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Abstract—The statistical methods are being very important for estimating the unknown parameters in computational 
physics. Between them we can mention the resampling methods: the jackknife and bootstrap estimate. In our work we 
have done their ideas and have shown the results of some applications in physics problems of parameter estimation. 
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I. INTRODUCTION 
 

       The physicians use various statistical methods in their works. But the books on these topics usually fall into one 
of two camps. At one extreme, the books for physicians don’t discuss all that is needed and rarely prove the results 
that they quote. At the other extreme, the books for mathematicians presumably prove everything but are written in 
the style of lemmas, proofs and unfamiliar notation which is intimidating to physicians. For the exception, there are 
some works which find in a good middle group [2], [6], [10]. In the following we have treated some application of 
the resampling methods in physic problems. Let us see the statistical problem of the mean estimation of a random 
variable X. 
        Let suppose that x1, x2,…,xn are independent observations from the random variable X. We note the mean of 

the random variable X by µ  and the sample mean by nx , where 



n

1i
in xx

n

1
. If we denote Xi, i=1,2,..,n the 

random variable X in the i-th observation, we propose the statistic  





n

1i
in XX

n

1
      (1) 

to be an estimator for the unknown parameter µ . Since µnXE  , the statistic (1) is a unbiased estimator for the 

unknown parameter µ . If we denote the variance of the random variable X by 2 , we have 
n
σ)XVar(

2
 . We can 

use 
n
σ)XVar(   to measure the uncertainty in the sample mean or the error bar estimate. Hence our estimate of 

µ  is  

n

σx  .       (2) 

       Furthermore, nX  converges to µ . We can say that nX  become more and more accurate as the number of 

observations increase. Now let suppose that we want to estimate not µ , but some function of µ  i.e.  µg . In 

Section 2 we have done standard statistical methods for the estimation of  µg  and have analyzed the bias of the 
estimation and its order. In Section 3 we have shown the idea of the jackknife and bootstrap estimations and have 
given some consideration about the jackknife and bootstrap estimation of the bias. We have stressed that the bias 

order of jackknife and bootstrap estimate is 2n

1
 instead of 

n

1
 in standard estimations. In Section 4 we have shown 

some simulations cases and have done a comparison between the jackknife and bootstrap methods with standard 
methods.    
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II. THE BIAS ORDER IN STANDARD METHODS  
 

       In the above conditions, we compute some statistic of interest, say  n1 x,...,xθ̂θ̂   and define the bias in the 
form  

µ-θ̂E Bias  ,      (3) 

where θ̂E  is the mean of θ̂ . Now let us analyze the estimation of the unknown parameter  µg . A poor way to 

estimate  µg  would be from  

 



n

1i
iXg

n

1
θ̂      (4)  

       However, this is really an estimate for the mean of g(X), rather than  µg . But, in general   µgEg(X)  . Let 

we evaluate the difference  µgEg(X)  . For the g(x) we have
 

         
...

2!

µ"g2µx

1!

µ'gµx
µgg(x) 





     (5) 

      We can see that the bias is equal to  

   
O(1)...

2!

varXµ"g
µg-Eg(x)  .     (6) 

      So, the bias does not vanish for n . If g is a linear function then 0"g   and Bias=0. Thus, there is no bias 
if g is a linear function. 
      We take a better result if we change in (5) g(x) with  xg . In this case   

              ...
2!

µ"g2µx

1!

µ'gµx
µg)xg( 





 .    (7)  

and  

   












n

1
O...

2!n

varXµ"g
µg-)xEg( .     (8) 

Now, the bias is of order 
n

1
 rather than the order 1. This bias can usually be neglected because it is smaller than 

statistical error in (2) of order 
n

1
. To decrease the bias order we use the jackknife and the bootstrap methods. In 

the following section we have given the idea of the jackknife and the bootstrap estimations. 
 

III. THE BIAS ESTIMATE WITH RESAMPLING METHODS 
 
The resampling methods are getting an important space in many statistical problems of estimating unknown 

parameters and distributions. It depends on two reasons. The first reason is the use of computers and software and 
the second reason is that these methods not ask any condition about the distributions. Let us see the idea of the 
jackknife and bootstrap estimate.   

A.  The Jackknife Estimate of the Bias 

   We define the observation mean when we have removed the observation xi in the form   



ij

ii xx
1-n

1
 , 

i=1,…,n. In similar way we define     ii xgg   , i=1,…,n. The jackknife estimate of  µg  is the average of  ig , 
i=1,…,n or
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   




n

1i
ig

n

1
µJg

        (9)
  

    Let us analyze the jackknife estimate. We have  

   


 
ij

ii µ
1-n

1
µ xx  , i=1,…,n.     (10) 

      Then  

           
 

...xx)(x 2

ij
i
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ii σ
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and 

     
  ...2σ

1-n2

µ"g
µg)iEg(x 

 
      The bias of the jackknife estimate is 

     
     

  ...2σ
1-n2

µ"g
µg-µJEg        (11) 

      We see that high order terms are at order 
n

1
. The bias vanishes for n  and it is of the same order with the 

bias (8) of the  Xg  estimate.  
              Sometimes we want to estimate directly the bias. To do it, let us see Quenouille’s bias estimate [9]. This 
method is based on sequentially deleting points xi and recomputing the statistic θ̂ . Denoting 

  )x,...,x,x,...,(x n1i1i1θ̂iθ̂   and    



n

1i
iθ̂

n

1
.θ̂ , Quenouille’s estimate of bias is 

      θ̂-.θ̂1n JBias 


,       (12) 
leading to the bias-corrected “jackknife estimate” of µ   

    .θ̂1-n-θ̂nJBias-θ̂θ~ 


  .    
      For many common statistics, including most maximum likelihood estimates,  

 ...2n
2a

n
1a

µθ̂E   ,       (13) 

where a1, a2,… do not depend upon n [8]. After some calculations we have 

    
...2

1n

1
2n

1
3a

1-nn
2a

-θθ~E 


 









.    (14) 

            We see that the bias order of θ~   is 







2n

1
O , compared to 








n

1
O  for the original estimator (13). The 

jackknife estimate of variance is [11] 

      2n

1i .θ̂iθ̂n

1n
Jvar 









       (15) 

            Suppose  Xgθ̂  , where g is some nicely behaved function (derivative g’ exists continuously). Then a first 

order Taylor expansions gives      
1n
ixx

x'gxgiθ̂ 


  . So, substituting this expression into (15), we have  
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       






 n

1i
2xix2xg

.

1nn

1
var .      (16) 

 

B. The Bootstrap Estimate of the Bias 
        The bootstrap [3] is conceptually a simple technique. The bootstrap, like the jackknife, is a resampling of n 
data points xi. Whereas jackknife considers n new data sets, each containing all the original data points minus 1, 

bootstrap uses B data sets each containing n points obtained by random sampling with the same probability 

.

n

1
 of 

the original set of n points.    

        Let us note such data set by *
nX,...,*

1X  and calculate )*
nX,...,*

1(X*θ̂  . This is the bootstrap estimate for the 
unknown parameter. Independently we repeat this procedure a large number B of times obtaining “bootstrap 

replications” *Bθ̂,...,*1θ̂ . The bootstrap estimate for the bias is  

   
θ̂

B

1b
b*θ̂

B

1
BBias 





      (17) 

and the bootstrap estimate for the variance is  

   

2)θ̂
B

1b
b*θ̂(

1B

1
Bvar 





     (18) 

     The order of the bias in the bootstrap estimate is the same with the order of the jackknife estimate bias. For the 
quadratic functional we have 
 

    BBias
n

1n
JBias





.      (19) 

IV. EXAMPLES 
     In this Section we have shown the results of some applications of resampling methods in Computational Physics. 
 

1)    Example 4.1   

    Let us suppose we want to compute cos(E(X)), where ii εx
3

π
  and iε  is a Gaussian random variable with 

mean zero and standard deviation unity. We took a sample n=1000.  
    The jackknife estimate of the mean was 0.4916, with an error estimate of 0.0280 which is consistent with the 
exact value of 0.5. For comparison xcos  was also equal to 0.4916 to this precision. Using equation (12) to get a less 
biased estimate of the mean, and using the full precision of the numbers in the computer gives 0.4919. The 
difference between 0.4916 and 0.4919 is completely unimportant since the error bar of 0.0280 is very much larger.  

With B=100 data sets we found .0279.04927.0   This result is consistent with the exact value of 0.5 and very 
close to  the jackknife result. 

 

2)  Example 4.2  
    Jackknife and bootstrap can be used to compute error bars for quite general functions of the data set. For example, 
one can use the jackknife and bootstrap resampling schemes to estimate parameters describing the shape of the 
distribution from the data set. An example, which is also used in many researches in phase transitions (where it is 
called the “Binder ratio”), g, defined by  

 
  22EXXE

4
EXXE

g



 .     (20) 
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Since the total power of X in the numerator and denominator is the same, the kurtosis depends only on the shape 
of the distribution and not on its overall scale. It takes the value 3 for a Gaussian distribution.  

In the example we took n=1000 points from a Gaussian distribution and computed the kurtosis using the jackknife 
method. For the Gaussian distribution we know that EX=0. For each of the n jackknife data sets we computed g and 
obtained an average and error bar using (12) above. The result is 145.0090.3   which is consistent with the exact 
value of 3. 

The kurtosis is found for each B=100 bootstrap samples, and the mean and error obtained from (17). The result is 
1320.0072.3   which agrees well with the jackknife estimate and is consistent with the exact value of 3.   

 

3)  Example 4.3 Linear regression: 

 Consider the linear regression model  
   iii εβxy   , i=1,…,n,      (21) 

where iε  are independent random variables with identically unknown distribution F and   0εE  , xi is a known 1xp 
vector of covariates when 

 
iεβixiy   , where β  is a px1 vector of unknown parameters.  

      The statistic of interest is the least squares estimate of β  in the form 

     YTX
1

XTXβ̂


 ,      (22)  

where  Tny,...,1yY  ,  TnX,...,1XX   . The usual estimate of  β̂cov  is  

     1
XTX2σ̂


,       (23) 

where 





n

1i
2
iε̂n

1n2σ̂  and iε̂  being the estimated residual β̂ixiy  . The multivariate version of Tukey’s formula 

is  

          .β̂iβ̂
n

1i
.β̂iβ̂n

1n
Jcov 








.      (24) 

      If all the 2
iε̂  are identical in value this is about the same as the standard answer, but otherwise the two formulas 

are quite different.  In quadratic fit of 50 points with Gaussian noise to 3-2x+x2, the following results were obtained  
 

TABLE I 
THE ESTIMATE RESULTS OF THE LINEAR REGRESSION WITH STANDARD AND REAMPLING METHODS 

 
 Least square fit Jackknife fit Bootstrap fit 
Fit parameters 3.0121 -1.9784 1.0021 3.0122 -1.9783 1.0020 3.0123 -1.988 1.0012 
Error bars 0.0212 0.0981 0.0949 0.0190 0.0847 0.0778 0.0183 0.0838 0.0878 
Covariance matrix 0.0004 -0.0018 0.0015 0.0003 -0.0014 0.0011 0.0003 -0.0016 0.0012 
 -0.0018 0.0096 -0.0090 -0.0014 0.0071 -0.0064 -0.0016 0.0073 -0.0082 
 0.0015 -0.0090 0.0090 0.0011 -0.0064 0.0060 0.0012 -0.0082 0.0058 

 
4)  Example 4.1 The simple median 

    For most problems, the jackknife and bootstrap give similar results. However, there is at least one class of 
problems where the jackknife approach is unsatisfactory, because the data set are too similar to each other, while the 
bootstrap method works. We can note that the jackknife estimate of the variance fails in the case of the sample 
median. An estimator for the sample median is  

 
   

.

2mn if     
2

1mx
1-2mn if                  













mx
mx

 .      (25) 

    From the formula (13) we have  
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    21mx
.

4
1-n

Jvar mx


.      (26) 

Standard theory [7] shows that if the distribution F of the random variable X has a density function f then  

 
Y

.

µ24f

1varn






n

,       (27)  

where  µf  is the density at the sample median µ ,  µf  is assumed >0 and Y is a random variable with expectation 
2 and variance 20.  

The true variance goes to the limit [5] 

 

.

µ24f

1varn



n

    (28) 

    In this case, the jackknife estimate is not even a consistent estimator of the variance sample median.  
From the other hand, the bootstrap estimate of the variance goes well for the sample median. The bootstrap 

estimate of standard deviation is shown to be asymptotically consistent for the true standard deviation [4]. In the 
bootstrap estimate, the B data samples are significantly different from each other, so the error in the median can be 
estimated. As an example, we took n=1001 data points generated from the positive half of a Lorentzian  

   













0     x          0

0   x2x1π

2.
xf  .     (29) 

Note that this is a very broad distribution for which even the mean is not defined. However, the median is defined 
and a standard integral gives the value 1. Including all 1001 values of we have xi, we found the median to be 0.9613. 
Using the bootstrap with B=5000 data sets we found 0507.09603.0  . We see that the overall average and the mean 
of the bootstraps are very close, and the result agrees with the exact value of 1 within the error bar.  

 

V. CONCLUSIONS 
      In this paper we have given some applications of jackknife and bootstrap in Computational Physics. We have 
shown the efficiency and facility of these methods in estimation when the distributions are unknown or asymmetric. 
We can see it in Examples 4.1, 4.2 and 4.3. But in some cases the resampling methods do not work. We can see it in 
Example 4.4, when the bootstrap method works, meanwhile the jackknife method does not work.  
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