Edge Trimagic Total Labeling for Disconnected Graphs

M. Regees ${ }^{\# 1}$ and C. Jayasekaran ${ }^{* 2}$
\#l Department of Mathematics, Malankara Catholic College, Mariagiri, Kaliakavilai-629153, Tamilnadu, India.
${ }^{* 2}$ Department of Mathematics, Pioneer Kumaraswamy College, Nagercoil 629 003, Tamilnadu, India.

Abstract

An edge trimagic total labeling of a graph $G(V, E)$ with p vertices and q edges is a bijection f from the set of vertices and edges to $1,2, \ldots, p+q$ such that for every edge uv in $E, f(u)+f(u v)+f(v)$ is either λ_{1} or λ_{2} or λ_{3}. An edge trimagic total graph is called a super edge trimagic total if $f(V)=\{1,2, \ldots, p\}$. An edge trimagic total graph is called a superior edge trimagic total if $f(E)=\{1,2, \ldots, q\}$. In this paper we prove the disconnected graphs $n P_{3},\left(K_{1},{ }_{p} \cup K_{1},{ }_{q} \cup K_{1},{ }_{r}\right), \mathbf{n P}_{2} \cup K_{1},{ }_{n+1}, t$ copies of the sun graph $S_{n}, n C_{4}$ and $n C_{6}$ admits edge trimagic total labeling.

AMS subject classifications: 05C78
Keywords: Function, Graph, Labeling, Magic labeling, Trimagic labeling.

I. INTRODUCTION

A graph labeling is an assignment of integers to the vertices or edges or both subject to certain conditions. All graphs considered here are finite, simple and undirected. The useful survey on graph labeling by J.A. Gallian(2012) can be found in [4].

A walk of a graph G is an alternating sequence of vertices and edges beginning and ending with vertices, in which each edge is incident with the two vertices immediately preceding and following it. A walk which begins and ends at the same vertex is called a closed walk. If the terminal vertices are distinct, the walk is known as open walk. An open walk in which no vertex appears more than once is called a path. A graph is said to be connected if there is at least one path between every pair of vertices otherwise, it is disconnected. The union of two graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ is another graph $G_{3}=G_{1} \cup G_{2}$ whose vertex set $V_{3}=V_{1} \cup V_{2}$ and the edge set $E_{3}=E_{1} \cup E_{2}$. A simple graph in which there exists an edge between every pair of vertices is called a complete graph; the complete graph with n vertices is denoted by K_{n}. A bigraph G is a graph whose vertex set V can be partitioned into two subsets V_{1} and V_{2} such that every edge of G joins a point of V_{1} to a point of V_{2}. If G contains every edge joining V_{1} and V_{2}, then G is a complete bigraph. If V_{1} and V_{2} have m and n vertices, we write $G=K_{m, n}$.

A star is a complete bigraph $K_{1, n}$. A sun is a cycle C_{n} with an edge terminating in a vertex of degree one attached to each vertex, it is denoted by S_{n}. The t copies of the sun graph S_{n} is denoted by $t S_{n}$ [8]

In 1970, Kotzing and Rosa introduced edge magic total labeling [7]. In 2004, J. Basker Bubujee introduced edge bimagic labeling of graphs [1]. In 2013, C. Jayasekaran, M. Regees and C. Davidraj introduced edge trimagic total labeling of graphs[5]. We proved that some families of graphs are edge trimagic total in $[5,6,9,10,11]$. In this paper, we prove that the disconnected graphs $K_{1},{ }_{p} \cup K_{1},{ }_{q} \cup K_{1},{ }_{r}(p \leq q \leq r), \mathrm{nP}_{2} \cup K_{1, n+1}, t$ copies of the sun graph $\mathrm{tS}_{\mathrm{n}}, \mathrm{nC}_{4}$ and nC_{6} are super edge trimagic total and nP_{3} is superior edge trimagic total.

II. Edge Trimagic Labeling for Disconnected Graphs

In this section we define the superior edge trimagic total labeling and prove that the disconnected graphs $\mathrm{nP}_{3}, \mathrm{~K}_{1}$, ${ }_{\mathrm{p}} \cup \mathrm{K}_{1},{ }_{\mathrm{q}} \cup \mathrm{K}_{1}, \mathrm{r}(\mathrm{p} \leq \mathrm{q} \leq \mathrm{r}), \mathrm{nP}_{2} \cup \mathrm{~K}_{1, \mathrm{n}+1}, \mathrm{t}$ copies of the sun graph $\mathrm{tS}_{\mathrm{n}}, \mathrm{nC}_{4}$ and nC_{6} are edge trimagic total.

1) Definition: An edge trimagic total labeling of a ($\mathrm{p}, \mathrm{q})$ graph G is a bijection $\mathrm{f}: \mathrm{V} \cup \mathrm{E} \rightarrow\{1,2, \ldots, \mathrm{p}+\mathrm{q}\}$ such that for each edge
$x y \in E(G)$, the value of $f(x)+f(x y)+f(y)$ is equal to any of the distinct constants k_{1} or k_{2} or k_{3}. A graph G is said to be an edge trimagic total if it admits an edge trimagic total labeling. An edge trimagic total labeling of a graph is called a super edge trimagic if $f(V)=\{1,2, \ldots, p\}$. An edge trimagic total labeling of graph is called a superior edge trimagic total labeling if $f(E)=\{1,2, \ldots$, q\}.
2) Theorem: The graph nP_{3} admits an edge trimagic total labeling for even n .

Proof: Let $\mathrm{V}=\left\{\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}}, \mathrm{w}_{\mathrm{i}} / 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$ be the vertex set and $\mathrm{E}=\left\{\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}} \mathrm{w}_{\mathrm{i}} / 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$ be the edge set of the disconnected graph nP_{3}. The graph nP_{3} has 3 n vertices and 2 n edges.

Define a bijection $\mathrm{f}: \mathrm{V} \cup \mathrm{E} \rightarrow\{1,2, \ldots, 5 \mathrm{n}\}$ such that
$f\left(u_{i}\right)=3 n+\frac{n}{2}+\frac{i+1}{2}, f\left(w_{i}\right)=3 n+\frac{i+1}{2}$ for $1 \leq i \leq n, i \equiv 1(\bmod 2) ; f\left(u_{i}\right)=2 n+\frac{i}{2}, f\left(w_{i}\right)=3 n-\frac{n}{2}+\frac{i}{2}$ for $1 \leq i \leq n, i \equiv 0(\bmod 2) ; f\left(v_{i}\right)=$ $5 n-i+1,1 \leq i \leq n ; f\left(u_{i} v_{i}\right)=\frac{n}{2}+\frac{i+1}{2}, \quad f\left(v_{i} W_{i}\right)=\frac{i+1}{2}$ for
$1 \leq \mathrm{i} \leq \mathrm{n}, \mathrm{i} \equiv 1(\bmod 2) ; \mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right)=\mathrm{n}+\frac{\mathrm{n}}{2}+\frac{\mathrm{i}}{2}, \mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{w}_{\mathrm{i}}\right)=\mathrm{n}+\frac{\mathrm{i}}{2} \mathrm{f}$ or
$1 \leq \mathrm{i} \leq \mathrm{n}, \mathrm{i} \equiv 0(\bmod 2)$.
Now we have to prove that the graph nP_{3} has three distinct trimagic constants λ_{1}, λ_{2} and λ_{3}.
Consider the edges $u_{i} v_{i}$;
For $1 \leq \mathrm{i} \leq \mathrm{n}$ and $\mathrm{i} \equiv 1(\bmod 2)$,

$$
\begin{aligned}
\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right) & =3 \mathrm{n}+\frac{\mathrm{n}}{2}+\frac{\mathrm{i}+1}{2}+\frac{\mathrm{n}}{2}+\frac{\mathrm{i}+1}{2}+5 \mathrm{n}-\mathrm{i}+1 \\
& =9 \mathrm{n}+2=\lambda_{1}(\text { say })
\end{aligned}
$$

For $1 \leq \mathrm{i} \leq \mathrm{n}$ and $\mathrm{i} \equiv 0(\bmod 2)$,

$$
\begin{aligned}
\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right) & =2 \mathrm{n}+\frac{\mathrm{i}}{2}+\mathrm{n}+\frac{\mathrm{n}}{2}+\frac{\mathrm{i}}{2}+5 \mathrm{n}-\mathrm{i}+1 \\
& =\frac{17 \mathrm{n}+2}{2}=\lambda_{2}(\text { say })
\end{aligned}
$$

Consider the edges $\mathrm{v}_{\mathrm{i}} \mathrm{W}_{\mathrm{i}}$;
For $1 \leq \mathrm{i} \leq \mathrm{n}$ and $\mathrm{i} \equiv 1(\bmod 2)$,
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{w}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)=5 \mathrm{n}-\mathrm{i}+1+\frac{\mathrm{i}+1}{2}+3 \mathrm{n}+\frac{\mathrm{i}+1}{2}=8 \mathrm{n}+2=\lambda_{3}($ say $)$.
For $1 \leq \mathrm{i} \leq \mathrm{n}$ and $\mathrm{i} \equiv 0(\bmod 2)$,
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{W}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)=5 \mathrm{n}-\mathrm{i}+1+\mathrm{n}+\frac{\mathrm{i}}{2}+3 \mathrm{n}-\frac{\mathrm{n}}{2}+\frac{\mathrm{i}}{2}$

$$
=\frac{17 n+2}{2}=\lambda_{2}
$$

Hence for each edge $u v \in E, f(u)+f(u v)+f(v)$ yields any one of the trimagic constants $\lambda_{1}=9 n+2, \quad \lambda_{2}=\frac{17 n+2}{2}$ and $\lambda_{3}=$ $8 n+2$.

Hence the graph nP_{3} admits an edge trimagic total labeling for even n .
3) Theorem: The graph nP_{3} admits a superior edge trimagic total labeling for even n.

Proof: We have proved that the graph nP_{3} has an edge trimagic total labeling when n is even. The labeling given in the proof of the Theorem 2, the edges get labels $f\left(u_{i} v_{i}\right)=\frac{n}{2}+\frac{i+1}{2}, f\left(v_{i} w_{i}\right)=\frac{i+1}{2}$ for $1 \leq i \leq n$ and $i \equiv 1(\bmod 2) ; f\left(u_{i} v_{i}\right)=n+\frac{n}{2}+\frac{i}{2}, f\left(v_{i} w_{i}\right)=n+\frac{i}{2}$ for $1 \leq \mathrm{i} \leq \mathrm{n}$ and $\mathrm{i} \equiv 0(\bmod 2)$. Clearly the graph nP_{3} has 2 n edges and the 2 n edges get labels $1,2, \ldots, 2 \mathrm{n}$. Hence the graph nP_{3} is a superior edge trimagic total when n is even.
4) Example: A superior edge trimagic total labeling of the disconnected graph $4 \mathrm{P}_{3}$ is given in fig. 1 .

Fig. 1 Graph $4 \mathrm{P}_{3}$ with $\lambda_{1}=38, \lambda_{2}=35$ and $\lambda_{3}=34$.
5) Theorem: The graph nP_{3} admits an edge trimagic total labeling for odd n.

Proof: Let $\mathrm{V}=\left\{\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}}, \mathrm{w}_{\mathrm{i}} / 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$ be the vertex set and $\mathrm{E}=\left\{\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}} \mathrm{w}_{\mathrm{i}} / 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$ be the edge set of the disconnected graph $\mathrm{nP}{ }_{3}$. The graph nP_{3} has $3 n$ vertices and $2 n$ edges.

Define a bijection $\mathrm{f}: \mathrm{V} \cup \mathrm{E} \rightarrow\{1,2, \ldots, 5 \mathrm{n}\}$ such that
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=3 \mathrm{n}+\frac{\mathrm{n}-1}{2}+\frac{\mathrm{i}+1}{2}, \mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)=3 \mathrm{n}+\frac{\mathrm{i}+1}{2}-1$ for $1 \leq \mathrm{i} \leq \mathrm{n}$ and $\mathrm{i} \equiv 1(\bmod 2) ; \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=2 \mathrm{n}+\frac{\mathrm{i}}{2}, \mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)=2 \mathrm{n}+\frac{\mathrm{n}-1}{2}+\frac{\mathrm{i}}{2}$ for $1 \leq \mathrm{i} \leq \mathrm{n}$ and $\mathrm{i} \equiv 0(\bmod 2) ; \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=5 \mathrm{n}-\mathrm{i}+1,1 \leq \mathrm{i} \leq \mathrm{n} ; \quad \mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right) \quad=\frac{\mathrm{n}+\mathrm{i}+2}{2} \quad$ and $\mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{W}_{\mathrm{i}}\right)=\frac{\mathrm{i}+1}{2}$ for $1 \leq \mathrm{i} \leq \mathrm{n}$ and $\mathrm{i} \equiv 1(\bmod 2) ; \mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right)=\mathrm{n}+\frac{\mathrm{n}-1}{2}+\frac{\mathrm{i}}{2}+\mathbb{1}_{s} \mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{w}_{\mathrm{i}}\right)=\mathrm{n}+\frac{\mathrm{i}}{2}+1$ for $1 \leq \mathrm{i} \leq \mathrm{n}$ and $\mathrm{i} \equiv 0(\bmod 2)$.

Now we have to prove the graph nP_{3} has three different trimagic constants λ_{1}, λ_{2} and λ_{3}.
Consider the edges $\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}$;
For $1 \leq \mathrm{i} \leq \mathrm{n}$ and $\mathrm{i} \equiv 1(\bmod 2)$,
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=3 \mathrm{n}+\frac{\mathrm{n}-1}{2}+\frac{\mathrm{i}+1}{2}+\frac{n+\mathrm{i}+2}{2}+5 \mathrm{n}-\mathrm{i}+1$

$$
=9 n+2=\lambda_{1}(\text { say })
$$

For $1 \leq \mathrm{i} \leq \mathrm{n}$ and $\mathrm{i} \equiv 0(\bmod 2)$,

$$
\begin{aligned}
\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right) & =2 \mathrm{n}+\frac{\mathrm{i}}{2}+\mathrm{n}+\frac{\mathrm{n}-1}{2}+\frac{\mathrm{i}}{2}+1+5 \mathrm{n}-\mathrm{i}+1 \\
& =\frac{17 \mathrm{n}+\frac{1}{2}}{2}=\lambda_{2}(\text { say })
\end{aligned}
$$

Consider the edges $v_{i} W_{i}$;
For $1 \leq \mathrm{i} \leq \mathrm{n}$ and $\mathrm{i} \equiv 1(\bmod 2)$,
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{W}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)=5 \mathrm{n}-\mathrm{i}+1+\frac{\mathrm{i}+1}{2}+3 \mathrm{n}+\frac{\mathrm{i}+1}{2}-1$

$$
=8 n+1=\lambda_{3}(\text { say })
$$

For $1 \leq \mathrm{i} \leq \mathrm{n}$ and $\mathrm{i} \equiv 0(\bmod 2)$,

$$
\begin{aligned}
\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{w}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right) & =5 \mathrm{n}-\mathrm{i}+1+\mathrm{n}+\frac{\mathrm{i}}{2}+1+2 \mathrm{n}+\frac{\mathrm{n}-1}{2}+\frac{\mathrm{i}}{2} \\
& =\frac{17 \mathrm{n}+\mathrm{a}}{2}=\lambda_{3}
\end{aligned}
$$

Hence for each edge $u v \in E, f(u)+f(u v)+f(v)$ yields any one of the trimagic constants $\lambda_{1}=9 n+2, \lambda_{2}=8 n+1$ and $\lambda_{3}=\frac{17 n+2}{2}$. Therefore, the graph nP_{3} admits an edge trimagic total labeling when n is odd.
6) Theorem: The graph nP_{3} admits superior edge trimagic total labeling when n is odd.

Proof: We have proved that the graph nP_{3} has edge trimagic total labeling when n is odd. The labeling given in the proof of the Theorem 5, the edges get labels for $i \equiv 1(\bmod 2)$, $f\left(u_{i} v_{i}\right)=\frac{n+i+2}{2}$ and $f\left(v_{i} w_{i}\right)=\frac{i+1}{2}$ also for $i \equiv 0(\bmod 2) ; f\left(u_{i} v_{i}\right)=n+\frac{n-1}{2}+\frac{i}{2}+1$, $f\left(v_{i} W_{i}\right)=n+\frac{i}{2}+1,1 \leq j \leq n$. Clearly the graph $n P_{3}$ has $2 n$ edges and the $2 n$ edges get labels $1,2, \ldots, 2 n$. Hence the graph $n P_{3}$ is a superior edge trimagic total.
7) Corollary: The disconnected graph nP_{3} admits an edge trimagic labeling for all n.
8) Example: The disconnected graph $5 \mathrm{P}_{3}$ given in fig. 2 is a superior edge trimagic total graph.

Fig. 2 Graph $5 \mathrm{P}_{3}$ with $\lambda_{1}=47, \lambda_{2}=44$ and $\lambda_{3}=41$.
9) Theorem: The graph $\mathrm{K}_{1},{ }_{\mathrm{p}} \cup \mathrm{K}_{1},{ }_{\mathrm{q}} \cup \mathrm{K}_{1}, \mathrm{r}(\mathrm{p} \leq \mathrm{q} \leq \mathrm{r})$ admits an edge trimagic total labeling.

Proof: Let $\mathrm{V}=\left\{\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}, \mathrm{w}_{\mathrm{k}} / 1 \leq \mathrm{i} \leq \mathrm{p}+1 ; 1 \leq \mathrm{j} \leq \mathrm{q}+1 ; 1 \leq \mathrm{k} \leq \mathrm{r}+1\right\}$ be the vertex set and $\mathrm{E}=\left\{\mathrm{u}_{1} \mathrm{u}_{\mathrm{i}}, \mathrm{v}_{1} \mathrm{v}_{\mathrm{j}}, \mathrm{w}_{1} \mathrm{w}_{\mathrm{k}} / 2 \leq \mathrm{i} \leq \mathrm{p}+1 ; 2 \leq \mathrm{j} \leq \mathrm{q}+1 ; 2 \leq\right.$ $\mathrm{k} \leq \mathrm{r}+1\}$ be the edge set of the graph $\left(\mathrm{K}_{1}, \mathrm{p} \cup \mathrm{K}_{1},{ }_{\mathrm{q}} \cup \mathrm{K}_{1}, \mathrm{r}\right)$.

Define a bijection $\mathrm{f}: \mathrm{V} \cup \mathrm{E} \rightarrow\{1,2, \ldots, 2 \mathrm{p}+2 \mathrm{q}+2 \mathrm{r}+3\}$ such that $\mathrm{f}\left(\mathrm{u}_{1}\right)=1 ; \mathrm{f}\left(\mathrm{v}_{1}\right)=2 ; \mathrm{f}\left(\mathrm{w}_{1}\right)=3$;
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{p}+\mathrm{q}+\mathrm{r}+5-\mathrm{i}, 2 \leq \mathrm{i} \leq \mathrm{p}+1 ; \mathrm{f}\left(\mathrm{v}_{\mathrm{j}}\right)=\mathrm{q}+\mathrm{r}+5-\mathrm{j}, \quad 2 \leq \mathrm{j} \leq \mathrm{q}+1 ; \mathrm{f}\left(\mathrm{w}_{\mathrm{k}}\right)=\mathrm{r}+5-\mathrm{k}, 2 \leq \mathrm{k} \leq \mathrm{r}+1$.
$f\left(u_{1} u_{i}\right)=p+q+r+2+i, 2 \leq i \leq p+1$.
$f\left(v_{1} v_{j}\right)=2 p+q+r+2+j, 2 \leq j \leq q+1$.
$\mathrm{f}\left(\mathrm{w}_{1} \mathrm{w}_{\mathrm{i}}\right)=2 \mathrm{p}+2 \mathrm{q}+\mathrm{r}+2+\mathrm{k}, \quad 2 \leq \mathrm{k} \leq \mathrm{r}+1$.
Now we prove that the graph $\mathrm{K}_{1},{ }_{\mathrm{p}} \cup \mathrm{K}_{1}, \mathrm{q}_{\mathrm{q}} \cup \mathrm{K}_{1},{ }_{\mathrm{r}}$ admits an edge trimagic total labeling.
For the edges $u_{1} u_{i}, 2 \leq i \leq p+1$;
$\mathrm{f}\left(\mathrm{u}_{1}\right)+\mathrm{f}\left(\mathrm{u}_{1} \mathrm{u}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=1+\mathrm{p}+\mathrm{q}+\mathrm{r}+2+\mathrm{i}+\mathrm{p}+\mathrm{q}+\mathrm{r}+5-\mathrm{i}$

$$
=2(\mathrm{p}+\mathrm{q}+\mathrm{r})+8=\lambda_{1}(\text { say })
$$

For the edges $\mathrm{v}_{1} \mathrm{v}_{\mathrm{j}}, 2 \leq \mathrm{j} \leq \mathrm{q}+1$;

$$
\mathrm{f}\left(\mathrm{v}_{1}\right)+\mathrm{f}\left(\mathrm{v}_{1} \mathrm{v}_{\mathrm{j}}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{j}}\right)=2+2 \mathrm{p}+\mathrm{q}+\mathrm{r}+2+\mathrm{j}+\mathrm{q}+\mathrm{r}+5-\mathrm{j}
$$

$$
=2(\mathrm{p}+\mathrm{q}+\mathrm{r})+9=\lambda_{2}(\mathrm{say})
$$

For the edges $\mathrm{w}_{1} \mathrm{w}_{\mathrm{k}}, 2 \leq \mathrm{k} \leq \mathrm{r}+1$;
$\mathrm{f}\left(\mathrm{w}_{1}\right)+\mathrm{f}\left(\mathrm{w}_{1} \mathrm{w}_{\mathrm{k}}\right)+\mathrm{f}\left(\mathrm{w}_{\mathrm{k}}\right)=3+2 \mathrm{p}+2 \mathrm{q}+\mathrm{r}+2+\mathrm{k}+\mathrm{r}+5-\mathrm{k}$

$$
=2(p+q+r)+10=\lambda_{3}(\text { say })
$$

Hence for each edge $u v \in E, f(u)+f(u v)+f(v)$ yields any one of the magic constants $\lambda_{1}=2(p+q+r)+8, \lambda_{2}=2(p+q+r)+9$ and $\lambda_{3}=$ $2(p+q+r)+10$.

Therefore, the disconnected graph $\mathrm{K}_{1},{ }_{\mathrm{p}} \cup \mathrm{K}_{1}, \mathrm{q}_{\mathrm{q}} \cup \mathrm{K}_{1},{ }_{\mathrm{r}}(\mathrm{p} \leq \mathrm{q} \leq \mathrm{r})$ admits an edge trimagic total labeling.
10) Theorem: The graph $\mathrm{K}_{1},{ }_{\mathrm{p}} \cup \mathrm{K}_{1},{ }_{\mathrm{q}} \cup \mathrm{K}_{1}, \mathrm{r}(\mathrm{p} \leq \mathrm{q} \leq \mathrm{r})$ has a super edge trimagic total labeling.

Proof: We have proved that the graph $\mathrm{K}_{1}, \mathrm{p} \cup \mathrm{K}_{1},{ }_{\mathrm{q}} \cup \mathrm{K}_{1},{ }_{\mathrm{r}} \quad(\mathrm{p} \leq \mathrm{q} \leq \mathrm{r})$ has an edge trimagic total labeling. The labeling given in the proof of the Theorem 9, the vertices get labels $f\left(u_{1}\right)=1 ; f\left(v_{1}\right)=2 ; f\left(w_{1}\right)=3 ; f\left(u_{i}\right)=p+q+r+5-i, 2 \leq i \leq p+1 ; f\left(v_{j}\right)=q+r+5-j, 2 \leq j \leq$ $\mathrm{q}+1 ; \mathrm{f}\left(\mathrm{w}_{\mathrm{k}}\right)=\mathrm{r}+5-\mathrm{k}, 2 \leq \mathrm{k} \leq \mathrm{r}+1$.

The graph $\left(\mathrm{K}_{1},{ }_{\mathrm{p}} \cup \mathrm{K}_{1}, \mathrm{q}_{\mathrm{q}} \cup \mathrm{K}_{1},{ }_{\mathrm{r}}\right)$ has $(\mathrm{p}+\mathrm{q}+\mathrm{r}+3)$ vertices and the vertices get labels $1,2, \ldots,(\mathrm{p}+\mathrm{q}+\mathrm{r}+3)$.
Hence the graph $\left(\mathrm{K}_{1, \mathrm{p}} \cup \mathrm{K}_{1},{ }_{\mathrm{q}} \cup \mathrm{K}_{1}, \mathrm{r}\right)$ is a super edge trimagic total.
11) Example: The graph $\left(\mathrm{K}_{1},{ }_{6} \cup \mathrm{~K}_{1},{ }_{8} \cup \mathrm{~K}_{1,10}\right)$ given in fig. 3 is a super edge trimagic total.

Fig. $3\left(\mathrm{~K}_{1},{ }_{6} \cup \mathrm{~K}_{1},{ }_{8} \cup \mathrm{~K}_{1},{ }_{10}\right)$ with $\lambda_{1}=56, \lambda_{2}=57$ and $\lambda_{3}=58$.
12) Theorem: The graph $\mathrm{nP}_{2} \cup \mathrm{~K}_{1, \mathrm{n}+1}$ has an edge trimagic total labeling when n is odd.

Proof: Let $V=\left\{\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}} / 1 \leq \mathrm{i} \leq \mathrm{n}\right\} \cup\left\{\mathrm{w}, \mathrm{w}_{\mathrm{j}} / 1 \leq \mathrm{j} \leq \mathrm{n}+1\right\}$ be the vertex set and $\mathrm{E}=\left\{\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}} / 1 \leq \mathrm{i} \leq \mathrm{n}\right\} \cup\left\{\mathrm{ww}_{\mathrm{j}} / 1 \leq \mathrm{j} \leq \mathrm{n}+1\right\}$ be the edge set of the disconnected graph $n P_{2} \cup K_{1, n+1}$. The graph $n P_{2} \cup K_{1, n+1}$ has $3 n+2$ vertices and $2 n+1$ edges.

Define a bijection $\mathrm{f}: \mathrm{V} \cup \mathrm{E} \rightarrow\{1,2, \ldots, 5 \mathrm{n}+3\}$ such that $f\left(v_{i}\right)=n+\frac{i+1}{2}+1, f\left(u_{i}\right)=2 n+\frac{i+1}{2}+2$ for $1 \leq i \leq n, i \equiv 1(\bmod 2), f\left(v_{i}\right)=\frac{n+1}{2}+\frac{i}{2}, f\left(u_{i}\right)=2 n+\frac{i}{2}+\frac{n+1}{2}+2$ for $1 \leq i \leq n, i \equiv 0(\bmod 2)$,
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}\right)=4 \mathrm{n}+3-\mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n}$,
$\mathrm{f}\left(\mathrm{w}_{\mathrm{j}}\right)=2(\mathrm{n}+1)-\left(\frac{\mathrm{j}-1}{2}\right), \mathrm{f}\left(\mathrm{ww}_{\mathrm{j}}\right)=4 \mathrm{n}+\frac{\mathrm{j}+1}{2}+2$ for $1 \leq \mathrm{j} \leq \mathrm{n}+1$ and
$j \equiv 1(\bmod 2)$,
$\mathrm{f}\left(\mathrm{w}_{\mathrm{j}}\right)=\frac{\mathrm{n}+1}{2}-\frac{\mathrm{j}}{2}+1, \quad \mathrm{f}\left(\mathrm{ww}_{\mathrm{i}}\right)=4 \mathrm{n}+\frac{\mathrm{n}+1}{2}+\frac{\mathrm{j}}{2}+2$ for $1 \leq \mathrm{j} \leq \mathrm{n}+1$
and $\mathrm{j} \equiv 0(\bmod 2)$ and $\mathrm{f}(\mathrm{w})=\mathrm{n}+1$.
Now we prove that the graph $\mathrm{nP}_{2} \cup \mathrm{~K}_{1, \mathrm{n}+1}$ have three trimagic constants λ_{1}, λ_{2} and λ_{3}.
Consider the edges $v_{i} u_{i}$;
For $1 \leq \mathrm{i} \leq \mathrm{n}$ and $\mathrm{i} \equiv 1(\bmod 2)$;
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{n}+\frac{\mathrm{i}+1}{2}+1+4 \mathrm{n}+3-\mathrm{i}+2 \mathrm{n}+\frac{\mathrm{i}+1}{2}+2$

$$
=7 n+7=\lambda_{1}(\text { say })
$$

For $1 \leq \mathrm{i} \leq \mathrm{n}$ and $\mathrm{i} \equiv 0(\bmod 2)$;
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=\frac{\mathrm{n}+1}{2}+\frac{\mathrm{i}}{2}+4 \mathrm{n}+3-\mathrm{i}+2 \mathrm{n}+\frac{\mathrm{n}+1}{2}+\frac{\mathrm{i}}{2}+2$

$$
=7 \mathrm{n}+6=\lambda_{2}(\text { say })
$$

Consider the edges ww_{j};
For $1 \leq \mathrm{j} \leq \mathrm{n}+1$ and $\mathrm{j} \equiv 1(\bmod 2)$;
$\mathrm{f}(\mathrm{w})+\mathrm{f}\left(\mathrm{ww}_{\mathrm{j}}\right)+\mathrm{f}\left(\mathrm{w}_{\mathrm{j}}\right)=\mathrm{n}+1+4 \mathrm{n}+\left(\frac{\mathrm{j}+1}{2}\right)+2+2(\mathrm{n}+1)-\left(\frac{\mathrm{j}-1}{2}\right)$

$$
=7 \mathrm{n}+6=\lambda_{2}
$$

For $1 \leq \mathrm{j} \leq \mathrm{n}+1$ and $\mathrm{j} \equiv 0(\bmod 2)$;
$\mathrm{f}(\mathrm{w})+\mathrm{f}\left(\mathrm{ww}_{\mathrm{j}}\right)+\mathrm{f}\left(\mathrm{w}_{\mathrm{j}}\right)=\mathrm{n}+1+4 \mathrm{n}+\frac{\mathrm{n}+1}{2}+\frac{\mathrm{j}}{2}+2+\frac{\mathrm{n}+1}{2}-\frac{\mathrm{j}}{2}+1$

$$
=6 n+5=\lambda_{3}(\text { say })
$$

Hence for each edge $u v \in E, f(u)+f(u v)+f(v)$ yields any one of the trimagic constants $\lambda_{1}=7 n+7, \lambda_{2}=7 n+6$ and $\lambda_{3}=6 n+5$.
Thus the graph $\mathrm{nP}_{2} \cup \mathrm{~K}_{1, \mathrm{n}+1}$ has an edge trimagic total labeling when n is odd.
13) Theorem: The graph $n P_{2} \cup K_{1, n+1}$ admits a super edge trimagic total labeling for odd n.

Proof: We have proved that the graph $\mathrm{nP}_{2} \cup \mathrm{~K}_{1, \mathrm{n}+1}$ has edge trimagic total labeling when n is odd. The labeling given in the proof of the Theorem 12, the vertices get labels $f\left(v_{i}\right)=n+\frac{i+1}{2}+1, f\left(u_{i}\right)=2 n+\frac{i+1}{2}+2$ for $1 \leq i \leq n$ and $i \equiv 1(\bmod 2)$ and $f\left(v_{i}\right)=\frac{n+1}{2}+\frac{1}{2}, f\left(u_{i}\right)=$ $2 n+\frac{n+1}{2}+\frac{\mathrm{i}}{2}+2$ for $1 \leq \mathrm{i} \leq \mathrm{n}$ and $\mathrm{i} \equiv 0(\bmod 2)$. Also $f(w)=n+1, f\left(w_{j}\right)=2(n+1)-\left(\frac{\mathrm{j}-1}{2}\right)$ for $1 \leq j \leq n+1$ and $j \equiv 1(\bmod 2)$ and $f\left(w_{j}\right)$ $=\frac{n+1}{2}-\frac{1}{2}+1$ for $1 \leq j \leq n+1, j \equiv 0(\bmod 2)$. Clearly the graph $n P_{2} \cup K_{1, n+1}$ has $3 n+2$ vertices and get labels $1,2, \ldots, 3 n+2$.

Hence the graph $n P_{2} \cup K_{1, n+1}$ is a super edge trimagic total.
14) Example: The disconnected graph $5 \mathrm{P}_{2} \cup \mathrm{~K}_{1,6}$ given in fig. 4 is a super edge trimagic total.

Fig. 4 Graph $5 \mathrm{P}_{2} \cup \mathrm{~K}_{1,6}$ with $\lambda_{1}=42, \lambda_{2}=41$ and $\lambda_{3}=35$.

International Journal of Mathematics Trends and Technology - Volume 6 -February 2014

15) Theorem: The graph $\mathrm{nP}_{2} \cup \mathrm{~K}_{1, \mathrm{n}+1}$ has an edge trimagic total labeling when n is even.

Proof: Let $\mathrm{V}=\left\{\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}} / 1 \leq \mathrm{i} \leq \mathrm{n}\right\} \cup\left\{\mathrm{w}, \mathrm{w}_{\mathrm{j}} / 1 \leq \mathrm{j} \leq \mathrm{n}+1\right\}$ be the vertex set and $\mathrm{E}=\left\{\mathrm{v}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}} / 1 \leq \mathrm{i} \leq \mathrm{n}\right\} \cup\left\{\mathrm{ww}_{\mathrm{j}} / 1 \leq \mathrm{j} \leq \mathrm{n}+1\right\}$ be the edge set of the disconnected graph $n P_{2} \cup K_{1, n+1}$. The graph $n P_{2} \cup K_{1, n+1}$ has $3 n+2$ vertices and $2 n+1$ edges.

Define a bijection $\mathrm{f}: \mathrm{V} \cup \mathrm{E} \rightarrow\{1,2, \ldots, 5 \mathrm{n}+3\}$ such that
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{n}+\frac{\mathrm{i}+1}{2}+1, \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=2 \mathrm{n}-\frac{\mathrm{n}}{2}+\frac{\mathrm{i}+1}{2}+1,1 \leq \mathrm{i} \leq \mathrm{n}, \mathrm{i} \equiv 1(\bmod 2), \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=\frac{\mathrm{n}+\mathrm{i}}{2}+1, \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=2 \mathrm{n}+\frac{\mathrm{n}}{2}+\frac{\mathrm{i}}{2}+2,1 \leq \mathrm{i} \leq \mathrm{n}, \mathrm{i} \equiv 0(\bmod 2), \mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}\right)=$ $4 n+3-\mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n}$;
$f\left(w_{j}\right)=2(n+1)+\frac{n}{2}-\frac{j-1}{2}, f\left(w_{j}\right)=4 n+\frac{\mathrm{j}+1}{2}+2$ for $\mathrm{j}=1$ to $\mathrm{n}+1$ and $\mathrm{j} \equiv 1(\bmod 2)$,
$f\left(w_{j}\right)=\frac{n}{2}-\frac{1}{2}+1, f\left(w_{j}\right)=4 n+\frac{n}{2}+3, j=1$ to $n+1, j \equiv 0(\bmod 2)$ and $f(w)=\frac{n}{2}+1$.
Now we have to prove the graph $\mathrm{nP}_{2} \cup \mathrm{~K}_{1, \mathrm{n}+1}$ has three distinct trimagic constants λ_{1}, λ_{2} and λ_{3}.
Consider the edges $\mathrm{v}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}$;
For $1 \leq i \leq n$ and $i \equiv 1(\bmod 2)$;
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)$

$$
\begin{aligned}
& =n+\frac{i+1}{2}+1+4 n+3-i+2 n+\frac{i+1}{2}-\frac{n}{2}+1 \\
& =\frac{13 n+12}{2}=\lambda_{1} \text { (say) }
\end{aligned}
$$

For $1 \leq \mathrm{i} \leq \mathrm{n}$ and $\mathrm{i} \equiv 0(\bmod 2)$;
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=\frac{\mathrm{n}+\mathrm{i}}{2}+1+4 \mathrm{n}+3-\mathrm{i}+2 \mathrm{n}+\frac{\mathrm{n}}{2}+\frac{\mathrm{i}}{2}+2$

$$
=7 \mathrm{n}+6=\lambda_{2}(\text { say })
$$

Consider the edges ww_{j};
For $1 \leq \mathrm{j} \leq \mathrm{n}+1$ and $\mathrm{j} \equiv 1(\bmod 2)$;
$\mathrm{f}(\mathrm{w})+\mathrm{f}\left(\mathrm{ww}_{\mathrm{j}}\right)+\mathrm{f}\left(\mathrm{w}_{\mathrm{j}}\right)=\frac{\mathrm{n}}{2}+1+4 \mathrm{n}+\frac{\mathrm{j}+1}{2}+2+2(\mathrm{n}+1)+\frac{\mathrm{n}}{2}-\frac{\mathrm{j}-1}{2}$

$$
=7 \mathrm{n}+6=\lambda_{2} .
$$

For $1 \leq \mathrm{j} \leq \mathrm{n}+1$ and $\mathrm{j} \equiv 0(\bmod 2)$;
$\mathrm{f}(\mathrm{w})+\mathrm{f}\left(\mathrm{ww}_{\mathrm{j}}\right)+\mathrm{f}\left(\mathrm{w}_{\mathrm{j}}\right)=\frac{\mathrm{n}}{2}+1+4 \mathrm{n}+\frac{\mathrm{n}}{2}+\frac{\mathrm{j}}{2}+3+\frac{\mathrm{n}}{2}-\frac{\mathrm{j}}{2}+1$

$$
=\frac{2_{11 n+10}^{2}}{2}=\lambda_{3}(\text { say })
$$

Hence for each edge $u v \in E, f(u)+f(u v)+f(v)$ yields any one of the trimagic constants $\lambda_{1}=\frac{13 n+12}{2}, \lambda_{2}=7 n+6$ and $\lambda_{3}=\frac{11 n+10}{2}$. Thus the graph $n P_{2} \cup \mathrm{~K}_{1, \mathrm{n}+1}$ admits an edge trimagic total labeling when n is even.
16) Theorem: The graph $\mathrm{nP}_{2} \cup \mathrm{~K}_{1, \mathrm{n}+1}$ has a super edge trimagic total labeling for even n .

Proof: We have proved that the graph $\mathrm{nP}_{2} \cup \mathrm{~K}_{1, \mathrm{n}+1}$ has an edge trimagic total labeling when n is even. The labeling given in the proof of the theorem 15, the vertices get labels $f\left(v_{i}\right)=n+\frac{i+1}{2}+1, f\left(u_{i}\right)=2 n-\frac{n}{2}+\frac{i+1}{2}+1$ for $1 \leq i \leq n$ and $i \equiv 1(\bmod 2) ; f\left(v_{i}\right)=\frac{n+i}{2}+1, f\left(u_{i}\right)$ $=2 n+\frac{n}{2}+\frac{i}{2}+2$ for $1 \leq i \leq n$ and $i \equiv 0(\bmod 2) ; f\left(w_{j}\right)=2(n+1)+\frac{n}{2}-\frac{j-1}{2}$ for $j=1$ to $n+1$ and $j \equiv 1(\bmod 2), f\left(w_{j}\right)=\frac{n}{2}-\frac{j}{2}+1$ for $j=1$ to $n+1, j \equiv 0(\bmod 2)$ and $f(w)=\frac{n}{2}+1$. Clearly the graph $n P_{2} \cup K_{1, n+1}$ has $3 n+2$ vertices and get labels $1,2, \ldots, 3 n+2$. Hence the graph $\mathrm{nP}_{2} \cup \mathrm{~K}_{1, \mathrm{n}+1}$ admits a super edge trimagic total labeling when n is even.
17) Corollary: The disconnected graph $n P_{2} \cup K_{1, n+1}$ admits a super edge trimagic labeling for all n.
18) Example: The graph $6 \mathrm{P}_{2} \cup \mathrm{~K}_{1,7}$ given in fig. 5 is a super edge trimagic total.

Fig. 5 Graph $6 \mathrm{P}_{2} \cup \mathrm{~K}_{1,7}$ with $\lambda_{1}=45, \lambda_{2}=48$ and $\lambda_{3}=38$.
19) Theorem: For $\mathrm{n} \geq 3$ and $\mathrm{t} \geq 1$, the t copies the sun graph tS_{n} admits an edge trimagic total labeling.

Proof: Let t_{n} be the t copies of the sun graph S_{n} with the vertex set $\mathrm{V}=\left\{\mathrm{v}_{\mathrm{i}}^{\mathrm{i}}, \mathrm{u}_{\mathrm{i}}^{\mathrm{i}} / 1 \leq \mathrm{i} \leq \mathrm{n} ; 1 \leq \mathrm{j} \leq \mathrm{t}\right\}$ and the edge set $\mathrm{E}=$ $\left\{\mathrm{v}_{\mathrm{i}}^{j} \mathrm{v}_{\mathrm{i}+1}^{\mathrm{j}}, \mathrm{v}_{\mathrm{i}}^{\mathrm{j}} \mathrm{u}_{\mathrm{i}}^{\mathrm{N}} / 1 \leq \mathrm{i} \leq \mathrm{n}-1 ; 1 \leq \mathrm{j} \leq \mathrm{t}\right\} \cup\left\{\mathrm{v}_{1}^{\mathrm{j}} \mathrm{v}_{\mathrm{n}}^{\mathrm{j}} / 1 \leq \mathrm{j} \leq \mathrm{t}\right\}$.

Define a bijecion f: V(tS $\left.S_{n}\right) \cup E\left(t S_{n}\right) \rightarrow\{1,2, \ldots, 4 n t\}$ such that $f\left(v_{i}^{\tilde{i}}\right)=n(j-1)+i, f\left(u_{i}^{\tilde{i}}\right)=n t+n(j-1)+i, f\left(v_{i}^{\tilde{i}} v_{i+1}^{\tilde{j}}\right)=4 n t-$ $2 n(j-1)-2(i-1), f\left(v_{i}^{j} u_{j}^{i}\right)=4 n t-2 n(j-1)-2(i-1)-1$, $1 \leq \mathrm{i} \leq \mathrm{n}-1,1 \leq \mathrm{j} \leq \mathrm{t}$ and $\mathrm{f}\left(\mathrm{v}_{1}^{\mathrm{j}} \mathrm{v}_{\mathrm{n}}^{\mathrm{j}}\right)=4 \mathrm{nt}-2 \mathrm{n}(\mathrm{j}-1)-2(\mathrm{n}-1), 1 \leq \mathrm{j} \leq \mathrm{t}$.

Now we have to prove that the graph t_{n} has three distinct trimagic constants λ_{1}, λ_{2} and λ_{3}.
For the edges $\mathrm{v}_{1}^{\mathrm{j}} \mathrm{v}_{\mathrm{m}}^{\mathrm{j}}, 1 \leq \mathrm{j} \leq \mathrm{t}$;

$$
\begin{aligned}
f\left(v_{1}^{\mathrm{j}}\right)+f\left(v_{1}^{\mathrm{j}} v_{n}^{\mathrm{j}}\right) & +f\left(v_{\mathrm{n}}^{\mathrm{j}}\right) \\
& =\mathrm{n}(j-1)+1+4 n t-2 n(j-1)-2(n-1)+n(j-1)+n \\
& =4 n t-n+3=\lambda_{1}(\text { say }) .
\end{aligned}
$$

For the edges $v_{i}{ }_{i} v_{i+1}^{j}, 1 \leq i \leq n-1,1 \leq j \leq t$;

$$
\begin{aligned}
f\left(v_{\mathrm{i}}^{\mathrm{i}}\right)+f\left(v_{\mathrm{i}}^{\mathrm{I}} v_{\mathrm{i}+1}\right)+ & f\left(v_{\mathrm{i}+1}\right) \\
& =n(j-1)+i+4 n t-2 n(j-1)-2(i-1)+n(j-1)+i+1 \\
& =4 n t+3=\lambda_{2}(\text { say }) .
\end{aligned}
$$

Also for the edges $v_{i}^{j} u_{j}^{j}, 1 \leq i \leq n-1,1 \leq j \leq t ;$

$$
\begin{aligned}
f\left(v_{i}^{j}\right)+f\left(v_{i}^{j} u_{i}^{i}\right) & +f\left(u_{i}^{i}\right) \\
& =n(j-1)+i+4 n t-2 n(j-1)-2(i-1)-1+n t+n(j-1)+i \\
& =5 n t+1=\lambda_{3}(s a y) .
\end{aligned}
$$

Hence for each edge $u v \in E, f(u)+f(u v)+f(v)$ yields any one of the trimagic constants $\lambda_{1}=4 n t-n+3, \lambda_{2}=4 n t+3$ and $\lambda_{3}=$ $5 n t+1$.

Thus the t copies of a sun graph, tS_{n} admits an edge trimagic total labeling.
20) Example: A super edge trimagic total labeling of 3 copies of sun S_{5} is given in fig. 6 .

Fig. 6 Graph $3 \mathrm{~S}_{5}$ with $\lambda_{1}=58, \lambda_{2}=63$ and $\lambda_{3}=76$.
21) Theorem: For $\mathrm{n} \geq 3$ and $\mathrm{t} \geq 1$, the t copies the sun graph t_{n} is a super edge trimagic total.

Proof: We have proved that the graph $\mathrm{t} \mathrm{S}_{\mathrm{n}}$ admits an edge trimagic total labeling. The labeling given in the proof of the Theorem 19, the vertices get labels $f\left(v_{i}^{\tilde{j}}\right)=n(j-1)+i, f\left(u_{i}^{i}\right)=n t+n(j-1)+i, 1 \leq i \leq n-1 ; 1 \leq j \leq t$. Clearly the graph $t S_{n}$ has $2 n t$ vertices and get labels $1,2, \ldots, 2 n t$.

Hence the graph $t S_{n}$ is a super edge trimagic total graph
22) Theorem: The graph nC_{4} admits an edge trimagic total labeling.

Proof: Let $\mathrm{V}=\left\{\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}}, \mathrm{w}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}} / 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$ be the vertex set and $\mathrm{E}=\left\{\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}} \mathrm{w}_{\mathrm{i}}, \mathrm{w}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}} / 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$ be the edge set of the disconnected graph nC_{4}. The graph nC_{4} has $4 n$ vertices and $4 n$ edges.

Define a bijection $\mathrm{f}: \mathrm{V} \cup \mathrm{E} \rightarrow\{1,2, \ldots, 8 \mathrm{n}\}$ such that $\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{i}, \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{n}+\mathrm{i}, \mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)=3 \mathrm{n}+\mathrm{i}, \mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)=2 \mathrm{n}+\mathrm{i}$ for all $1 \leq \mathrm{i} \leq \mathrm{n} ; \mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right)=$ $8 n-2 i+2, f\left(v_{i} w_{i}\right)=6 n-2 i+1, f\left(w_{i} x_{i}\right)=6 n-2 i+2$ and $f\left(x_{i} u_{i}\right)=8 n-2 i+1$ for all $1 \leq i \leq n$.

Now we prove that the graph nC_{4} admits an edge trimagic total labeling.
For the edges $u_{i} v_{i}, 1 \leq i \leq n$;
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{i}+8 \mathrm{n}-2 \mathrm{i}+2+\mathrm{n}+\mathrm{i}=9 \mathrm{n}+2=\lambda_{1}($ say $)$.
For the edges $v_{i} W_{i}, 1 \leq i \leq n ;$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{w}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)=\mathrm{n}+\mathrm{i}+6 \mathrm{n}-2 \mathrm{i}+1+3 \mathrm{n}+\mathrm{i}=10 \mathrm{n}+1=\lambda_{2}($ say $)$.
For the edges $\mathrm{w}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq \mathrm{n}$;
$\mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{w}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)=3 \mathrm{n}+\mathrm{i}+6 \mathrm{n}-2 \mathrm{i}+2+2 \mathrm{n}+\mathrm{i}=11 \mathrm{n}+2=\lambda_{3}($ say $)$.

For the edges $\mathrm{x}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq \mathrm{n}$;

$$
\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{x}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=2 \mathrm{n}+\mathrm{i}+8 \mathrm{n}-2 \mathrm{i}+1+\mathrm{i}=10 \mathrm{n}+1=\lambda_{2}
$$

Hence for each edge $u v \in E, f(u)+f(u v)+f(v)$ yields any one of the trimagic constant $\lambda_{1}=9 n+2, \lambda_{2}=10 n+1$ and $\lambda_{3}=11 n+2$. Hence the disconnected graph nC_{4} admits an edge trimagic total labeling.
23) Theorem: The graph nC_{4} admits a super edge trimagic total labeling.

Proof: We have proved that the graph nC_{4} has an edge trimagic total labeling. The labeling given in the proof of the theorem 22 , the vertices get labels $f\left(u_{i}\right)=i, f\left(v_{i}\right)=n+i, f\left(w_{i}\right)=3 n+i, f\left(x_{i}\right)=2 n+i$ for all $1 \leq i \leq n$. Clearly the graph has $4 n$ vertices and get labels 1,2 , $\ldots, 4 \mathrm{n}$. Hence the graph nC_{4} admits a super edge trimagic total labeling.
24) Example: A super edge trimagic total labeling of $4 \mathrm{C}_{4}$ is given in fig. 7

Fig. 7 Graph $4 \mathrm{C}_{4}$ with $\lambda_{1}=38, \lambda_{2}=41$ and $\lambda_{3}=46$.
25) Theorem: The graph nC_{6} admits an edge trimagic total labeling.

Proof: Let $\mathrm{V}=\left\{\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}}, \mathrm{w}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}, \mathrm{z}_{\mathrm{i}} / 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$ be the vertex set and $\mathrm{E}=\left\{\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}} \mathrm{w}_{\mathrm{i}}, \mathrm{w}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}} \mathrm{z}_{\mathrm{i}}, \mathrm{z}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}} / 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$ be the edge set of the disconnected graph nC_{6}. The graph nC_{6} has 6 n vertices and 6 n edges.

Define a bijection $\mathrm{f}: \mathrm{V} \cup \mathrm{E} \rightarrow\{1,2, \ldots, 12 \mathrm{n}\}$ such that $\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{i}, \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=3 \mathrm{n}+\mathrm{i}, \mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)=\mathrm{n}+\mathrm{i}, \mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)=4 \mathrm{n}+\mathrm{i}, \mathrm{f}\left(\mathrm{y}_{\mathrm{i}}\right)=2 \mathrm{n}+\mathrm{i}, \mathrm{f}\left(\mathrm{z}_{\mathrm{i}}\right)=5 \mathrm{n}+\mathrm{i}$ for all $1 \leq i \leq n ; f\left(u_{i} v_{i}\right)=12 n-2 i+2, f\left(v_{i} w_{i}\right)=12 n-2 i+1, f\left(w_{i} x_{i}\right)=8 n-2 i+1, f\left(x_{i} y_{i}\right)=10 n-2 i+1, f\left(y_{i} z_{i}\right)=8 n-2 i+2$ and $f\left(z_{i} u_{i}\right)=10 n-2 i+2$ for all $1 \leq \mathrm{i} \leq \mathrm{n}$.

Now we prove that the graph nC_{6} admits an edge trimagic total labeling.
For the edges $\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq \mathrm{n}$;
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{i}+12 \mathrm{n}-2 \mathrm{i}+2+3 \mathrm{n}+\mathrm{i}=15 \mathrm{n}+2=\lambda_{1}($ say $)$.
For the edges $\mathrm{v}_{\mathrm{i}} \mathrm{w}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq \mathrm{n}$;
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{w}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)=3 \mathrm{n}+\mathrm{i}+12 \mathrm{n}-2 \mathrm{i}+1+\mathrm{n}+\mathrm{i}=16 \mathrm{n}+1=\lambda_{2}($ say $)$.
For the edges $\mathrm{w}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq \mathrm{n}$;
$\mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{w}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)=\mathrm{n}+\mathrm{i}+8 \mathrm{n}-2 \mathrm{i}+1+4 \mathrm{n}+\mathrm{i}=13 \mathrm{n}+1=\lambda_{3}($ say $)$.
For the edges $\mathrm{x}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq \mathrm{n}$;
$\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{x}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{y}_{\mathrm{i}}\right)=4 \mathrm{n}+\mathrm{i}+10 \mathrm{n}-2 \mathrm{i}+1+2 \mathrm{n}+\mathrm{i}=16 \mathrm{n}+1=\lambda_{2}$.
For the edges $y_{i} z_{i}, 1 \leq i \leq n$;
$\mathrm{f}\left(\mathrm{y}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{y}_{\mathrm{i}} \mathrm{z}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{z}_{\mathrm{i}}\right)=2 \mathrm{n}+\mathrm{i}+8 \mathrm{n}-2 \mathrm{i}+2+5 \mathrm{n}+\mathrm{i}=15 \mathrm{n}+2=\lambda_{1}$.

For the edges $\mathrm{z}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq \mathrm{n}$;
$\mathrm{f}\left(\mathrm{z}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{z}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=5 \mathrm{n}+\mathrm{i}+10 \mathrm{n}-2 \mathrm{i}+2+\mathrm{i}=15 \mathrm{n}+2=\lambda_{1}$.
Hence for each edge $u v \in E, f(u)+f(u v)+f(v)$ yields any one of the trimagic constant $\lambda_{1}=15 n+2, \lambda_{2}=16 n+1$ and $\lambda_{3}=$ $13 n+1$. Hence the disconnected graph nC_{6} admits an edge trimagic total labeling.
26) Theorem: The graph nC_{6} admits a super edge trimagic total labeling.

Proof: We have proved that the graph nC_{6} has an edge trimagic total labeling. The labeling given in the proof of the theorem 25, the vertices get labels $f\left(u_{i}\right)=i, f\left(v_{i}\right)=3 n+i, f\left(w_{i}\right)=n+i, f\left(x_{i}\right)=4 n+i, f\left(y_{i}\right)=2 n+i, f\left(z_{i}\right)=5 n+i$ for all $1 \leq i \leq n$. Clearly thegraph $n C_{6}$ has $6 n$ vertices and get labels $1,2, \ldots, 6 n$. Hence the graph nC_{6} admits a super edge trimagic total labeling.
27) Example: A super edge trimagic total labeling of $3 \mathrm{C}_{6}$ is given in fig. 8 .

Fig. 8 Graph $3 \mathrm{C}_{6}$ with $\lambda_{1}=47, \lambda_{2}=49$ and $\lambda_{3}=40$.

III. CONCLUSIONS

In this paper, we proved that the disconnected graphs $K_{1},{ }_{p} \cup K_{1},{ }_{q} \cup K_{1}, r(p \leq q \leq r),{ }_{r} P_{2} \cup K_{1, n+1}, t$ copies of the sun graph $t S_{n}$, nC_{4} and nC_{6} are super edge trimagic total and nP_{3} is superior edge trimagic total. There may be many interesting trimagic graphs can be constructed also in future.

REFERENCES

[8] Slamin, A.C. Prihandoko, T.B. Setiawan, F. Rosita, B. Shaleh, "Vertex - magic Total Labelings of Disconnected Graphs", Journal of Prime Research in Mathematics, Vol. 2 (2006), 147 - 156.
[9] M. Regees and C. Jayasekaran, "More Results on Edge Trimagic Labeling of Graphs", International Journal of Mathematical Archive - 4(11), (2013), pp. 247 - 255.
[10] M. Regees and C. Jayasekaran, "Super Edge Trimagic Total Labeling of Graphs", International Journal of Mathematical Archive - 4(12), (2013), pp. 156-164.
[11] M. Regees and C. Jayasekaran, "A-Vertex Consecutive Edge Trimagic Total Labeling of Graphs", International Journal of Mathematical Sciences, Vol. 34, issue 1, (2014), pp. 1413 - 1419.

