pressure requirement to pump electrically conducting liquid 

can be reduced. In our paper it has found that the volumetric flow rate in pipe in a channel may be controlled by the 

orientation of applied magnetic field. The temperature distribution is shown in figure 3 and figure 5. It should be 

noted that the temperature distributions for the conducting phase in both cases i.e. 0
e

R  and 1
e

R  have 

qualitatively the same characteristics as they exhibited by classical one-phase Hartmann flow [8]. 

    The induced magnetic field distribution is shown in figure 6 and figure 7 for 0( 
e

R   and )1
e

R  in 

conductor strength of magnetic field decreases almost linearly as we approach to the boundary wall of the channel 

Rate of change of induced magnetic field gradients are strong for the case 0.1
e

R   than for 0
e

R  .  

    In figure 8 and figure 9 for 0( 
e

R   and )1
e

R  same effect has been observed as shown in figure 6 and 

figure 7. 
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                NOMENCLATURE 

                                                                                                      Greek letters 

 

0
B   Uniform applied magnetic field                            

2

1




 , ratio of the viscosities  

 

)( yB
x

   Induced magnetic field                                   
2

1

h

h
, ratio of heights of two   

                                                                                                 fluid 

z
E Constant electric field in the                                  

2

1

k

k
, ratio of the thermal          

          direction of z                                                               conductivities 

 

21
, hh    Heights of the two regions               

)/(

)(

11

2

1

1

1

ku

TT
w






 , non- dimensional                  

                                                                                     temperature in phase-I   

1

1

10




hBM  , Hartmann number                                                    

 

 
,

/
2

111
hu

P
G


 Non-dimensional               ,

/
11

2

1

2

2

ku

TT
w






  non- dimensional                         

        Pressure gradient                                           temperature in phase-II 

  

 
w

T   Common wall temperature                     
21

,      Viscosities of the two fluids  

 

01
Bu

E
R

z

e
   Electric load parameter              

21
,       Electrical conductivity of the  

                                                                                                two   fluids                                                                                                    

21
, uu    Velocity of the two fluids                                               

   
1

u    Average velocity 

 

zyx ,,   Co-ordinates in space                                                     Subscripts 

                                                                             1, 2 refer to the upper and lower         

                                                                                                       phase        
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