(*gsp*)*-Closed Sets In Topological Spaces

Pauline Mary Helen M, Associate Professor,Nirmala College, Coimbatore. Kulandhai Therese . A, PG student,Nirmala College,Coimbatore.

ABSTRACT

In this paper we have introduced a new class of sets called $(gsp)^*$ -closed sets which is properly placed in between the class of closed sets and gsp-closed sets. As an application, we introduce two news paces namely, T^*_{gsp} -space, gT^*_{gsp} -space.Further, $(gsp)^*$ -continuous, and $(gsp)^*$ - irresolute mappings are also introduced and investigated.

Keywords: $(gsp)^*$ -closed set, $(gsp)^*$ -continuous map, $(gsp)^*$ -irresolute map, T^*_{gsp} , gT^*_{gsp} -spaces.

1. Introduction

Levine [10] introduced the class of g -closed sets in 1970. Maki.et.al [12] defined αg -closed sets in 1994. Arya and Tour [3] defined gs -closed sets in 1990. Dontchev [8], Gnanambal [9] Palaniappan and Rao[17] introduced gsp-closed sets, gpr -closed sets and rg -closed sets respectively. Veerakumar [18] introduced g^* -closed sets in 1991.J.Dontchev [8] introduced gsp-closed sets in 1995. Levine [10] Devi.et.al.[5,6] introduced $T_{1/2}$ - spaces, T_b spaces and αT_b spaces respectively. Veerakumar [18] introduced $T_{1/2}$ *-spaces. The purpose of this paper is to introduce the concepts of $(gsp)^*$ -closed sets, $(gsp)^*$ -continuous map, $(gsp)^*$ -irresolute maps. T^*_{gsp} -space, gT^*_{gsp} -space are introduced and investigated.

2. Preliminaries

Throughout this paper $(X,\tau),(Y,\sigma)$ represent non-empty topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a space $(X,\tau),cl(A)$ and int(A) denote the closure and the interior of A respectively.

The class of all closed subsets of a space (X,τ) is denoted by $C(X,\tau)$. The smallest semi-closed (resp.pre-closed and α -closed) set containing a subset A of (X,τ) is called the semi-closure (resp.pre-closure and α -closure) of A and is denoted by scl(A)(resp.pcl(A) and α cl(A))

Definition 2.1 A subset A of topological space (X,τ) is called

- (1) a pre-open set[14] if $A \subseteq int(cl(A))$ and a pre-closed set if $cl(int(A)) \subseteq A$
- (2) a semi-open set [11] if $A \subseteq cl(int(A))$ and a semi-closed set if $int(cl(A)) \subseteq A$
- (3) a semi-preopen set[1] if $A \subseteq cl(int(cl(A)))$ and a semi-preclosed set[1] if $int(cl(int(A))) \subseteq A$
- (4) an α -open set [15] if $A \subseteq int(cl(int(A)))$ and an α -closed set [15] if $cl(int(cl(A))) \subseteq A$
- (5) a *regular-open* set [14] if int(cl(A)) = A and an *regular-closed* set [14] if A= int(cl(A))

Definition 2.2: A subset A of topological space (X,τ) is called

- a generalized closed set (briefly g-closed) [10] if cl(A) ⊆ U whenever A ⊆ U and U is open in (X,τ)
- (2) generalized semi-closed set(briefly) gs-closed [3] if scl(A) ⊆ U whenever A ⊆ U and U is open in (X,τ).
- (3) an α- generalized closed set (briefly αg-closed) [12] if α cl(A) ⊆ U whenever A ⊆ U and U is open in (X,τ)
- (4) a generalized semi pre-closed set (briefly gsp-closed) [8] if sp $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ)
- (5) a regular generalized closed set (briefly rg-closed) [17] if cl(A) ⊆ U whenever A ⊆ U and U is regular open in (X,τ)
- (6) a generalized pre-closed set (briefly gp-closed) [13] if p cl(A) ⊆ U whenever A ⊆ U and U is open in (X,τ)
- (7) a generalized pre regular-closed set (briefly gpr-closed) [9] if $p cl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in (X, τ)
- (8) a g^* -closed set [18] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in (X,τ)
- (9) a wg-closed set [16] if $cl(int(A)) \subseteq U$ whenever $A \subseteq U$ and U is open in (X,τ)

Definition 2.3:A function $f: (X,\tau) \rightarrow (Y,\sigma)$ is called

- (1) g-continuous [4] if $f^{-1}(V)$ is a g-closed set of (X,τ) for every closed set V of (Y,σ)
- (2) α g-continuous[9] if $f^{-1}(V)$ is an α g-closed set of (X,τ) for every closed set V of (Y,σ)

International Journal of Mathematics Trends and Technology – Volume 6 – February 2014

- (3) gs-continuous [7] if $f^{-1}(V)$ is a gs-closed set of (X,τ) for every closed set V of (Y,σ)
- (4) gsp-continuous [8] if $f^{-1}(V)$ is a gsp-closed set of (X,τ) for every closed set V of (Y,σ)
- (5) rg-continuous [17] if $f^{-1}(V)$ is a rg-closed set of (X,τ) for every closed set V of (Y,σ)
- (6) gp-continuous [2] if $f^{-1}(V)$ is a gp-closed set of (X,τ) for every closed set V of (Y,σ)
- (7) gpr-continuous [9] if $f^{-1}(V)$ is a gpr-closed set of (X,τ) for every closed set V of (Y,σ)
- (8) g^* -continuous [18] if $f^{-1}(V)$ is a g^* -closed set of (X,τ) for every closed set V of (Y,σ)
- (9) wg-continuous [16] if $f^{-1}(V)$ is a wg-closed set of (X,τ) for every closed set V of (Y,σ) .

Definition: 2.4: A topological space (X,τ) is said to be

- (1) a $T_{1/2}$ space [10] if every g-closed set in it is closed.
- (2) a T_b space [6] if every gs-closed set in it is closed.
- (3) a αT_b space [5] if every α g-closed set in it is closed.
- (4) a $T_{1/2}^*$ [18] space if every g^* -closed set in it is closed.

3.BASIC PROPERTIES OF $(gsp)^*$ - CLOSED SETS

We introduce the following definitions

Definition 3.1: A subset A of (X,τ) is said to be a $(gsp)^*$ - closed set if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is gsp-open in X.

Proposition 3.2: Every closed set is $(gsp)^*$ -closed.

Proof follows from the definition.

Proposition 3 .3: Every $(gsp)^*$ - closed set is g-closed.

Proof: Let A be a $(gsp)^*$ - closed set. Let $A \subseteq U$ and U be open. Then $A \subseteq U$ and U is gsp-open and $cl(A) \subseteq U$ since A is $(gsp)^*$ -closed. \therefore A is g-closed.

The converse of the above proposition need not be true in general as seen in the following example.

Example 3.4: Let $X = \{a, b, c\}, \tau = \{\varphi, X, \{a\}, \{a, b\}\}$. Then $A = \{a, c\}$ is g-closed but not $(gsp)^*$ -closed in (X,τ) .

Proposition 3.5: Every $(gsp)^*$ -closed set is gs-closed.

Proof: Let A be a $(gsp)^*$ - closed set.Let $A \subseteq U$ and U be open. Then $cl(A) \subseteq U$ since U is gsp-open and A is $(gsp)^*$ -closed. $scl(A) \subseteq cl(A) \subseteq U$.Hence A is gs-closed.

The converse of the above proposition need not be true in general as seen in the following example.

Example 3.6: Let X= {a, b, c}, $\tau = \{\varphi, X, \{a\}, \{a, b\}\}$. Then A={b} is gs-closed but not $(gsp)^*$ -closed in(X, τ).

Proposition 3.7: Every $(gsp)^*$ -closed set is α g-closed, but not conversely.

Proof: Let A be a gsp^* - closed set. $cl(A) \subseteq U$ since U is gsp-open and A is $(gsp)^*$ -closed.But

 $\alpha cl(A) \subseteq cl(A) \subseteq U$ Hence A is α g-closed.

Example 3.8: Let X= {a, b, c}, $\tau = {\varphi, X, \{a\}, \{a, b\}}$. Then A={b} is α g-closed but not $(gsp)^*$ -closed in(X, τ).

Proposition3.9: Every $(gsp)^*$ -closed set is gsp-closed but not conversely.

Proof: Let A be a $(gsp)^*$ -closed set. Let $A \subseteq U$ and U be open. $cl(A) \subseteq U$ since U is gsp-open and A is $(gsp)^*$ -closed. sp $cl(A) \subseteq cl(A) \subseteq U$ \therefore A is gsp-closed.

Example 3.10: Let X= {a, b, c}, $\tau = \{\varphi, X, \{a\}, \{a, b\}\}$. Then A={b} is gsp-closed but not $(gsp)^*$ -closed in(X, τ).

Proposition 3.11: Every $(gsp)^*$ -closed set is rg-closed.

The converse of the above proposition is not true.

Example 3.12: Let X= {a, b, c}, $\tau = \{\varphi, X, \{b\}, \{a, b\}\}$. Then A={a} is rg-closed but not $(gsp)^*$ -closed in(X, τ).

Proposition 3.13: Every $(gsp)^*$ -closed set is gp-closed but not conversely.

Example 3.14: Let X= {a, b, c}, $\tau = {\varphi, X, {a}, {a, b}}$. Then A={b} is gp-closed but not $(gsp)^*$ -closed in(X, τ).

International Journal of Mathematics Trends and Technology – Volume 6 – February 2014

Proposition 3.15: Every $(gsp)^*$ -closed set is gpr-closed.

The converse of the above proposition need not be true in general as seen in the following example.

Example 3.16: Let X= {a, b, c}, $\tau = \{\varphi, X, \{a\}, \{a, b\}\}$. Then A={a} is gpr-closed but not $(gsp)^*$ -closed in(X, τ).

Proposition 3.17: Every $(gsp)^*$ -closed set is g^* -closed.

Proof: Let A be a $(gsp)^*$ -closed set. Let $A \subseteq U$ and U be g-open. Then U is gsp-open.

and $cl(A) \subseteq U$ since A is $(gsp)^*$ -closed. Hence A is g^* -closed.

The converse of the above proposition need not be true in general as seen in the following example.

Example 3.18: Let X= {a, b, c}, $\tau = \{\varphi, X, \{a\}, \{a, b\}\}$. Then A={a,c} is g^* -closed but not $(gsp)^*$ -closed in(X, τ).

Proposition 3.19: Every $(gsp)^*$ -closed set is wg-closed but not conversely.

Proof: Let A be a $(gsp)^*$ -closed set.Let $A \subseteq U$ and U be open.Then U is gsp-open and $cl(A) \subseteq U$ since A is $(gsp)^*$ -closed. $cl(int(A)) \subseteq cl(A) \subseteq U$ \therefore A is wg-closed.

Example 3.20: Let X= {a, b, c}, $\tau = \{\varphi, X, \{a\}, \{a, b\}\}$. Then A={b} is wg-closed but not $(gsp)^*$ -closed in(X, τ).

Proposition 3.21: If A and B are $(gsp)^*$ -closed sets then AUB is also $(gsp)^*$ -closed.

Proof: follows from the fact that $cl(A \cup B) = cl(A) \cup cl(B)$

Proposition 3.22: If A is $(gsp)^*$ -closed set of (X,τ) such that $A \subseteq B \subseteq cl(A)$, then B is also a

 $(gsp)^*$ -closed set of (X,τ) .

Proof: Let U be a gsp-open set of (X,τ) such that $B \subseteq U$. Then $A \subseteq U$ where U is gsp-open.

Since A is $(gsp)^*$ -closed, $cl(A) \subseteq U$. Then $cl(B) \subseteq U$ Hence B is $(gsp)^*$ -closed.

Proposition 3.23: If A is a $(gsp)^*$ -closed set of (X,τ) , then $cl(A)\setminus A$ does not contain any non-empty gsp-closed set.

Proof: Let F be a gsp-closed set of (X,τ) such that $F \subseteq cl(A) \setminus A$. Then $A \subseteq X \setminus F$. Since A is

gsp- closed cl(A) $\subseteq X \setminus F$. This implies $F \subseteq X \setminus cl(A)$

Hence $F \subseteq (A \setminus cl(A)) \cap (cl(A) \setminus A) = \phi$

 \therefore F= φ . \therefore cl(A)\A does not contain any non-empty gsp-closed set.

Proposition 3.24: If A is both gsp-open and $(gsp)^*$ -closed then A is closed.

The above results can be represented in the following figure.

where $A \rightarrow B$ represents A implies B and B need not imply A.

4. $(gsp)^*$ -continuous and $(gsp)^*$ -irresolute maps.

We introduce the following definitions:

Definition 4.1: A function $f: (X, \tau) \to (Y, \sigma)$ is called $(gsp)^*$ -continuous if $f^{-1}(V)$ is a

 $(gsp)^*$ -closed set in (X,τ) for every closed set V of (Y,σ)

Definition 4.2: A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is called $(gsp)^*$ irresolute if $f^{-1}(V)$ is a

 $(gsp)^*$ -closed set in (X,τ) for every $(gsp)^*$ closed set V of (Y,σ)

Theorem 4.3: Every continuous map is $(gsp)^*$ -continuous

Proof: Let $f: (X,\tau) \to (Y,\sigma)$ be a continuous map. Let F be a closed set in (Y,σ) Since f is continuous $f^{-1}(F)$ is closed in (X,τ) and hence $f^{-1}(F)$ is $(gsp)^*$ closed. Therefore f is $(gsp)^*$ -continuous.

Theorem 4.4: Every $(gsp)^*$ -continuous map is (1) g-continuous (2) gs-continuous (3) α g-continuous (4) gsp-continuous (5) rg-continuous (6) gp-continuous (7) gpr-continuous (8) g^* -continuous and (9) wg-continuous but not conversely.

Proof: Let $f: (X,\tau) \to (Y,\sigma)$ be $(gsp)^*$ -continuous and let F be a closed set of (Y,σ) . Since f is $(gsp)^*$ -continuous $f^{-1}(F)$ is $(gsp)^*$ -closed in (X,τ) Then $f^{-1}(F)$ is g-closed, gs-closed, ag-closed, gs-closed, gp-closed, gp-closed, gp-closed, and wg-closed. Hence f is g-continuous, gs-continuous, α g-continuous, gs-continuous, gp-continuous, gp-contin

Example 4.5: Let $X = \{a, b, c\} = Y.\tau = \{\varphi, X, \{a\}, \{a,b\}\}, \sigma = \{\varphi, Y, \{b\}\}$. Let $f: (X,\tau) \to (Y,\sigma)$ be the identity map. The closed sets of Y are φ, Y and $\{a, c\}, f^{-1}\{a, c\} = \{a, c\}$ is not $(gsp)^*$ -closed in (X,τ) . Hence f is not $(gsp)^*$ -continuous . $f^{-1}\{a, c\} = \{a, c\}$ is g-closed , α g-closed, gp-closed and g^* -closed. Hence f is g-continuous, α g-continuous, gp-continuous, and g^* -continuous.

Example 4.6: Let $X = \{a, b, c\} = Y.\tau = \{\varphi, X, \{a\}, \{a,b\}\}, \sigma = \{\varphi, Y, \{a, c\}\}$ Let $f: (X,\tau) \to (Y,\sigma)$ be the identity map .The closed sets of Y are $\varphi, Y \{b\}$. $f^{-1}\{b\} = \{b\}$ is not $(gsp)^*$ -closed in (X,τ) .Therefore f is not $(gsp)^*$ -continuous .(1) $f^{-1}\{b\} = \{b\}$ is gs-closed and hence f is gs-continuous.(2) $f^{-1}\{b\} = \{b\}$ is gsp-closed and hence f is gsp-continuous.

Example 4.7: Let $X = \{a, b, c\} = Y.\tau = \{\varphi, X, \{b\}, \{a, b\}\}, \sigma = \{\varphi, Y, \{a\}\}$ Let $f: (X, \tau) \to (Y, \sigma)$ be the identity map .The closed sets of Y are φ , Y and $\{b, c\}$. $f^{-1}\{b, c\} = \{b, c\}$ is rg-closed but not $(gsp)^*$ -closed and hence f is rg-continuous but not $(gsp)^*$ -continuous.

Example 4.8: let X= {a,b, c}=Y, $\tau = \{\varphi, X, \{a\}, \{a,b\}\}, \sigma = \{\varphi, Y, \{a\}\}, \text{Let } f: (X,\tau) \to (Y,\sigma)$ be defined as f(a) = c, f(b) = a, f(c) = b. $f^{-1}\{b, c\} = \{a,c\}$ is gpr-closed in (X,τ) , but not $(gsp)^*$ -closed in (X,τ) . \therefore f is gpr- continuous but not $(gsp)^*$ continuous.

Example 4.9: let X= {a, b, c}=Y, $\tau = \{\varphi, X, \{a\}, \{a,b\}\}, \sigma = \{\varphi, Y, \{c\}\}, \text{Let } f: (X,\tau) \to (Y,\sigma)$ be defined as $f(a) = a, f(b) = c, f(c) = b, f^{-1}\{a, b\} = \{a, c\}$ is wg-closed in (X,τ) , but not $(gsp)^*$ -closed in (X,τ) . Hence f is wg- continuous but not $(gsp)^*$ continuous.

Theorem 4.10: Every $(gsp)^*$ -irresolute is $(gsp)^*$ continuous.

Proof: Let $f: (X,\tau) \to (Y,\sigma)$ be a $(gsp)^*$ -irresolute. Let V be a closed set of (Y,σ) . Then V is $(gsp)^*$ -closed and $f^{-1}(V)$ is $(gsp)^*$ -closed since f is a $(gsp)^*$ -irresolute. Hence f is $(gsp)^*$ - continuous.

Theorem 4.11: Let $f: (X,\tau) \to (Y,\sigma)$ be a $(gsp)^*$ - irresolute then f is $1.\alpha g$ - continuous 2.gs- continuous 3.g- continuous 4.gp- continuous 5.rg- continuous 6. g^* - continuous 7.wg- continuous 8.gpr- continuous but not conversely.

Proof: Since every $(gsp)^*$ - irresolute is $(gsp)^*$ continuous, f is $(gsp)^*$ continuous. Then by theorem 4.4 the result follows.

Example 4.12: Let X= {a, b, c} = Y; $\tau = {\varphi, X, \{a\}, \{a,b\}, \sigma = {\varphi, Y, \{a,b\}}.$ Let $f: (X, \tau) \to (Y, \sigma)$ be the identity map. $f^{-1}{c} = {c}$ is α g-closed and hence f is α g-continuous. $(gsp)^*$ -closed sets of (Y, σ) are $\varphi, Y \{c\}, \{a, c\}$ and $\{b, c\}. f^{-1}{a, c} = {a, c}$ is not $(gsp)^*$ -closed in (X, τ) . Hence f is not a $(gsp)^*$ - irresolute.

Example 4.13: Let X = {a, b, c} = Y, τ ={ φ ,X,{a},{a,b}}, σ = { φ ,Y,{a,b}}.Let f: (X, τ) \rightarrow (Y, σ) be defined by f(a) = a, f(b) = c, f(c) = b. $f^{-1}{c}={b}$ is gs-closed in (X, τ) and hence f is gs-continuous. $(gsp)^*$ -closed sets of (Y, σ) are φ ,Y {c},{a, c} and {b, c}. $f^{-1}{c} = {b}$ is not $(gsp)^*$ -closed in (X, τ).Hence f is not a $(gsp)^*$ -irresolute.

Example 4.14:Let X={a, b, c} = Y, τ ={ φ ,X,{a},{a,b}}, σ = { φ ,Y,{a,b}}.Let $f: (X,\tau) \rightarrow (Y,\sigma)$ be defined by f(a) = c, f(b) = a, f(c) = c. $f^{-1}{c}={a,c}$ is g-closed in (X,τ) and hence f is g-continuous. $(gsp)^*$ -closed sets of (Y,σ) are φ ,Y {c},{a, c} and {b, c}. $f^{-1}{c}={a,c}$ is not $(gsp)^*$ -closed in (X,τ) .Hence f is not a $(gsp)^*$ -irresolute.

Example 4.15: Let X={a, b, c} = Y, τ ={ φ ,X,{a},{a,b}}, σ = { φ ,Y,{a,b}}.Let $f: (X,\tau) \rightarrow (Y,\sigma)$ be defined by f(a) = a, f(b) = c, f(c) = b. $f^{-1}{c}={b}$ is gp-closed in (X,τ) ... f is gp-continuous. $(gsp)^*$ -closed sets of (Y,σ) are φ ,Y {c},{a, c} and {b, c}. $f^{-1}{c}={b}$ is not $(gsp)^*$ -closed in (X,τ) . Hence f is not a $(gsp)^*$ -irresolute.

Example 4.16: Let $X = \{a, b, c\} = Y, \tau = \{\varphi, X, \{b\}, \{a, b\}\}, \sigma = \{\varphi, Y, \{a, b\}\}$. Let $f: (X, \tau) \to (Y, \sigma)$ be defined by f(a) = b, f(b) = c, f(c) = a. $f^{-1}\{c\} = \{b\}$ is rg-closed in (X, τ) ... f is rg-continuous. $(gsp)^*$ -closed sets of (Y, σ) are $\varphi, Y \{c\}, \{a, c\}$ and $\{b, c\}, f^{-1}\{c\} = \{b\}$ is not $(gsp)^*$ -closed in (X, τ) . Hence f is not a $(gsp)^*$ -irresolute.

International Journal of Mathematics Trends and Technology – Volume 6 – February 2014

Example 4.17: Let X={a, b, c} = Y, τ ={ φ ,X,{a},{a,b}}, σ = { φ ,Y,{a,b}}.Let $f: (X,\tau) \rightarrow (Y,\sigma)$ be defined by f(a) = c, f(b) = a, f(c) = c. $f^{-1}{c}={a,c}$ is g^* -closed in (X,τ) ... f is g^* -continuous. $(gsp)^*$ -closed sets of (Y,σ) are φ ,Y {c},{a, c} and {b, c}. $f^{-1}{c}={a,c}$ is not $(gsp)^*$ -closed in (X,τ) . Hence f is not a $(gsp)^*$ -irresolute.

Example 4.18: Let X={a, b, c} = Y, τ ={ φ ,X,{a},{a,b}}, σ = { φ ,Y,{a,b}}.Let $f: (X,\tau) \rightarrow (Y,\sigma)$ be defined by $f(a) = a, f(b) = c, f(c) = b. f^{-1}{c} = {b}$ is wg-closed in $(X,\tau)...f$ is wg-continuous. $(gsp)^*$ -closed sets of (Y,σ) are φ ,Y {c},{a, c} and {b, c}. $f^{-1}{c} = {b}$ is not $(gsp)^*$ -closed in $(X,\tau)...f$ is wg-closed in (X,τ) .Hence f is not a $(gsp)^*$ -irresolute.

Example 4.19: Let X={a, b, c} = Y, τ ={ φ ,X,{a},{a, b}}, σ = { φ ,Y,{a,b}}.Let $f: (X,\tau) \rightarrow (Y,\sigma)$ be defined by f(a) = b, f(b) = c, f(c) = a. $f^{-1}{c} = {b}$ is gpr-closed in (X,τ) ... f is gpr-continuous. $(gsp)^*$ -closed sets of (Y,σ) are φ , Y {c},{a, c} and {b, c}. $f^{-1}{c} = {b}$ is not $(gsp)^*$ -closed in (X,τ) . Hence f is not a $(gsp)^*$ -irresolute.

The above results can be represented in the following figure.

where $A \rightarrow B$ represents A implies B and B need not imply A.

5. Applications of $(gsp)^*$ -closed sets

Definition 5.1: A space (X,τ) is called a T^*_{gsp} - space if every $(gsp)^*$ -closed set is closed.

Definition 5.2: A space (X,τ) is called a gT^*_{gsp} - space if every g-closed set is $(gsp)^*$ closed.

Theorem 5.3: Every $T_{1/2}$ -space is T^*_{gsp} -space

Proof: Let (X, τ) be a $T_{1/2}$ - space. Let A be a $(gsp)^*$ -closed set. Since every $(gsp)^*$ -closed set is g-closed, A is g-closed. Since (X,τ) is a $T_{1/2}$ -space, A is closed. Hence (X,τ) is a T_{gsp}^* -space

The converse of the above proposition need not be true in general as seen in the following example.

Example 5.4: Let X = {a, b, c} and $\tau = \{\varphi, X, \{a\}, \{a,b\}\}.(X,\tau)$ is a T^*_{gsp} -space since all the $(gsp)^*$ -closed sets of (X,τ) are closed. A= {a,c} is g-closed but it is not closed and hence it is not a $T_{1/2}^-$ space.Hence a T^*_{gsp} -space need not be a $T_{1/2}^-$ space.

Theorem 5.5: Every αT_b -space is T_{gsp}^* - space but not conversely.

Proof: Let (X, τ) be a αT_b - space. Let A be a $(gsp)^*$ -closed set. Every $(gsp)^*$ -closed set is α g-closed and hence A is α g-closed. Since (X, τ) is a αT_b -space, A is closed. Hence (X, τ) is a T_{gsp}^* - space.

Example 5.6: Let X = {a, b, c} and $\tau = \{\varphi, X, \{a\}, \{a,b\}\}.(X,\tau)$ is a T^*_{gsp} -space since all the $(gsp)^*$ -closed sets of (X,τ) are closed. A= {b} is α g-closed, but it is not closed and hence it is not a αT_b - space. Hence a T^*_{gsp} - space need not be a αT_b - space.

Theorem 5.7: Every $T_{1/2}^*$ -space is a T_{gsp}^* - space.

The converse is not true as seen in the following example.

Example 5.8: Let X = {a, b, c} and $\tau = \{\varphi, X, \{a\}, \{a,b\}\}.(X,\tau)$ is a T^*_{gsp} -space. A= {a, c} is g^* -closed, but it is not closed and hence it is not a $T^*_{1/2}$ - space. Hence a T^*_{gsp} - space need not be a $T^*_{1/2}$ - space.

Theorem 5.9: Every T_b -space is T^*_{gsp} - space but not conversely.

Example 5.10: Let X = {a, b, c} and $\tau = \{\varphi, X, \{a\}, \{a,b\}\}$.(X, τ) is a T^*_{gsp} -space A= {b} is gs-closed, but it is not closed, and hence it is not a T_b - space.Hence a T^*_{gsp} - space need not be a T_b - space.

REFERENCES:

- [1] D. Andrijevic, semi- preopen sets, Mat. Vesnik, 38(1)(1986),24-32.
- [2] I. Arokiarani, K. Balachandran and J. Dontchev, some characterizations of gp-irresolute and gp-continuous maps between topological spaces, Mem. Fac. Sci. Kochi. Univ. Ser. A. Math., 20 (1999), 93-104.
- [3] S.P. Arya and T. Nour, Characterization of s-normal spaces, Indian J.Pure.Appl.Math.,21 (1990),717-719.
- [4] K. Balachandran, P. Sundaram and H. Maki, On generalized continuous maps in topological spaces, Mem. Fac. Kochi. Univ. Ser.A.Math., 12 (1991), 5-13.
- [5] R. Devi, K. Balachandran and H. Maki, generalized α *closed* maps and α *generalized* closed maps, Indian J.Pure.Appl.Math.,29(1)(1998),37-49.
- [6] R. Devi, H. Maki and K. Balachandran, Semi-generalized closed maps and generalized closed maps, Mem.Fac.Sci.Kochi.Univ.Ser.A.Math.,14(1993),41-54.
- [7] R. Devi , H. Maki and K. Balachandran, Semi-generalized homeomorphisms and generalized semi-homeomorphisms in topological spaces, Indian J.Pure.Appl.Math.,26(3)(1995),271-284.
- [8] J. Dontchev, on generalizing semi-preopen sets, Mem. Fac. Sci. Kochi. Ser. A, Math., 16 (1995), 35-48.
- [9] Y. Gnanambal, on generalized preregular closed sets in topological spaces, Indian J. Pure. Appl. Math., 28 (3)(1997),351-360.
- [10] N. Levine, generalized closed sets in topology, Rend. Circ. Math. Palermo, 19 (2) (1970), 89-96.
- [11] N. Levine, semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36-41.
- [12] H. Maki, R. Devi and K. Balachandran, Associated topologies of generalized α -closed sets and α -generalized closed sets, Mem. Fac. Sci. Kochi Univ. Ser. A, Math., 15 (1994), 51-63.

- [13] H. Maki, J. Umehara and T. Noiri, Every topological spaces is pre- $T_{1/2}$, Mem. Fac. Sci. Kochi. Univ. Ser. A, Math., 17 (1996), 33-42.
- [14] A.S. Mashhour, M.E. Abd EI-Monsef and S.N.EI-Deeb, on pre-continuous and weak pre-continuous mappings proc.Math. and Phys.Soc.Egypt,53(1982),47-53.
- [15] O. Njastad, on some classes of nearly open sets, pacific J.Math., 15(1965), 961-970.
- [16] N. Nagaveni, studies on generalizations of homeomorphisms in topological spaces, Ph.D, thesis, Bharathiar University, Coimbatore, 1999.
- [17] N. Palaniappan and K.C. Rao, Regular generalized closed sets, Kyungpook Math.J.,33(2)(1993),211-219.
- [18] M.K.R.S. Veerakumar, Between closed sets and g-closed sets, Mem. Fac. Sci. Kochi. Univ. Ser.A, Math., 17 (1996), 33-42.