Fractional Matrix and Spectral Analysis on Real and Complex Operators

Biswanath Rath
Department of Physics, orth Orissa University, Takatpur. Baripada -757003, Odisha, INDIA

We propose a new matrix called Fractional - Matrix. Suitable matrix, real operators and complex operators have been considered for practical use of it . Essentially this matrix is a cross-checking device on spectral analysis.

Mathematical Classification (2010):47 A10:47B20
Key words - fractional matrix, spectral analysis.

I. INTRODUCTION

Matrix method has an important application in literature of eigenvalue calculation[1]. In fact the eigenvalues obtained in a matrix can be cross checked. through inverse matrix. Let A is a square matrix (nxn) having eigenvalues $\lambda_{1} ; \lambda_{2} ; \lambda_{3} ; \lambda_{4} \ldots \ldots \lambda_{n}$. If $|A| \neq=0$ then eigenvalues of A^{-1} can be written as $\frac{1}{\lambda_{1}} ; \frac{1}{\lambda_{2}} ; \frac{1}{\lambda_{3}} ; \frac{1}{\lambda_{4}} ; \ldots \frac{1}{\lambda_{n}}$. This method is valid provided $\lambda_{1} \neq 0$. Now question arises as if $\lambda_{1}=0$, then how one will cross check the result? . To the best of my knowledge, no literature in mathematics nor applied mathematics deal with it. Keeping this in mind, I introduce a new matrix called Fractional - matrix to the literature on matix analysis and perform different types of calculation pertaining to mathematics as well as physics as discussed below.

II. FRACTIONAL MATRIX IN EIGENVALUE CALCULATION

Let A be a matrix having eigenvalue relation.

$$
\begin{equation*}
A|\Psi>=\lambda| \Psi> \tag{1}
\end{equation*}
$$

Now define a matrix F as

$$
\begin{equation*}
F=\frac{A}{A+L} \tag{2}
\end{equation*}
$$

here L is a numerical constant. Let the eigenvalues of F be β then

$$
\begin{equation*}
\lambda=\frac{L \beta}{1-\beta} \tag{3}
\end{equation*}
$$

more explicitly

$$
\begin{equation*}
\lambda_{n}=\frac{L \beta_{n}}{1-\beta_{n}} \tag{4}
\end{equation*}
$$

In order to give an explicit example .we consider simple (3x3) matrix as

$$
A=\left[\begin{array}{lll}
1 & 2 & 1 \tag{5}\\
1 & 2 & 1 \\
1 & 2 & 1
\end{array}\right]
$$

having eigenvalues $\lambda_{1}=4 ; \lambda_{2}=0 ; \lambda_{3}=0$ and $|A|=0$ Now define the matrix F as for different values of L as $F_{L}=I, 2.3$
The explicit expression for F is

$$
F_{1}=\left[\begin{array}{ccc}
\frac{1}{5} & \frac{2}{5} & \frac{1}{5} \tag{6}\\
\frac{1}{5} & \frac{2}{5} & \frac{1}{5} \\
\frac{1}{5} & \frac{2}{5} & \frac{1}{5}
\end{array}\right]
$$

$$
\begin{align*}
& F_{2}=\left[\begin{array}{lll}
\frac{1}{6} & \frac{1}{3} & \frac{1}{6} \\
\frac{1}{6} & \frac{1}{3} & \frac{1}{6} \\
\frac{1}{6} & \frac{1}{3} & \frac{1}{6}
\end{array}\right] \tag{7}\\
& F_{3}=\left[\begin{array}{lll}
\frac{1}{7} & \frac{2}{7} & \frac{1}{7} \\
\frac{1}{7} & \frac{2}{7} & \frac{1}{7} \\
\frac{1}{7} & \frac{2}{7} & \frac{1}{7}
\end{array}\right] \tag{8}
\end{align*}
$$

in table-I we compare the eigenvalues of F_{L} and A.
Table -1 : Eigenvalues of A and $F_{L}=1,2,3$.

.L	β_{n}	Direct Calculation λ_{n}	$E q(4) \lambda_{n}=\frac{L \beta_{n}}{1-\beta_{n}}$
$\mathbf{1}$	$\mathbf{0}$	0	0
	$\mathbf{0}$	0	0
	$\mathbf{4}$	4	4
2	$\mathbf{5}$	0	0
	$\mathbf{0}$	0	0
	$\frac{2}{3}$	4	4
3	0	0	0
	0	4	0
	7		

III. QUANTUM OPERATORS AND MATNX ANALYSIS

All quantum operators consisting of co-ordinate(x) and momentum(p) satisfies the commutation relation $[2,3]$

$$
\begin{equation*}
[x, p]=i \tag{9}
\end{equation*}
$$

where $i=\sqrt{-1}$. However while applying matrix method to operators involving x and p , we need a suitable base function. In this analysis, we consider wave functions of harmonic oscillator[2] as a suitable base function as follows.

$$
\begin{gather*}
H_{0}\left|\Psi_{\mathrm{n}}>=\left[p^{2}+x^{2}\right]\right| \Psi_{\mathrm{n}}>=(2 n+1) \mid \Psi_{\mathrm{n}}> \tag{10}\\
\Psi_{\mathrm{n}}=N_{n} H_{n}(x) \mathrm{e}^{-x^{2} / 2} \tag{11}
\end{gather*}
$$

where $H_{n}(x)$ is Hemite polynomial and N_{n} is the corresponding normalization constant . In short Ψ_{n} can be written as $\mid n>$ Matrix elements of x and p are as follows[2,3]

$$
\begin{align*}
&<n|x| n+1>=<n+1|x| n>=\frac{\sqrt{n+1}}{\sqrt{2}} \tag{12}\\
&<n|p| n+1>=-i \frac{\sqrt{n+1}}{\sqrt{2}} \tag{13}\\
&<n+1|p| n>=i \frac{\sqrt{n+1}}{\sqrt{2}} \tag{14}
\end{align*}
$$

Further if the operator is even then it is easy to show that

$$
\begin{equation*}
<n\left|x^{2 m}\right| n>=<n\left|p^{2 m}\right| n> \tag{15}
\end{equation*}
$$

IV. DIRECT EIGENVALUE CALCULATION USING MATRIX METHOD : REAL MATRIX

In order to calculate eigenvalues we wse matix diagonalisation method [4-9] by solving the eigenvalue relation as

$$
\begin{equation*}
H|\Psi>=E| \Psi> \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
\left|\Psi>=\sum_{m} A_{m}\right| m> \tag{17}
\end{equation*}
$$

In fact solving the eigenvalue using matrix analysis depends on the selection H. For example consider the a model Hamiltonian as

$$
\begin{equation*}
H=p^{2}+x^{6}-3 x^{2} \tag{18}
\end{equation*}
$$

Where $\mid \mathrm{m}>$ is the harmonic oscillator as described above. In this case we get

$$
\begin{equation*}
P_{m} A_{m-6}+Q_{m} A_{m-4}+R_{m} A_{m-2}+S_{m} A_{m}+T_{m} A_{m+2}+U_{m} A_{m+4}+V_{m} A_{m+6}=0 \tag{19}
\end{equation*}
$$

where

$$
\begin{align*}
P_{m} & =<m-6|H| m> \tag{20}\\
Q_{m} & =<m-4|H| m> \tag{21}\\
R_{m} & =<m-2|H| m> \tag{22}\\
S_{m} & =<m|H| m>-E \tag{23}\\
T_{m} & =R_{m+2} \tag{24}\\
U_{m} & =Q_{m+4} \tag{25}\\
V_{m} & =P_{m+6} \tag{26}
\end{align*}
$$

For the benefit of interested reader we give the explicit expression for S_{m} as $\mathbf{S}_{\mathrm{m}}=2.5 m^{3}+3.75 m^{2}+3 m+0.875-E$
The explicit expression for a (5×5) matrix of H is given below.

$$
H_{\text {matrix }}=\left|\begin{array}{ccccc}
0.875 & 0 & 5.12652 & 0 & 9.18558 \tag{28}\\
0 & 10.125 & 0 & 27.25057 & 0 \\
5.12652 & 0 & 41.875 & 0 & 77.50927 \\
0 & 27.25057 & 0 & 111.125 & 0 \\
91.85586 & 0 & 77.50927 & 0 & 232.875
\end{array}\right|
$$

Further we also notice that the equivalent operator [8]

$$
\begin{equation*}
h=x^{2}+p^{6}-3 p^{2} \tag{29}
\end{equation*}
$$

also yield the same eigenvalue. For the interest of the reader we present (5x5) matrix of h as given below.

$$
h_{\text {matrix }}==\left|\begin{array}{ccccc}
0.875 & 0 & 5.12652 & 0 & 9.18558 \tag{30}\\
0 & 10.125 & 0 & 27.25057 & 0 \\
5.12652 & 0 & 41.875 & 0 & 77.50927 \\
0 & 27.25057 & 0 & 111.125 & 0 \\
91.85586 & 0 & 77.50927 & 0 & 232.875
\end{array}\right|
$$

One will see that in both the cases diagonal elements remains the same. The first five eigenvalues are tabulated in table-2.

Table -2 : Eigenvalues of \boldsymbol{H} and \boldsymbol{h}.

Table -2 : Eigenvalues of \boldsymbol{H} and \boldsymbol{h}.			
n	Eigenvalues of H	Eigenvalues of h	Previous [7]
0	0	0	0
1	1.935482	1.935482	1.935482
2	6.298495	6.298495	6.298495
3	11.680970	11.680970	11.680970
4	18.042634	18.042634	

IVB. Direct Eigenvalue Calculation using Matrix Method : Complex Matrix

Here we consider the complex cubic oscillator characterized by the Hamiltonian [10]

$$
\begin{equation*}
H=p^{2}+i x^{3} \tag{31}
\end{equation*}
$$

Following the above method we get a seven term recurrence relation satisfied by A_{m} as follows

$$
\begin{equation*}
P_{m} A_{m-3}+Q_{m} A_{m-2}+R_{m} A_{m-1}+S_{m} A_{m}+T_{m} A_{m+3}+U_{m} A_{m+2}+V_{m} A_{m+1}=0 \tag{32}
\end{equation*}
$$

Here

$$
\begin{align*}
P_{m} & =<m-3|H| m> \tag{33}\\
Q_{m} & =<m-2|H| m> \tag{34}\\
R_{m} & =<m-1|H| m> \tag{35}\\
S_{m} & =<m|H| m>-E \tag{36}\\
T_{m} & =R_{m+1} \tag{37}\\
U_{m} & =Q_{m+2} \tag{38}\\
V_{m} & =P_{m+3} \tag{39}
\end{align*}
$$

For the benefit of interested reader we give the explicit expression for S_{m} as

$$
\begin{equation*}
S_{m}=m+0.5-E \tag{40}
\end{equation*}
$$

In this case also we notice its equivalent operato h

$$
\begin{equation*}
h=x^{2}+i p^{3} \tag{41}
\end{equation*}
$$

also yields the same eigenvalue. Interested reader can check the iso-spectra. The first five eigenvalues using direct matrix method are given below in table-3.

Table -3 : Eigenvalues of Complex Cubic Oscillator.

n	Eigenvalues of \boldsymbol{H}	Eigenvalues of h	Previous[10.5]
0	1.1562	1.1562	1.1562
1	4.1092	4.1092	4.1092
2	7.5621	7.5621	7.5621
3	11.3143	11.3143	11.3143
4	15.2916	15.2916	15.2916

V. Fractional Matrix Eigenvalue Method(FMEM)

Here we use FMEM to compute eigenvalues of matrix $H_{\text {matrix }}$ by defining F as

$$
\begin{equation*}
F=\frac{H}{H+L} \tag{42}
\end{equation*}
$$

The eigenvalues are calculated using the method reported earlier[4-6] In particular we consider $L=1$ and compute the values of β_{n} as shown in table.

Table -3: Eigenvalues of E, H and h.

Hamitonian(H or h)	β_{n}	$E_{n}=\frac{\beta_{n}}{\left(1-\beta_{n}\right)}$	Remarks
$H=p^{2}+x^{2}$	$\frac{1}{2}$ $\frac{3}{4}$ $\frac{5}{6}$ 7 $\frac{8}{8}$ $\frac{9}{10}$	$\begin{aligned} & 1 \\ & 3 \\ & 5 \\ & 7 \\ & 9 \end{aligned}$	no difference in eigenvalues
$\begin{aligned} & H=p^{2}+x^{6}-3 x^{2} \\ & h=x^{2}+p^{6}-3 p^{2} \end{aligned}$	0 $\frac{60}{291}$ $\frac{422}{489}$ $\frac{549}{596}$ $\frac{848}{895}$	$\begin{gathered} 0 \\ 1.9354 \\ 6.2985 \\ 11.50785 \\ 18.04355 \end{gathered}$	no difference in eigenvalues
$\begin{aligned} & H=p^{2}+i x^{3} \\ & h=x^{2}+i p^{3} \end{aligned}$	$\begin{aligned} & \frac{2123}{3974} \\ & \frac{480}{608} \\ & \frac{2125}{2406} \\ & \frac{396}{431} \\ & \frac{367}{391} \end{aligned}$	$\begin{gathered} 1.1562 \\ 4.1092 \\ 7.5622 \\ 11.3142 \\ 15.2916 \end{gathered}$	no difference in eigenvalues

VI. CONCLUSION

We have proposed a new matrix to the literature on matrix. The present application to standard matrix and quantum operator will motivate the reader for further study. In fact FMEM is a self checked method on eigenvalue. We believe this paper will be of interest to students, researchers in physics as well as in mathematics.

REFERENCES

[1] E.Kreyszig: Advanced Mathematics, Wiley india Pvt,Ltd, New Delhi ,India 2011.
[2] A.S.Davydov, Quantum Mechanics Oxford : Pergamon 1965.
[3] B.Rath, Phys.Rev A42,2520(1990).
[4] B.Rath, TheAfrican.Rev.Phys.12:006,41 (2017).
[5] B.Rath, P.Mallick and P.K.Samal:TheAfrican.Rev.Phys.9:0027,201 (2014).
[6] B.Rath, P.Mallick and P.K.Samal:TheAfrican.Rev.Phys.10:0007,(2015).
[7] B.Rath, Pramana 49(4),385(1997)
[8] B.Rath, Jour.Advances in Phys,.14(1),5326(2018).
[9] J.B.Rath, Complex Siamese Twins and Real Spectra, Lambert Academic Publishing Company Germany(2018). [10] C.M.Bender and S.Boettecher, Phys.Rev.Lett ,.80(24),5243 (1998)

