International Journal of Mathematics Trends and Technology – Volume 6 – February 2014

A Study on Quasi Class Q Operator

Dr. S.K.Latha,

Professor, Department of Mathematics, Kathir College of Engineering, Coimbatore District, -Tamilnadu-641 062, INDIA

ABSTRACT: In this paper quasi class Q operator is introduced with example and compared with normaloid operator. Necessary and sufficient condition for a composition operator to be quasi class Q is given with an example.

Also weighted composition operator W and generalized Aluthge transform C_r are characterized to be of quasi class Q.

Keywords: Class Q operators, composition Operators

1. INTRODUCTION

CLASS Q OPERATOR : In [2], B.P.Duggal, C.S.Kubrusly and N.Levan introduced a new class 'Class Q' operator and showed that this class of operators properly induces the paranormal operators and studied various properties of Class Q operators.

In [5], S.Panayappan and D.Senthilkumar have given necessary and sufficient condition for a composition operator to be class Q and studied various properties of class Q composition operators.

An operator $T \in L(H)$ is of class Q if and only if $T^{*^2}T^2 - 2T^*T + I \ge 0$. [2]

2. COMPOSITION OPERATOR

The Radon-Nikodym derivative of $\lambda \circ T^{-1}$ with respect to λ is denoted by h and that of $\lambda \circ T^{-k}$ with respect to λ is denoted by h_k where $k \in \mathbb{N}$, the set of natural numbers. Here T^k is obtained by composing $T \cdot k$ times. From [4], w_k denotes $w(w \circ T)(w \circ T^2)....(w \circ T^{k-1})$ so that

 $W^{k} f = w_{k} (f \circ T^{k}),$ $W^{*^{k}} f = h_{k} E(w_{k} f) \circ T^{-k},$ $W^{*^{k}} W^{k} f = h_{k} E(w_{k}^{2}) \circ T^{-k} f \text{ and}$ $W^{k} W^{*^{k}} f = w_{k} (h_{k} \circ T^{k}) E(w_{k} f).$

For any operator T, let T = U |T| be the polar decomposition of T. The Aluthge transform of T is the operator \tilde{T} given by $\tilde{T} = |T|^{1/2} U |T|^{1/2}$.

More generally in [1], Charles Burnap, Il Bong Jung and Alan Lambert have defined the family of operators $\{T_r : 0 < r \le 1\}$ where $T_r = |T|^r U |T|^{1-r}$.

In [1], for a composition operator C the polar decomposition is given by C = U |C| where $|C| f = \sqrt{h} f$, and $Uf = \frac{1}{\sqrt{h \circ T}} f \circ T$.

This is valid for all composition operators. In [1], Charles Burnap, Il Bong Jung and Alan Lambert have given more generally Aluthge transformation for composition operators as

$$\begin{split} C_r &= \left| C \right|^r U \left| C \right|^{1-r} \quad \text{ for } \ 0 < r \leq 1 \text{ and} \\ C_r f &= \left(\frac{h}{h \circ T} \right)^{r/2} f \circ T. \end{split}$$

Here we see that C_r is a weighted composition operator with weight $\pi = \left(\frac{h}{h \circ T}\right)^{r/2}$ where $0 < r \le 1$.

Since C_r is a weighted composition operator it is easy to show that

$$\begin{aligned} \left|C_{r}\right|f &= \sqrt{h[E(\pi^{2})] \circ T^{-1}}f \\ \Rightarrow C_{r}^{*}C_{r}f &= h[E(\pi^{2})] \circ T^{-1}f. \end{aligned}$$

$$d \left|C_{r}^{*}\right|f &= vE\left(vf\right) \text{ where } v &= \frac{\pi\sqrt{h} \circ T}{\left[E\left(\pi\sqrt{h} \circ T\right)^{2}\right]^{\frac{1}{4}}} \quad \text{(ie) } \sqrt{C_{r}C_{r}^{*}}f &= vE(vf). \end{aligned}$$

If $T^{-1} \sum = \sum$, then *E* becomes identity operator and hence $C_r C_r^* f = v^4 f$.

Also we have that $C_r^k f = \pi_k (f \circ T^k)$, where $\pi_k = \pi(\pi \circ T)(\pi \circ T^2)....(\pi \circ T^{k-1})$.

$$C_{r}^{*^{k}} f = h_{k} E(\pi_{k} f) \circ T^{-k},$$

$$(C_{r}^{*} C_{r})^{k} f = h^{k} (E(\pi^{2}) \circ T^{-1})^{k} f,$$

$$C_{r}^{*^{k}} C_{r}^{k} f = h_{k} E(\pi_{k}^{2}) \circ T^{-k} f \text{ and}$$

$$C_{r}^{k} C_{r}^{*^{k}} f = \pi_{k} (h_{k} \circ T^{k}) E(\pi_{k} f).$$

An

3. QUASI CLASS Q OPERATOR

In this paper quasi class Q operator is introduced with example and compared with normaloid operator. Necessary and sufficient condition for a composition operator to be quasi class Q is given with example.

Also weighted composition operator W and generalized Aluthge transform C_r are characterized to be of quasi class Q.

Definition: An operator $T \in L(H)$ is said to be of quasi class Q if $\|T^3(x)\|^2 \ge 2\|T^2(x)\|^2 - \|T(x)\|^2$, $\forall x \in H$ with $\|x\| = 1$.

Theorem 1: An operator $T \in L(H)$ is of quasi class Q iff $T^{*^3}T^3 - 2T^{*^2}T^2 + T^*T \ge 0$.

Proof:

For all $x \in H$, consider

$$T^{*^{3}}T^{3} - 2T^{*^{2}}T^{2} + T^{*}T \ge 0$$

$$\Leftrightarrow \left\langle (T^{*^{3}}T^{3} - 2T^{*^{2}}T^{2} + T^{*}T)x, x \right\rangle \ge 0$$

$$\Leftrightarrow \left\langle (T^{*^{3}}T^{3})x, x \right\rangle - 2\left\langle (T^{*^{2}}T^{2})x, x \right\rangle + \left\langle (T^{*}T)x, x \right\rangle \ge 0 \Leftrightarrow \left\langle T^{3}x, T^{3}x \right\rangle - 2\left\langle T^{2}x, T^{2}x \right\rangle + \left\langle Tx, Tx \right\rangle \ge 0$$

$$\cdot \Leftrightarrow \left\| T^{3}(x) \right\|^{2} - 2\left\| T^{2}(x) \right\|^{2} + \left\| T(x) \right\|^{2} \ge 0$$

$$\cdot \Leftrightarrow \left\| T^{3}(x) \right\|^{2} \ge 2\left\| T^{2}(x) \right\|^{2} - \left\| T(x) \right\|^{2}.$$

Corollary: A weighted shift T with decreasing weighted sequence (α_n) is quasi class Q if $\alpha_{n+1}^2 \alpha_{n+2}^2 - 2\alpha_{n+1}^2 + 1 \ge 0$.

Proof:

Since T is a weighted shift, its adjoint T^* is also a weighted shift and defined by $T(e_n) = \alpha_n e_{n+1}$,

$$T^{*}(e_{n}) = \alpha_{n-1}e_{n-1},$$

$$(T^{*}T)e_{n} = \alpha_{n}^{2}e_{n},$$

$$(T^{*2}T^{2})e_{n} = \alpha_{n}^{2}\alpha_{n+1}^{2}e_{n} \text{ and}$$

$$(T^{*3}T^{3})e_{n} = \alpha_{n}^{2}\alpha_{n+2}^{2}\alpha_{n+2}^{2}e_{n}.$$

Now since T is quasi class Q then by Theorem 1

$$T^{*^{3}}T^{3} - 2T^{*^{2}}T^{2} + T^{*}T \ge 0 \Rightarrow \alpha_{n}^{2}\alpha_{n+1}^{2}\alpha_{n+2}^{2} - 2\alpha_{n}^{2}\alpha_{n+1}^{2} + \alpha_{n}^{2} \ge 0 \Rightarrow \alpha_{n+1}^{2}\alpha_{n+2}^{2} - 2\alpha_{n+1}^{2} + 1 \ge 0.$$

Example: Consider the operator $T: l^2 \to l^2$ defined by $T(x) = (0, \alpha_1 x_1, \alpha_2 x_2, \dots)$ where $\alpha_n = \frac{1}{4}, \ \alpha_{n+1} = \frac{1}{2}, \ \alpha_{n+2} = \frac{1}{4}$ for $n \ge 1$. Then T is of quasi class Q.

Proof:

Given $T(x) = (0, \alpha_1 x_1, \alpha_2 x_2, \dots).$

Then

$$T^{*}(x) = (\alpha_{1}x_{2}, \alpha_{2}x_{3}, \dots, D, T^{*}T(x) = (\alpha_{1}^{2}x_{1}, \alpha_{2}^{2}x_{2}, \alpha_{3}^{2}x_{3}, \dots, D).$$

$$T^{2}(x) = (0, 0, \alpha_{2}\alpha_{1}x_{1}, \alpha_{3}\alpha_{2}x_{2}, \alpha_{4}\alpha_{3}x_{3}, \dots, D, T^{*}T^{2}(x) = (0, \alpha_{2}^{2}\alpha_{1}x_{1}, \alpha_{3}^{2}\alpha_{2}x_{2}, \alpha_{4}^{2}\alpha_{3}x_{3}, \dots, D).$$

$$T^{*2}T^{2}(x) = (\alpha_{2}^{2}\alpha_{1}^{2}x_{1}, \alpha_{3}^{2}\alpha_{2}^{2}x_{2}, \alpha_{4}^{2}\alpha_{3}^{2}x_{3}, \dots, D). T^{3}(x) = (0, 0, 0, \alpha_{3}\alpha_{2}\alpha_{1}x_{1}, \alpha_{4}\alpha_{3}\alpha_{2}x_{2}, \dots, D).$$

$$T^{*}T^{3}(x) = (0, 0, \alpha_{3}^{2}\alpha_{2}\alpha_{1}x_{1}, \alpha_{4}^{2}\alpha_{3}\alpha_{2}x_{2}, \dots, D). T^{*2}T^{3}(x) = (0, \alpha_{3}^{2}\alpha_{2}^{2}\alpha_{1}x_{1}, \alpha_{4}^{2}\alpha_{3}^{2}\alpha_{2}x_{2}, \dots, D).$$

$$T^{*3}T^{3}(x) = (\alpha_{3}^{2}\alpha_{2}^{2}\alpha_{1}^{2}x_{1}, \alpha_{4}^{2}\alpha_{3}^{2}\alpha_{2}^{2}x_{2}, \alpha_{5}^{2}\alpha_{4}^{2}\alpha_{3}^{2}x_{3}, \dots, D).$$
Now consider $\langle (T^{*3}T^{3} - 2T^{*2}T^{2} + T^{*}T)x, x \rangle$

$$= \left\langle \left(\alpha_{3}^{2}\alpha_{2}^{2}\alpha_{1}^{2}x_{1}, \alpha_{4}^{2}\alpha_{3}^{2}\alpha_{2}^{2}x_{2}, \ldots\right) -2\left(\alpha_{2}^{2}\alpha_{1}^{2}x_{1}, \alpha_{3}^{2}\alpha_{2}^{2}x_{2}, \ldots\right) +\left(\alpha_{1}^{2}x_{1}, \alpha_{2}^{2}x_{2}, \ldots\right), \\ \left(x_{1}, x_{2}, \ldots\right)\right\rangle = \left\langle \left(\alpha_{3}^{2}\alpha_{2}^{2}\alpha_{1}^{2} - 2\alpha_{2}^{2}\alpha_{1}^{2} + \alpha_{1}^{2}\right)x_{1} + \left(\alpha_{4}^{2}\alpha_{3}^{2}\alpha_{2}^{2} - 2\alpha_{3}^{2}\alpha_{2}^{2} + \alpha_{2}^{2}\right)x_{2} + \ldots\right), \\ \left(x_{1}, x_{2}, \ldots\right)\right\rangle = \left\langle \left(\alpha_{3}^{2}\alpha_{2}^{2}\alpha_{1}^{2} - 2\alpha_{2}^{2}\alpha_{1}^{2} + \alpha_{1}^{2}\right)x_{1}, x_{1}\right\rangle + \left\langle \left(\alpha_{4}^{2}\alpha_{3}^{2}\alpha_{2}^{2} - 2\alpha_{3}^{2}\alpha_{2}^{2} + \alpha_{2}^{2}\right)x_{2}, x_{2}\right\rangle + \ldots\right), \\ \left(x_{1}, x_{2}, \ldots\right)\right\rangle = \left\langle \alpha_{3}^{2}\alpha_{2}^{2}\alpha_{1}^{2} - 2\alpha_{2}^{2}\alpha_{1}^{2} + \alpha_{1}^{2}\right)x_{1}, x_{1}\right\rangle + \left\langle \left(\alpha_{4}^{2}\alpha_{3}^{2}\alpha_{2}^{2} - 2\alpha_{3}^{2}\alpha_{2}^{2} + \alpha_{2}^{2}\right)x_{2}, x_{2}\right\rangle + \ldots\right), \\ \left(x_{1}, x_{2}, \ldots\right)\right\rangle = \left\langle \alpha_{3}^{2}\alpha_{2}^{2}\alpha_{1}^{2} - 2\alpha_{2}^{2}\alpha_{1}^{2} + \alpha_{1}^{2}\right)x_{1}\right\rangle + \left\langle \alpha_{4}^{2}\alpha_{3}^{2}\alpha_{2}^{2} - 2\alpha_{3}^{2}\alpha_{2}^{2} + \alpha_{2}^{2}\right)x_{2}\right\rangle + \ldots\right\rangle$$

Example: Let T be a weighted shift with weighted sequence $\alpha_n = \frac{1}{2^n}$. Then T is of quasi class Q but it is not normaloid.

Proof:

 $T(e_n) = \frac{1}{2^n} e_{n+1}.$ $T^*(e_n) = \frac{1}{2^{n-1}} e_{n-1}.$ $T^{*^3}T^3 - 2T^{*^2}T^2 + T^*T \ge 0, \quad \forall n \in N.$ $\Rightarrow T \text{ is of quasi class } Q.$

But T is not normoloid. [3].

4. QUASI CLASS Q COMPOSITION OPERATOR.

Theorem 2: Let $C \in B(L^2(\lambda))$. Then C is of quasi class Q iff $f_0^{(3)} - 2f_0^{(2)} + f_0 \ge 0$ a.e.

Proof:

From Theorem 1, C is of quasi class Q

$$\Leftrightarrow C^{*3}C^{3} - 2C^{*2}C^{2} + C^{*}C \ge 0$$

$$\Leftrightarrow \left\langle (C^{*3}C^{3} - 2C^{*2}C^{2} + C^{*}C)f, f \right\rangle \ge 0, \ \forall \ f \in L^{2}(\lambda) \Leftrightarrow \int_{E} (f_{0}^{(3)} - 2f_{0}^{(2)} + f_{0}) \left| f \right|^{2} d\lambda \ge 0, \ \forall \ E \in \Sigma$$

 $\Leftrightarrow f_0^{\ (3)} - 2f_0^{\ (2)} + f_0 \ge 0 \text{ a.e.}$

Example 1: Let X = N, the set of all natural numbers and λ be the counting measure on it. Define $T: N \to N$, by T(1) = 1, T(2) = 1, T(3) = 1, T(4) = 1, T(5) = 2, T(6n + m) = n + 1, m = 0, 1, 2, 3, 4, 5 and $n \in N$.

Since $f_0^{(3)} - 2f_0^{(2)} + f_0 \ge 0, \ \forall n \in N$, C is of quasi class Q.

Example 2: Let X = N, the set of all natural numbers and λ be the counting measure on it. Define $T: N \to N$ by T(1) = 1, T(4n + m - 2) = n + 1, m = 0, 1, 2, 3 and $n \in N$.

Since $f_0^{\ (3)} - 2f_0^{\ (2)} + f_0 \ge 0, \ \forall \ n \in N$, C is of quasi class Q.

Theorem 3: The weighted composition operator W is of quasi class Q iff $(h_3E(w_3^2) \circ T^{-3}) - 2(h_2E(w_2^2) \circ T^{-2}) + (hE(w^2) \circ T^{-1}) \ge 0$ a.e.

Proof:

From theorem 1, W is of quasi class Q

$$\Leftrightarrow W^{*3}W^3 - 2W^{*2}W^2 + W^*W \ge 0$$

$$\Leftrightarrow \left\langle (W^{*3}W^3 - 2W^{*2}W^2 + W^*W)f, f \right\rangle \ge 0, \forall f \in L^2(\lambda) \Leftrightarrow \int_E (W^{*3}W^3 - 2W^{*2}W^2 + W^*W) \left| f \right|^2 d\lambda \ge 0, \forall E \in \Sigma$$

$$\Leftrightarrow (h_3 E(w_3^2) \circ T^{-3}) - 2(h_2 E(w_2^2) \circ T^{-2}) + (hE(w^2) \circ T^{-1}) \ge 0 \text{ a.e.}$$

Corollary: The generalized Aluthge transformation C_r is of quasi class Q $\Leftrightarrow (h_3 E(\pi_3^2) \circ T^{-3}) - 2(h_2 E(\pi_2^2) \circ T^{-2}) + (hE(\pi^2) \circ T^{-1}) \ge 0$ a.e. **Proof:**

From theorem 1, C_r is of quasi class Q

$$\Leftrightarrow C_{r}^{*3}C_{r}^{3} - 2C_{r}^{*2}C_{r}^{2} + C_{r}^{*}C_{r} \ge 0$$

$$\Leftrightarrow \left\langle (C_r^{*3}C_r^3 - 2C_r^{*2}C_r^2 + C_r^*C_r)f, f \right\rangle \ge 0, \ \forall \ f \in L^2(\lambda)$$

$$\Leftrightarrow \int_E (C_r^{*3}C_r^3 - 2C_r^{*2}C_r^2 + C_r^*C_r) \left| f \right|^2 d\lambda \ge 0, \ \forall E \in \Sigma$$

$$\Leftrightarrow (h_3 E(\pi_3^{-2}) \circ T^{-3}) - 2(h_2 E(\pi_2^{-2}) \circ T^{-2}) + (hE(\pi^2) \circ T^{-1}) \ge 0.$$

5. REFERENCES

[1]: Charles Burnap, Il Bong Jung and Alan Lambert, Separating Partial Normality classes with Composition operators, Journal of operator theory 53:2(2005) 381-397

[2]: B. P. Duggal, C.S. Kubrusly, N. Levan, Contractions of Class Q and invariant subspaces, Bull. Korean Math. Soc., 42, 2005, 169-177

[3]: Mahmoud M. 33, On the classes of Parahyponormal operator, Journ. Math. Sci., 4(2)(1993),73-88

[4]: Panayappan S., Non-hyponormal weighted composition operators, Indian Journal of pure and applied Mathematics, 27(10): 979-983, October 1996

[5]: S. Panayappan, D. Senthilkumar and K. Thirugnanasambandam, Composition Operators of Class Q, Far East Journal of Mathematical Sciences (FJMS), Vol 28, Issue 1, 2008, 241-248