Introduction to D-Space & C- Space

Nikhitha P B

F.D.P Substitute & Department of Mathematics & University of Calicut P.M.Government College, Chalakudy Kerala, India

Abstract

To reference in my paper, at first, I would like a text of 'Introduction to General Topology'that addressed convergence of a sequence in topological spaces. The concept seems plausible .Quite interested to consider the convergence of real sequence (1/n) with respect to different topology onreal space R. All of us knew that (1/n) converges to 0 with respect to usual topology on R. Here I pursue my work on discussing the space on which (1/n) divergent and stronger than usual topology on R. In consideration of this I am trying to define a new concept of D- Space and C- Space.

Keywords

- (R, τ_1) : Indiscrete Topology
- (R, τ_2) : Discrete Topology
- (R, τ_3) : Co-FiniteTopology
- (R, τ_4) : Co-Countable Topology
- (R, τ_5) : Usual Topology
- (R, τ_6) : Upper-Limit Topology
- (R, τ_7) : Lower -Limit Topology
- (R, τ_8) : Scattering Topology
- (R, τ_9) : Ray Topology
- Ø : Null Set
- \in : Belongs To
- \forall : For All
- ∃ : There Exists

I. INTRODUCTION

As we all knew, sequences can have different behavior with respect to different topological spaces. When we give our attention to Convergence and Divergence, arrives at a new concept of D-Space and C-Space. Consider a sequence $\{x_n\}$ which is convergent with respect to some topology τ , it is well known that $\{x_n\}$ convergent with respect to weaker topology $\tau' \subset \tau$. So we are interested to find out a topology strongerthan τ and on which the sequence $\{x_n\}$ is divergent. Here I am discussing some ideas by introducing D-Space and C-Space.

II. TOPOLOGICAL SPACE

Let X be any set and τ be a family of its subset. Then τ is said to be a topology if it satisfies the following conditions

1.Ø, $X \in \tau$

2. t is closed under arbitrary union(ie, if $A_{\alpha} \in \tau \quad \forall \alpha \quad \text{then} \quad \bigcup_{\alpha} A_{\alpha} \in \tau$)

3. t is closed under finite intersection (ie, if $F_i \in \tau$ for i = 1, 2, 3, ..., n then $\bigcap_{i=1}^n F_i \in \tau$)

if τ is a topology on X then (X, τ) is said to be a topological space and members of τ are called open sets in (X, τ) .

Then 1, 2, 3 can be restated as

1. \emptyset , X are open sets in (X, τ).

2. Arbitrary union of open sets is open.

3. Finite intersection of open set is open.

A. Convergence and Divergence

A sequence $\{x_n\}$ in a topological space (X,τ) is said be convergent and converges to a point $x \in X$ if for every open set U in X with $x \in U,\exists$ a natural number N such that $x_n \in U \forall n \ge N$. Otherwise we say that $\{x_n\}$ diverges to x.

B. Remarks

- 1. Eventually constant sequences are convergent with respect to any topological space. And converges to repeating term.
- 2. Any sequence is convergent with respect to indiscrete topology.
- 3. Eventually constant sequence is the only convergent sequence with respect to discrete topological space.
- 4. A sequence in co-finite topological spaces is convergent if and only if there is at most one term which repeats infinitely many often.
- 5. Eventually constant sequence is the only convergent sequence with respect to co-countable topological space.

III. D- SPACE AND C- SPACE

- 1. Let (X,τ) be any topological space, Let $\{x_n\}$ be any sequence (other than eventually constant sequence) converges to x in (X, τ). Then **D- Space** is a topological space (X, τ') on which $\{x_n\}$ is diverges to x and $\tau \subset \tau'$. And is denoted by $D(x_n, \tau, x)$.
- 2. Let (X,τ) be any topological space, Let $\{x_n\}$ be any sequence(other than eventually constant sequence) diverges to x in (X, τ). Then C- Space is a topological space (X, τ') on which { x_n } is converges to x and $\tau' \subset \tau$. And is denoted by $C(x_n, \tau, x)$.

*Throughout this paper we will proscribe Eventually Constant Sequence.

A. Remarks

- 1. Indiscrete topological space is a C-space for any sequence.
- 2. Discrete topological space is a D-space for any sequence.

B. Convergence with respect to Base

A sequence $\{x_n\}$ is converges to x with respect to Base **B** of (X,τ) if for every base point **B** in **B** with $x \in \mathbf{B}$, \exists a natural number N such that $x_n \in \mathbf{B} \forall n \ge N$.

1) Theorem(a):

A sequence $\{x_n\}$ is convergent with respect to (X,τ) iff the sequence $\{x_n\}$ is convergent with respect to Base $\boldsymbol{\mathcal{B}}$ of (X,τ) . Proof-

Necessary part

Suppose $\{x_n\}$ be any sequence converges to $x \in X$ with respect to (X, τ) Let $x \in B$; $B \in \mathcal{B}$ Since **B** is a base point, it is open with respect to (X,τ) . Hence by definition of convergence with respect to (X,τ) , \exists a natural number N such that $x_n \in \mathbf{B} \forall n \geq N$.

Sufficient part

Suppose $\{x_n\}$ is converges to x with respect to base **B**of (X, τ). Let **U** be any open set containing x By definition of base there exists a base point **B** in **B** such that $x \in B \subset U$. But then we can find a natural number N such that $x_n \in \mathbf{B} \forall n \ge N$ (hypothesis) $x_n \in \mathbf{B} \subset \mathbf{U} \forall n \ge N$

ie, \exists a natural number N such that

ie, \exists a natural number N such that $x_n \in \mathbf{U} \forall n \ge N$

Since **U** is an arbitrary open set, $\{x_n\}$ converges to x with respect to (X, τ) .

C. Convergence with respect to Sub-Base

A sequence $\{x_n\}$ is converges to x with respect to Sub-Base **S** of (X,τ) if for every Sub-Base point **S** in **S** with $x \in \mathbf{S}$, \exists a natural number N such that $x_n \in \mathbf{S} \quad \forall n \ge N$.

1) Theorem (b):

A sequence $\{x_n\}$ is convergent with respect to (X,τ) iff the sequence $\{x_n\}$ is convergent with respect to sub base **S** of (X,τ) .

Proof-Necessary part

Suppose $\{x_n\}$ be any sequence converges to x with respect to (X,τ) Let $x \in S$; $S \in S$ Since S is a sub-base point, it is open with respect to (X,τ) . Hence by definition of convergence with respect to (X,τ) , \exists a natural number N such that $x_n \in S \forall n \ge N$.

Sufficient part

Suppose $\{x_n\}$ is converges to x with respect to sub-base S of (X,τ) . Let U be any open set containing x By definition of base there exists a base point B such that $x \in B \subset U$. We know that $B = S_1 \cap S_2 \cap S_3 \dots \cap S_n$. Hencex $\in S_n \forall n$. But then we can find, Anatural number N_1 such that $x_n \in S_1 \forall n \ge N_1$ A natural number N_2 such that $x_n \in S_2 \forall n \ge N_2$

A natural number N_n such that $x_n \in \mathbf{S}_n \quad \forall n \ge N_n$ Let $N = Max \{ N_1, N_2, ..., N_n \}$ Then we can say that $x_n \in \mathbf{B} = \mathbf{S}_1 \cap \mathbf{S}_2 \cap \mathbf{S}_3 \dots \cap \mathbf{S}_n \forall n \ge N$ $ie,\exists a natural number N such that <math>x_n \in \mathbf{B} \subset \mathbf{U} \forall n \ge N$ $ie,\exists a natural number N such that <math>x_n \in \mathbf{U} \forall n \ge N$ Since **U** is an arbitrary open set $\{x_n\}$ converges to x with respect to (X,τ) .

D. Remarks

1. We can always find a **C- Space** corresponding to any sequence. Proof-

We knew that any collection S generates a topology. And S will be a sub base for that topology. Let us take any collection, on which the sequence is convergent, T hen by Theorem (b)we can find a C-Space

2. We can always find a D- Space corresponding to any sequence Proof-Consider a sequence $\{x_n\}$ converges to x. We knew that any collection \boldsymbol{S} generates a topology. And $\boldsymbol{\delta}$ will be a sub base for that topology. Let *S*= $\tau \cup \{x\}, \text{and } \tau'$ be the topology generated by S. Clearly, $\tau \subset \tau'$(1) Since $\{x\}$ is a sub base point, $\{x_n\}$ diverges to x with respect to sub base \boldsymbol{S} of τ' . ∴ By Theorem (b) $\{x_n\}$ diverges to xwith respect to τ'(2) (1) And (2) implies that τ' is a D-Space.

E. Examples

1. Consider the sequence $\{1/n\}$, Then

- $D(1/n, \tau_1, 0) = (R, \tau_6)$
- $D(1/n, \tau_2, 0) = (R, \tau_8)$
- o $D(1/n, \tau_3, 0) = (R, \tau_4)$

- o $D(1/n, \tau_4, 0) = (R, \tau_3)$
- $D(1/n, \tau_5, 0) = (R, \tau_6)$
- $D(1/n, \tau_6, 0) = (R, \tau_5)$
- $\begin{array}{l} \circ \quad D(1/n,\tau_7, 0) = (R,\tau_2) \\ \circ \quad D(1/n,\tau_8, 0) = (R,\tau_2) \end{array}$
- $\begin{array}{l} \circ \quad D(1/n, \tau_{8}, 0) = (R, \tau_{2}) \\ \circ \quad D(1/n, \tau_{9}, 0) = (R, \tau_{6}) \end{array}$

2. Consider the sequence $\{n\}$, Then

- \circ D(n, τ_1 , 0) = (R, τ_5)
- \circ C(n, $\tau_2, 0$) = (R, τ_3)
- o $D(n, \tau_3, 0) = (R, \tau_4)$
- \circ C(n, τ_{4} , 0) = (R, τ_{3})
- \circ C(n, τ_{5} , 0) = (R, τ_{3})
- $\circ \quad \mathbf{C}(n, \tau_{6}, 0) = (\mathbf{R}, \tau_{3})$
- \circ C(n, τ_{7} , 0) = (R, τ_{3})
- $C(n, \tau_8, 0) = (R, \tau_3)$
- \circ D(n, τ_{9} , 0) = (R, τ_{5})

IV. CONCLUSIONS

- 1. We can always find a**C- Space** corresponding to any sequence.
- 2. We can always find a**D- Space** corresponding to any sequence.

ACKNOWLEDGEMENT

Express my proud gratitude to God almighty for successful completion of this work. And I am indebted to Sri.Albert Antony, Assistant Professor, P.M.Govt College Chalakkudy for his Valuable Co-Operation. I am extremely thankful to my family members and friends for the wholehearted support, encouragement and love bestowed upon me.

REFERENCE

[1] K.D.Jhoshi , Introduction to General Topology, ISBN:978-0-85226-44-7