ĝ * -Closed Sets in Topological Spaces

Pauline Mary Helen M, Associate Professor, Nirmala College, Coimbatore. Gayathri. A, PG student, Nirmala College, Coimbatore.

ABSTRACT

In this paper we have introduced a new class of sets called \hat{g}^* -closed sets which is properly placed in between the class of closed sets and g-closed sets. As an application, we introduce three new spaces namely, $T_{\hat{g}}^*$, $_{g}T_{\hat{g}}^*$ and $_{g^*}T_{\hat{g}}^*$ spaces. Further, \hat{g}^* -continuous and \hat{g}^* -irresolute mappings are also introduced and investigated.

Keywords: \hat{g}^* -closed sets, \hat{g}^* -continuous map, \hat{g}^* -irresolute map, $T_{\hat{g}}^*$, ${}_gT_{\hat{g}}^*$ and ${}_{g^*}T_{\hat{g}}^*$ spaces.

1. Introduction

Levine [10] introduced the class of g -closed sets in 1970. Maki.et.al [12] defined αg -closed sets in 1994. Arya and Tour [3] defined gs -closed sets in 1990. Dontchev [8], Gnanamble [9], Palaniappan and Rao[17] introduced gsp-closed sets, gpr-closed sets and rg -closed sets respectively. Veerakumar [19] introduced \hat{g} -closed sets in 1991. Levine [10] Devi.et.al.[5,6] introduced $T_{1/2}$ - spaces , T_b spaces and $_{\alpha}T_b$ spaces respectively. Veerakumar [18] introduced T_c , $_{\alpha}T_c$ and $T_{1/2}$ *-spaces. The purpose of this paper is to introduce the concepts of \hat{g} *-closed sets, \hat{g} *-continuous and \hat{g} *-irresolute mappings. we have also introduced $T_{\hat{g}}$ *, $_{g}T_{\hat{g}}$ * and $_{g*}T_{\hat{g}}$ * spaces.

2. Preliminaries

Throughout this paper $(X,\tau),(Y,\sigma)$ represent non-empty topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a space $(X,\tau),cl(A)$ and int(A) denote the closure and the interior of A respectively.

The class of all closed subsets of a space (X,τ) is denoted by $C(X,\tau)$. The smallest semi-closed(resp.preclosed and α -closed) set containing a subset A of (X,τ) is called the semi-closure(resp.pre-closure and α -closure) of A and is denoted by scl(A)(resp.pcl(A) and α cl(A)) **Definition 2.1:** A subset A of a topological space (X, τ) is called

- (1) a *pre-open* set[14] if $A \subseteq int(cl(A))$ and a *pre-closed* set if $cl(int(A)) \subseteq A$
- (2) a semi-open set[11] if $A \subseteq cl(int(A))$ and a semi-closed set if $int(cl(A)) \subseteq A$
- (3) a *semi*-*preopen* set [1] if $A \subseteq cl(int(cl(A)))$ and a *semi*-*preclosed* set [1] if $int(cl(int(A))) \subseteq A$
- (4) an α open set [15] if A \subseteq int(cl(int(A))) and an α closed set [15] if cl(int(cl(A))) \subseteq A
- (5) a regular open set[14] if int(cl(A))=A and an regular closed set[14] if A=int(cl(A))

Definition 2.2: A subset A of a topological space (X, T) is called

- (1) a generalized closed set (briefly g closed) [10] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in(X, τ).
- (2) a generalized semi-closed set (briefly gs closed)[3] if scl(A) ⊆U whenever A ⊆U and U is open in (X, T).
- (3) an α generalized closed set (briefly αg closed)[12] if α cl(A) ⊆U whenever A ⊆U and U is open in (X, τ).
- (4) a generalized semi preclosed set (briefly gsp closed)[10] if spcl(A) \subseteq U whenever A \subseteq U and U is open in (X, τ).
- (5) a regular generalized closed set (briefly rg − closed)[17] if cl(A) ⊆U whenever A ⊆U and U is regular open in (X, T).
- (6) a generalized preclosed set (briefly gp − closed)[13] if pcl(A) ⊆U whenever A ⊆U and U is open in (X, T).
- (7) a generalized preregular closed set (briefly gpr-closed)[9] if pcl(A) $\subseteq U$ whenever $A \subseteq U$ and U is regular open in (X, τ) .

- (8) a g^* -closed set[18] if cl(A) \subseteq U whenever A \subseteq U and U is g-open in (X, τ).
- (9) a wg closed set[16] if cl(int(A)) \subseteq U whenever A \subseteq U and U is open in (X, τ).
- (10) a \hat{g} *closed* set[19] if cl(A) \subseteq U whenever A \subseteq U and U is semi-open in (X, τ).

Definition 2.3: A map $f : (X, \mathcal{T}) \rightarrow (Y, \mathcal{\sigma})$ is called

- (1) g-continuous [4] if $f^{-1}(V)$ is a g-closed set of (X, τ) for every closed set V of (Y, σ) .
- (2) αg continuous [5] if $f^{-1}(V)$ is a αg closed set of (X, τ) for every closed set V of (Y, σ) .
- (3) gs continuous [7] if $f^{-1}(V)$ is a gs closed set of (X, τ) for every closed set V of (Y, σ) .
- (4) gsp- continuous [8] if $f^{-1}(V)$ is a gsp-closed set of (X, \mathcal{T}) for every closed set V of (Y, σ) .
- (5) rg continuous [17] if $f^{-1}(V)$ is a rg closed set of (X, τ) for every closed set V of (Y, σ)
- (6) gp-continuous [2] if $f^{-1}(V)$ is a gp-closed set of (X, τ) for every closed set V of (Y, σ)
- (7) gpr-continuous [9] if $f^{-1}(V)$ is a gpr-closed set of (X, τ) for every closed set V of (Y, σ)
- (8) g *- continuous [18] if $f^{-1}(V)$ is a g *-closed set of (X, τ) for every closed set V of (Y, σ)
- (9) wg -continuous [16] if $f^{-1}(V)$ is a wg -closed set of (X, τ) for every closed set V of (Y, σ)

Definition 2.4: A topological space (X, T) is said to be

(1) a $T_{1/2}$ space [10] if every g - closed set in it is closed.

(2) a T_b space [6] if every gs - closed set in it is closed.

(3) an $_{\alpha}T_{b}$ space [5] if every αg – closed set in it is closed.

(4) a $T_{1/2}$ * space [18] if every g *-closed set in it is closed.

3. Basic properties of \hat{g} *-closed sets

We now introduce the following definitions.

Definition 3.1: A subset A of a topological space (X, τ) is said to be a \hat{g}^* -closed set if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is \hat{g} -open in X.

Proposition 3.2: Every closed set is \hat{g}^* -closed.

Proof follows from the definition.

The following example supports that a \hat{g}^* -closed set need not be closed in general.

Example 3.3: Let X= {a, b, c}, $T = \{\phi X, \{a\}, \{a, b\}\}$, A= {a,c} is \hat{g}^* - closed but not closed.

So, the class of \hat{g}^* -closed sets is properly contained in the class of closed sets.

Proposition 3.4: Every \hat{g}^{*} - *closed* set is

(i) g - closed (ii) gs - closed (iii) $\alpha g - closed$ and (iv) gsp - closed

Proof: Let A be a \hat{g} *- *closed* set

Let $A \subseteq U$ and U be open. Then U is \hat{g} -open. Since A is \hat{g}^* - closed, $cl(A) \subseteq U$.

- (i) Hence A is g closed.
- (ii) Then $scl(A) \subseteq cl(A) \subseteq U$. Hence A is gs closed.
- (iii) $\alpha cl(A) \subseteq cl(A) \subseteq U$ and hence A is αg closed.

(iv) $spcl(A) \subseteq cl(A) \subseteq U$. Hence A is gsp – closed.

The converse of the above proposition need not be true in general as seen in the following examples.

Example 3.5: Let X= {a, b, c}, $\tau = \{\phi, X, \{b\}, \{a, c\}\}$, $A = \{a\}$ is g-closed but not \hat{g} *- closed.

Example 3.6: Let $X = \{a, b, c\}, \tau = \{\phi, X, \{a\}, \{a, b\}\}$ and let $A = \{b\}$. Then A is gs-closed, αg -closed and gsp-closed but not \hat{g} *- closed.

Proposition 3.7: Every \hat{g}^* - *closed* set is

(i) gp-closed (ii) wg-closed (iii) rg-closed and (iv) gpr-closed

Proof: Let A be a \hat{g} *- *closed* set

(i)& (ii) Let $A \subseteq U$ and U be open. Then U is \hat{g} -open. Since A is \hat{g}^* - closed, $cl(A) \subseteq U$

 $pcl(A) \subseteq cl(A) \subseteq U$.HenceAis gp – closed.

 $cl(int(A) \subseteq cl(A) \subseteq U$. Hence A is wg – closed.

(iii) &(iv) Let $A \subseteq U$ an U be regular open. Then U is \hat{g} -open. Since A is \hat{g} *-closed,

 $cl(A) \subseteq U$. Hence A is rg – closed.

 $pcl(A) \subseteq cl(A) \subseteq U$. Then A is gpr - closed.

Example 3.8: Let X= {a, b, c}, $\mathcal{T} = \{\phi, X, \{a\}, \{b, c\}\}$, A={b}is rg - closed and gpr - closed but not \hat{g} *- closed.

Example 3.9: Let X= {a, b, c}, $\tau = \{\phi, X, \{a\}, \{a, b\}\}$, A= {b} is gp-closed and wg-closed but not \hat{g} *- closed.

Proposition 3.10: Every g *-closed set is \hat{g} *-closed.

Proof follows from the definition.

Example 3.11: Let X= {a, b, c}, $\tau = \{\phi, X, \{a\}\}$. Then A={b} is a \hat{g} *-closed but not g *-closed.

Proposition 3.12: If A and B are \hat{g} *- closed sets, then $A \cup B$ is also a \hat{g} *- closed set.

Proof follows from the fact that $cl(A \cup B) = cl(A) \cup cl(B)$.

Remark 3.13: If A and B are \hat{g} *-*closed* sets, then $A \cap B$ need not be \hat{g} *-*closed* as seen in the following example.

Example 3.14: Let X= {a, b, c}, $\tau = \{\phi, X, \{a\}\}$. Then A={a, b} and B= {a, c} are $\hat{g} *$ -closed. But $A \cap B = \{a\}$ is not $\hat{g} *$ -closed.

Proposition 3.15: If A is a \hat{g}^* -closed set of (X, τ) such that $A \subseteq B \subseteq cl(A)$, then B is also a \hat{g}^* -closed set of (X, τ) .

Proof: Let U be a \hat{g} - *open* set of (X, τ) such that $B \subseteq U$. Then $A \subseteq U$ and since A is \hat{g} *-closed, $cl(A) \subseteq U$. Now $cl(B) \subseteq cl(A) \subseteq U$. Then B is also a \hat{g} * -*closed* set of (X, τ) .

Proposition 3.16: If A is a \hat{g}^* -closed set of (X, τ) then $cl(A) \setminus A$ does not contain any non-empty \hat{g} -closed set.

Proof: Let F be a \hat{g} -closed set of (X, \mathcal{T}) such that $F \subseteq cl(A) \setminus A$. Then $A \subseteq X \setminus F$. Since A is \hat{g}^* -closed and $X \setminus F$ is \hat{g} -open, $cl(A) \subseteq X \setminus F$. This implies $F \subseteq X \setminus cl(A)$.

So $F \subseteq (X \setminus cl(A) \cap (cl(A) \setminus A) = \phi$. Therefore $F = \phi$.

International Journal of Mathematics Trends and Technology – Volume 6 – February 2014

The above results can be represented in the following figure:

gp-closed gpr-closed

where A \longrightarrow B represents A implies B and B need not imply A.

4. \hat{g} *-continuous and \hat{g} *-irresolute maps.

We introduce the following definitions.

Definition 4.1: A map $f: (X, \tau) \rightarrow (Y, \sigma)$ is said to be a \hat{g} *-continuous map if $f^{-1}(V)$ is a \hat{g} *- closed set of (X, τ) for every closed set V of (Y, σ) .

Definition 4.2: A map $f: (X, \tau) \rightarrow (Y, \sigma)$ is said to be a \hat{g} *-irresolute map if $f^{-1}(V)$ is a \hat{g} *- closed set of (X, τ) for every \hat{g} *- closed set V of (Y, σ) .

Theorem 4.3: Every *continuous* map is \hat{g}^* – *continuous*.

Proof follows from the definitions.

The converse of the above theorem need not be true in general, as seen in the following example.

Example 4.4: Let X=Y= {a, b, c}, $T = \{\phi, X, \{a\}, \{a, b\}\}$ and $\sigma = \{\phi, Y, \{a, c\}\}$

Let $f: (X, \tau) \longrightarrow (Y, \sigma)$ be defined by f(a)=b, f(b)=c, f(c)=b. The inverse image of all closed sets in (Y, σ) are \hat{g}^* -closed in (X, τ) . Therefore f is \hat{g}^* -continuous $f^{-1}(\{b\}) = \{a, c\}$ is not closed in (X, τ) and hence f is not continuous

Theorem 4.5: Every \hat{g}^* -continuous map is g-continuous, αg -continuous, g-continuous, g-continu

Proof: Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be a \hat{g}^* -continuous map. Let V be a closed set of (Y, σ) .

Since f is \hat{g}^* -continuous, $f^{-1}(V)$ is a \hat{g}^* -closed set in (X, τ) .

By the proposition (3.4) & (3.7) $f^{-1}(V)$ is g-closed, rg-closed, gp-closed, wg-closed, $\alpha g - closed$, gs-closed, gsp-closed, gp-closed. Hence f is g-continuous, αg -continuous, gs-continuous, gsp-continuous, gp-continuous, rg-continuous, rg-continuous, gp-continuous, rg-continuous, gp-continuous, rg-continuous, rg-c

The converse of the above theorem need not be true in general, as seen in the following example.

Example 4.6: Let X=Y= {a, b, c}, $T = \{\phi, X, \{b\}, \{a, c\}\}$ and $\sigma = \{\phi, Y, \{a, c\}\}$

Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be defined by f(a)=b, f(b)=c, f(c)=a. Then $f^{-1}(\{b\}) = \{a\}$ is g-closed in (X, τ) but not \hat{g}^* -closed in (X, τ) . Hence f is g-continuous but not \hat{g}^* -continuous.

Example 4.7: Let X=Y= {a, b, c}, $\tau = \{\phi, X, \{a\}, \{a, b\}\}$ and $\sigma = \{\phi, Y, \{a, c\}\}$. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be the identity map. Then $f^{-1}(\{b\}) = \{b\}$ is not $\hat{g} \ast$ - closed in X. But {b} is gs-closed, αg -closed, wg-closed, gsp-closed. Therefore f is gs-continuous,

gsp-continuous, wg-continuous, αg -continuous but f is not \hat{g}^* -continuous

Example 4.8: Let X=Y= {a, b, c}, $T = {\phi, X, {a}, {a, b}}$ and $\sigma = {\phi, Y, {b, c}}$

Let $f : (X, \mathcal{T}) \longrightarrow (Y, \sigma)$ be defined by f(a)=c, f(b)=a, f(c)=b. Then $f^{-1}(\{a\}) = \{b\}$ is gp-closed in (X, \mathcal{T}) but not $\hat{g}^*-closed$ in (X, \mathcal{T}) . Hence f is gp-continuous but not $\hat{g}^*-continuous$.

Example 4.9: Let X=Y= {a, b, c}, $\tau = \{\phi, X, \{a\}, \{b, c\}\}$ and $\sigma = \{\phi, Y, \{a, c\}\}$. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be the identity map. Then $f^{-1}(\{b\}) = \{b\}$ is rg – closed, gpr – closed but not \hat{g} *- closed in (X, τ) . Therefore f is rg – continuous, gpr – continuous but f is not \hat{g} * – continuous. Thus the class of all \hat{g} * – continuous maps is properly contained in the classes of g – continuous, αg - continuous, gs - continuous, gpr - continuous, rg - continuous, gpr - continuous, rg - continuous, gpr - continuous, rg - continuous, gpr - continuous, gpr - continuous, rg - continuous, gpr - continuous, rg - continuous, gpr - continuous, rg - continuous, rg - continuous, gpr - continuous, rg - continuous, rg - continuous, gpr - continuous, rg - continuous, gpr - continuous, rg - continuous, rg - continuous, gpr - continuous, rg - continuous, rg - continuous, rg - continuous, rg - continuous, gpr - continuous, rg - con

Theorem 4.10: Every g^* -continuous map is \hat{g}^* -continuous.

Proof: Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be a g^* -continuous and let V be a closed set of Y.

Then $f^{-1}(V)$ is a g^* -closed set and hence it is \hat{g}^* -closed. Hence f is \hat{g}^* -continuous.

Example 4.11: Let X=Y= {a, b, c}, $\tau = \{\phi, X, \{a\}\}$ and $\sigma = \{\phi, Y, \{a, b\}\}$. Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be the identity map. Then $f^{-1}(\{c\}) = \{c\}$ is \hat{g}^* -closed in(X, τ) but not g^* -closed in(X, τ). Hence f is \hat{g}^* -continuous but not g^* -continuous.

Theorem 4.12: Every \hat{g} *- *irresolute* map is \hat{g} * - *continuous* but not conversely.

Example 4.13: Let X=Y= {a, b, c}, $T = \{\phi, X, \{a\}, \{a, b\}\}$ and $\sigma = \{\phi, Y, \{a\}\}$.

Let $f: (X, \mathcal{T}) \rightarrow (Y, \mathcal{T})$ be the identity map. Then $f^{-1}(\{b, c\}) = \{b, c\}$ is \hat{g}^* -closed in

 (X, τ) . Therefore f is $\hat{g} * -continuous$. {b} is $\hat{g} * -closed$ in (Y, σ) but f^{-1} {b} = {b} is not $\hat{g} * -closed$ in (X, τ) . Therefore f is not $\hat{g} * -closed$ in (X, τ) . Therefore f is not $\hat{g} * -closed$ in (X, τ) .

 \hat{g} *- irresolute .

Theorem 4.14: Every \hat{g}^* - *irresolute* map is g - *continuous*, αg - *continuous*, gg - *continuous*, and wg - *continuous* but not conversely.

Proof follows from the definitions.

Example 4.15: Let X=Y= {a, b, c}, $T = \{\phi, X, \{b\}, \{a, c\}\}$ and $\sigma = \{\phi, Y, \{a\}, \{a, b\}\}$.

Let $f: (X, \mathcal{T}) \rightarrow (Y, \mathcal{\sigma})$ be the identity map. All the subsets of X are g-closed in(X, \mathcal{T}). Hence f^{-1} {b, c} and f^{-1} {c} are g-closed in(X, \mathcal{T}) and hence f is g-continuous. {b, c} is \hat{g}^* -closed in Y but $f^{-1}(\{b, c\}) = \{b, c\}$ is not \hat{g}^* -closed in (X, \mathcal{T}) . Therefore f is not a \hat{g}^* -closed in (X, \mathcal{T}) . Therefore f is not a \hat{g}^* -closed in (X, \mathcal{T}) .

Example 4.16: Let X=Y= {a, b, c}, $\tau = \{\phi, X, \{a\}, \{a, b\}\}$ and $\sigma = \{\phi, Y, \{a\}\}$.

Closed sets of Y are ϕ , Y and {b, c}. Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be the identity map. Now $f^{-1}(\{b, c\}) = \{b, c\}$ is $gs-closed, \alpha g-closed, wg-closed, gsp-closed$ and gp-closed in (X, τ) . Hence f is $gs-continuous, \alpha g-continuous, wg-continuous,$ gsp-continuous and gp-continuous. $\hat{g}^*-closed$ sets of (X, τ) are ϕ , X, {c}, {a, c}, {b, c} and that of (Y, σ) are ϕ , Y, {b}, {c}, {a, b}, {a, c}, {b, c}. Now $f^{-1}(\{b\}) = \{b\}$ is not $\hat{g}^*-closed$ in (X, τ) . Hence f is not a \hat{g}^* - irresolute.

Example 4.17: Let $X=Y=\{a, b, c\}, T=\{\phi, X, \{a\}, \{a, b\}\}$ and $\sigma = \{\phi, Y, \{a\}\}.$

Let $f: (X, \tau) \longrightarrow (Y, \sigma)$ be the identity map. $f^{-1}(\{b, c\}) = \{b, c\}$ is rg - closed and gpr - closed in (X, τ) and hence f is rg - continuous and gpr - continuous . \hat{g}^* - closed sets of (X, τ) are ϕ , X, $\{a\}$, $\{b,c\}$ and that of (Y, σ) are ϕ , Y, $\{b\}$, $\{c\}$, $\{a,b\}$, $\{a,c\}$ and $\{b, c\}$. Then $f^{-1}(\{b\}) = \{b\}$ is not \hat{g}^* - closed in (X, τ) where $\{b\}$ is \hat{g}^* - closed in (Y, σ) . Therefore f is not \hat{g}^* - irresolute.

Theorem 4.18: Let $f: (X, \mathcal{T}) \rightarrow (Y, \sigma)$ and $g: (Y, \sigma) \rightarrow (Z, \eta)$ be two maps.

Then (i) gof is \hat{g} *-continuous if g is continuous and f is \hat{g} *-continuous.

(ii) gof is \hat{g} *-*irresolute* if both f and g are \hat{g} *-*irresolute s*.

(iii) gof is \hat{g} *- continuous if g is \hat{g} *- continuous and f is \hat{g} *- irresolute.

The above results can be represented in the following figure:

g - continuous gs - continuous

gp -continuous *gpr*-continuous

where A \longrightarrow B represents A implies B and B need not imply A.

5. APPLICATIONS OF \hat{g} *-CLOSED SETS

As applications of $\hat{g} \ast$ -*closed* sets, new spaces namely, $T_{\hat{g}} \ast$ -space, ${}_{g}T_{\hat{g}} \ast$ -space and ${}_{g*}T_{\hat{g}} \ast$ -space are introduced.

Definition 5.1: A space (X, \mathcal{T}) is called a $T_{\hat{g}}$ *-space if every \hat{g} *-closed set is closed.

Definition 5.2: A space (X, \mathcal{T}) is called a ${}_{g}T_{\hat{g}}$ *-space if every g -closed set is \hat{g} *-closed.

Definition 5.3: A space (X, τ) is called a $_{g^*}T_{\hat{g}}$ *-space if every \hat{g} *-closed set is g *-closed.

Theorem 5.4: Every $T_{1/2}$ -space is a $T_{\hat{g}}$ *-space but not conversely.

Proof: Let (X, τ) be a $T_{1/2}$ -space. Let A be a \hat{g} *-closed set. By proposition (3.4), every \hat{g} *-closed set is g -closed. Since (X, τ) is a $T_{1/2}$ -space, every g - closed set is closed. Hence (X, τ) is a $T_{\hat{g}}$ *-space.

Example 5.5: Let X= {a, b, c} and $\tau = \{\phi, X, \{b\}, \{a, c\}\}$. Since all the \hat{g} *-closed sets is closed, (X, τ) is a $T_{\hat{g}}$ *-space. A = {a} is g -closed but not closed .Hence(X, τ) is not a $T_{1/2}$ -space.

Theorem 5.6: Every $_{\alpha}T_{b}$ -space is a $T_{\hat{g}}$ *-space but not conversely.

Proof: Let (X, τ) be $a_{\alpha}T_{b}$ - space. Let A be a \hat{g} *-closed set. Since every \hat{g} *-closed set is αg -closed and (X, τ) is a $_{\alpha}T_{b}$ -space, A is closed. Therefore (X, τ) is a $T_{\hat{g}}$ *-space.

Example 5.7: Let X= {a, b, c} and $\tau = \{\phi, X, \{b\}, \{a, c\}\}$. Since all the \hat{g} *-closed sets is closed, (X, τ) is a $T_{\hat{g}}$ *-space. A= {a} is αg - closed but not closed. Hence (X, τ) is not a $_{\alpha}T_{b}$ -space.

Theorem 5.8: Every $T_{\hat{g}}$ *-space is a $T_{1/2}$ *-space but not conversely.

Proof: Let (X, τ) be a $T_{\hat{g}}$ *- space. Let A be a g *-closed set .Then A is \hat{g} *- closed. Since (X, τ) is a $T_{\hat{g}}$ *- space, A is closed. Then (X, τ) is a $T_{1/2}$ *-space.

Example 5.9: Let X= {a, b, c} and $\tau = \{\phi, X, \{a\}\}$. Since all the g^* -closed sets is closed, (X, τ) is a $T_{1/2}$ *-space. A= {c} \hat{g} *-closed but not closed .Hence (X, τ) is not a $T_{\hat{g}}$ *- space.

Theorem 5.10: Every T_b -space is a $T_{\hat{g}}$ *-space but not conversely.

Proof: Let (X, τ) be a T_b - space. Let A be a \hat{g} *-closed set. Then A is gs-closed. Since (X, τ) is a T_b - space, A is closed and hence (X, τ) is a $T_{\hat{g}}$ *-space.

Example 5.11: Let X= {a, b, c} and $\tau = \{\phi, X, \{b\}, \{a, c\}\}$. Since all the \hat{g} *-closed sets is closed, (X, τ) is a $T_{\hat{g}}$ *-space. A= {a} is gs-closed but not closed .Hence (X, τ) is not a T_b -space.

Theorem 5.12: Every $T_{\hat{g}}$ *-space is a $_{g^*}T_{\hat{g}}$ *-space but not conversely.

Proof follows from the definitions.

Example 5.13: Let X= {a, b, c} and $\tau = \{\phi, X, \{a\}, \{a, b\}\}$. Since all the \hat{g} *-closed sets is g *-closed, (X, τ) is $a_{g*}T_{\hat{g}}$ *-space. A= {a, c} is \hat{g} *-closed but not closed .Hence (X, τ) is not a $T_{\hat{g}}$ *-space.

Theorem 5.14: A space which is both $T_{\hat{g}}^*$ -space and ${}_gT_{\hat{g}}^*$ -space is a $T_{1/2}^*$ -space.

Proof: Let A be a g - closed set. Then A is \hat{g}^* -closed since(X, τ) is a ${}_gT_{\hat{g}}^*$ -space and A is closed since (X, τ) is a $T_{\hat{g}}^*$ -space. Hence (X, τ) is a $T_{1/2}$ -space.

Theorem 5.15: Let $f: (X, \mathcal{T}) \rightarrow (Y, \mathcal{O})$ be a \hat{g} *- continuous map and let (X, \mathcal{T}) be a $T_{\hat{g}}$ *- space, then f is continuous.

Proof: Let $f: (X, \tau) \to (Y, \sigma)$ be a \hat{g} *- continuous map. Let F be a closed set in (Y, σ) . Then $f^{-1}(F)$ is \hat{g} *- closed in (X, τ) . Since (X, τ) is a $T_{\hat{g}}$ *- space, $f^{-1}(F)$ is closed in (X, τ) . Therefore f is continuous.

Theorem 5.16: Let $f: (X, \mathcal{T}) \rightarrow (Y, \mathcal{\sigma})$ be a \hat{g} *-irresolute map and let (X, \mathcal{T}) be a $T_{\hat{g}}$ *- space. Then f is g - continuous.

Proof: Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be a \hat{g} *-irresolute map. Let F be a closed set in (Y, σ) . Then F is

 \hat{g} *-closed in Y. $f^{-1}(F)$ is \hat{g} *-closed in (X, τ), since f is a \hat{g} *-irresolute map. Since every \hat{g} *-closed set is g - closed, $f^{-1}(F)$ is g - closed. Hence f is g - continuous.

Theorem 5.17: Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be a g - continuous map and let (X, τ) be a ${}_{g}T_{\hat{g}}$ *- space. Then f is \hat{g} *-continuous.

Proof: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be a g - continuous map. Let F be a closed set in (Y, σ) .

Then $f^{-1}(F)$ is g - closed in (X, \mathcal{T}) . Since (X, \mathcal{T}) is ${}_{g}T_{\hat{g}}^{*}$ - space, $f^{-1}(F)$ is \hat{g}^{*} -closed in (X, \mathcal{T}) .

Hence f is \hat{g}^* – continuous.

REFERENCES:

- [1] D. Andrijevic, semi- preopen sets, Mat. Vesnik, 38(1)(1986),24-32.
- [2] I. Arokiarani, K. Balachandran and J. Dontchev, some characterizations of gp-irresolute and gp-continuous maps between topological spaces, Mem. Fac. Sci. Kochi. Univ. Ser. A. Math., 20 (1999), 93-104.
- [3] S.P. Arya and T. Nour, Characterization of s-normal spaces, Indian J.Pure.Appl.Math.,21 (1990),717-719.
- [4] K. Balachandran, P. Sundaram and H. Maki, On generalized continuous maps in topological spaces, Mem. Fac. Kochi. Univ. Ser.A.Math., 12(1991), 5-13
- [5] R. Devi, K. Balachandran and H. Maki, generalized α *closed* maps and α *generalized* closed maps, Indian J.Pure.Appl.Math.,29(1)(1998),37-49.
- [6] R. Devi, H. Maki and K. Balachandran, Semi-generalized closed maps and generalized closed maps , Mem.Fac.Sci.Kochi.Univ.Ser.A.Math.,14(1993),41-54.
- [7] R. Devi, H. Maki and K. Balachandran, Semi-generalized homeomorphisms and generalized semihomeomorphisms in topological spaces, Indian J.Pure.Appl.Math.,26(3)(1995),271-284.
- [8] J. Dontchev, on generalizing semi-preopen sets, Mem. Fac. Sci. Kochi. Ser. A, Math., 16 (1995), 35-98.
- Y. Gnanambal, on generalized preregular closed sets in topological spaces, Indian J. Pure. Appl. Math., 28 (3)(1997),351-360.

International Journal of Mathematics Trends and Technology – Volume 6 – February 2014

- [10] N. Levine, generalized closed sets in topology, Rend. Circ. Math. Palermo, 19 (2) (1970), 89-96.
- [11] N. Levine, semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36-41.
- [12] H. Maki, R. Devi and K. Balachandran, Associated topologies of generalized α *closed* sets and α *generalized* closed sets, Mem. Fac. Sci. Kochi Univ. Ser. A, Math., 15 (1994), 51-63.
- [13] H. Maki, J. Umehara and T. Noiri, Every topological spaces is pre-T_{1/2}, Mem. Fac. Sci. Kochi.
 Univ. Ser. A, Math., 17 (1996), 33-42.
- [14] A.S. Mashhour, M.E. Abd EI-Monsef and S.N.EI-Deeb, on pre-continuous and weak precontinuous mappings proc.Math. and Phys.Soc.Egypt,53(1982),47-53.
- [15] O. Njastad, on some classes of nearly open sets, pacific J.Math., 15(1965), 961-970.
- [16] N. Nagaveni, studies on generalizations of homeomorphisms in topological spaces, Ph.D, thesis, Bharathiar University, Coimbatore, 1999.
- [17] N. Palaniappan and K.C. Rao, Regular generalized closed sets, Kyungpook Math. J., 33(2)(1993),211-219.
- [18] M.K.R.S. Veerakumar, Between closed sets and g-closed sets, Mem. Fac. Sci. Kochi. Univ. Ser.A, Math., 17 (1996), 33-42.
- [19] M.K.R.S. Veerakumar, \hat{g} *closed* sets and GIC-functions, Indian J.Math., 43 (2) (2001) 231-247.