A New Property of the Roots of an Equation

Tuhin Bose
Class-XI, Kalyani University Experimental High School
Rani Rashmoni Ghat Road, Bagmore, West Bengal ,India

Abstract

If all roots of the " n " degree equation $a_{0} x^{n}+a_{1} x^{(n-1)}+a_{2} x^{(n-2)}+\ldots+a_{n}=0\left[\right.$ Where $n \in \mathbb{N}$ and $a_{0}, a_{1}, \ldots, a_{n}$ are real numbers] are real numbers then,

$$
(n-1) a_{1}^{2} \geq 2 n a_{0} a_{2}
$$

Keywords - Titu's Lemma, Tchebycheff's inequality,Roots,Equation

I. INTRODUCTION

Apart from some well known properties of equations in this article I am proposing a new condition related to the roots of an " n " degree equation.

II. PROPOSAL

If all roots of the " n " degree equation $a_{0} x^{n}+a_{1} x^{(n-1)}+a_{2} x^{(n-2)}+\ldots+a_{n}=0$ [Where n is an natural number and $a_{0}, a_{1}, \ldots, a_{n}$ are real numbers] are real numbers then,

$$
(\mathrm{n}-1) \mathrm{a}_{1}^{2} \geq 2 \mathrm{na}_{0} \mathrm{a}_{2}
$$

III. PROOF

Proof-I

Let, roots of the equation $a_{0} x^{n}+a_{1} x^{(n-1)}+a_{2} x^{(n-2)}+\ldots+a_{n}=0$ [Where n is a Natural number and $a_{0}, a_{1}, \ldots, a_{n}$ are real numbers $]$ are $b_{i}[i=1,2, \ldots, \mathrm{n}]$
We know that,

$$
\sum_{i=1}^{n} b_{i}=-\frac{a_{1}}{a_{0}}
$$

We also know that,

$$
\sum_{1 \leq i<j \leq n} b_{i} b_{j}=\frac{a_{2}}{a_{0}}
$$

So, from the two equation we get,

$$
\sum_{i=1}^{n} b_{i}^{2}=\left(\sum_{i=1}^{n} b_{i}\right)^{2}-2 \sum_{1 \leq i<j \leq n} b_{i} b_{j}=\frac{\left(a_{1}^{2}-2 a_{0} a_{2}\right)}{a_{0}^{2}}
$$

If all $b_{1}, b_{2}, \ldots, b_{n}$ are real numbers then,

$$
\begin{aligned}
& \sum_{i=1}^{n}\left(\frac{b_{i}^{2}}{1}\right) \geq \frac{\left(\sum_{i=1}^{n} b_{i}\right)^{2}}{\sum_{i=1}^{n} 1} \quad \text { [By using Titu's Lemma] } \\
\Rightarrow & \quad \sum_{i=1}^{n} b_{i}^{2} \geq \frac{\left(\sum_{i=1}^{n} b_{i}\right)^{2}}{n} \\
\Rightarrow & n \frac{\left(a_{1}^{2}-2 a_{0} a_{2}\right)}{a_{0}^{2}} \geq\left(-\frac{a_{1}}{a_{0}}\right)^{2}
\end{aligned}
$$

By simplifying this we get,

$$
\Rightarrow \quad(n-1) a_{1}^{2} \geq 2 n a_{0} a_{2}
$$

Proof-2

If all $\mathrm{b}_{1}, \mathrm{~b}_{2}, \ldots, \mathrm{~b}_{\mathrm{n}}$ are real numbers then,
$\left(\sum_{i=1}^{n} b_{i}\right)^{2} \leq \mathrm{n} \sum_{i=1}^{n} b_{i}{ }^{2} \quad$ [This is a corollary of Tchebycheff's inequality.]

Or, $\left(-\frac{a_{1}}{a_{0}}\right)^{2} \leq \mathrm{n} \frac{\left(a_{1}^{2}-2 a_{0} a_{2}\right)}{a_{0}^{2}}$
Or, $\quad a_{1}^{2} \leq\left(\mathrm{n} a_{1}^{2}-2 \mathrm{n} a_{0} a_{2}\right)$
Or, $\quad(\mathrm{n}-1) a_{1}^{2} \geq 2 \mathrm{n} a_{0} a_{2}$

IV. CONCLUSION

Thus apart from some well known properties of equations I have proposed a new property related to the roots of an " n " degree equation.

V. ACKNOWLEDGEMENTS

I would like to thank my teacher Dr. Khondokar Azad Rahman for encouraging me.

REFERENCES

[1] Mathematics Today
[2] Internet

