A New Property of the Roots of an Equation

Tuhin Bose

Class-XI, Kalyani University Experimental High School Rani Rashmoni Ghat Road, Bagmore ,West Bengal ,India

Abstract

If all roots of the "n" degree equation $a_0x^n + a_1x^{(n-1)} + a_2x^{(n-2)} + ... + a_n = 0$ [Where $n \in \mathbb{N}$ and $a_0, a_1, ..., a_n$ are real numbers] are real numbers then,

 $(n-1)a_1^2 \ge 2na_0a_2$

Keywords - Titu's Lemma, Tchebycheff's inequality, Roots, Equation

I. INTRODUCTION

Apart from some well known properties of equations in this article I am proposing a new condition related to the roots of an "n" degree equation.

II. PROPOSAL

If all roots of the "n" degree equation $a_0x^n+a_1x^{(n-1)}+a_2x^{(n-2)}+\ldots+a_n=0$ [Where n is an natural number and a_0, a_1, \ldots, a_n are real numbers] are real numbers then,

 $(n-1)a_1^2 \ge 2na_0a_2$

III. PROOF

Proof-I

Let, roots of the equation $a_0x^n+a_1x^{(n-1)}+a_2x^{(n-2)}+\ldots+a_n=0$ [Where n is a Natural number and a_0, a_1, \ldots, a_n are real numbers] are $b_i[i=1,2,\ldots,n]$

We know that,

$$\sum_{i=1}^n b_i = -\frac{a_1}{a_0}$$

We also know that,

$$\sum_{1 \le i < j \le n} b_i b_j = \frac{a_2}{a_0}$$

So, from the two equation we get,

$$\sum_{i=1}^{n} b_i^2 = (\sum_{i=1}^{n} b_i)^2 - 2 \sum_{1 \le i < j \le n} b_i b_j = \frac{(a_1^2 - 2a_0 a_2)}{a_0^2}$$

If all b_1, b_2, \dots, b_n are real numbers then,

$$\sum_{i=1}^{n} \left(\frac{b_i^2}{1}\right) \ge \frac{\left(\sum_{i=1}^{n} b_i\right)^2}{\sum_{i=1}^{n} 1} \qquad [By using Titu's Lemma]$$

$$\Rightarrow \quad \sum_{i=1}^{n} b_i^2 \ge \frac{\left(\sum_{i=1}^{n} b_i\right)^2}{n}$$

$$\Rightarrow \quad n \frac{\left(a_1^2 - 2a_0 a_2\right)}{a_0^2} \ge \left(-\frac{a_1}{a_0}\right)^2$$

By simplifying this we get,

$$\implies (n-1)a_1^2 \ge 2na_0a_2$$

Proof-2

If all $b_1, b_2, ..., b_n$ are real numbers then, $(\sum_{i=1}^n b_i)^2 \le n \sum_{i=1}^n b_i^2$ [This is a corollary of **Tchebycheff's inequality.**]

Or,
$$\left(-\frac{a_1}{a_0}\right)^2 \leq n \frac{\left(a_1^2 - 2a_0 a_2\right)}{a_0^2}$$

Or, $a_1^2 \leq (na_1^2 - 2na_0a_2)$

Or, $(n-1)a_1^2 \ge 2na_0a_2$

IV. CONCLUSION

Thus apart from some well known properties of equations I have proposed a new property related to the roots of an "n" degree equation.

V. ACKNOWLEDGEMENTS

I would like to thank my teacher Dr. Khondokar Azad Rahman for encouraging me.

REFERENCES

[1] Mathematics Today

[2] Internet