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Abstract: In this paper, we have introduced a new class of sets called (g*p)*-closed sets which is properly 

placed in between the class of closed sets and the class of g-closed sets. As an application, we introduce two 

new spaces namely, gTp and gTp* spaces. We have also introduced (g*p)*-continuous and (g*p)*-irresolute 

maps and their properties are investigated.  
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1   INTRODUCTION 

Levine [9]introduced the class of g-closed sets in 1970.Maki.et.al[11]defined g -closed sets and  

g  -closed sets in 1994..Arya and Tour[3] defined gs -closed sets in 1990.Dontchev[7], Gnanambal[8] and 

Palaniappan and Roa[16]introduced gsp -closed sets gpr-closed sets and rg-closed sets respectively. 

Veerakumar[17]  introduced and studied the concepts of g*-preclosed sets and  

g*-precontinuity in topological spaces in 1991. 

The purpose of the paper is to introduce the concept of (g*p)*-closed sets, pgT spaces and pgT * spaces. 

Further we have introduced (g*p)*-continuous and (g*p)*-irresolute maps.  

2. PRELIMINARIES 

Throughout this paper ),( X and ),( Y represents non-empty topological spaces on which no separation 

axioms are assumed unless otherwise mentioned. For a subset A of a ),( X space, cl(A) and int(A) denote 

the closure and the interior of A respectively. 

The class of all closed subsets of a space of a space ),( X  is denoted by C ),( X  . 

 Definition 2.1:  A subset A of a topological space  ,X  is called 

 (1) openpre  [13] if   AclA int and a closedpre  set if    .int AAcl   

 (2) opensemi   [10] if    AclA int   and a  closedsemi    if    AAcl int . 
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 (3) openpresemi   [1] if    AclclA int and a  closedpresemi   if       AAcl intint . 

 (4) open  [14] if    AclA intint and closed  if     AAclcl int . 

 (5) openregular  [18] if  ))(int( AclA   

Definition 2.2:  A subset A of a topological space  ,X  is called  

(1) closeddgeneralize  (briefly closedg  ) [9] if   UAcl   whenever  UA   and  U  is open in

 ,X .  

(2) dgeneralizeregular  closed (briefly rg-closed) [15] if   UAcl   whenever  UA   and  U  is regular 

open in  ,X .  

(3) closedsemidgeneralize   (briefly closedgs  ) [3] if   UAscl   whenever  UA   and  U  is 

open in  ,X . 

(4) closeddgeneralize  (briefly  closedg  ) [11] if   UAcl   whenever  UA   and  U  is 

open in  ,X .  

 (5) closedwg   [17] if    UAcl int  whenever  UA   and  U  is open in  ,X .  

(6) closedpreregulardgeneralize   (briefly gpr-closed) [8] if UApcl )(  whenever  UA   and  U  is 

regular open in  ,X . 

(7) closedpresemidgeneralize   (briefly closedgsp  ) [7] if   UAspcl   whenever   and  

U  is open in  ,X . 

(8) precloseddgeneralize  (briefly  closedgp  ) [12] if   UApcl   whenever  UA   and  U  is 

open in  ,X . 

(9) closedpreg *  (briefly pg * -closed)[16] if   UApcl   whenever  UA   and  U  is    

g - open in  ,X  

Definition 2.3: A function     ,,: YXf   is called  

 (1) continuousg  [4] if   Vf 1   is a g  closed set of  ,X  for  every closed set V of  ,Y . 

UA 
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 (2) continuousg  [8] if   Vf 1   is an g  closed set of  ,X  for  every closed set V of  ,Y  

 (3) continuousgs  [6] if   Vf 1   is a gs  closed set of  ,X  for every closed set V of  ,Y . 

 (4) continuousrg  [15] if   Vf 1   is a rg  closed set of  ,X  for every closed set V of  ,Y  

 (5) continuousgp  [2] if   Vf 1   is a gp  closed set of  ,X  for every closed set V of  ,Y  

(6) continuouswg   [17] if   Vf 1   is a wg  closed set of  ,X  for every closed set V of  ,Y . 

 (7) continuousgsp  [7] if   Vf 1   is a gsp  closed set of  ,X  for every closed set V of  ,Y . 

(8) continuousgpr   [8] if   Vf 1   is a gpr  closed set of  ,X  for every closed set V of  ,Y . 

Definition: 2.4:  A topological space  ,X  is said to be 

(1)   a spaceT
2

1
 
[9]  if every g closed set in it is closed. 

(2)  a spaceTb  [5] if every  gs closed set in it is closed 

 (3)  a spaceTb   [4] if every  g closed set in it is  closed. 

3. BASIC PROPERTIES OF (g*p)*-CLOSED SETS  

We now introduce the following definition. 

Definition 3.1: A subset A of a topological space  ,X  is called a (g*p)*-closed set, if     UAcl  . 

whenever  UA   and U   is  openpg *  . 

Proposition   3.2: Every closed set is (g*p)*-closed. 

Proof follows from the definitions. 

Proposition 3.3: Every (g*p)*-closed set is (1)  g -closed (2) g  -closed (3) gs -closed  

(4) gp -closed (5) wg -closed (6) gsp -closed(7) rg -closed and (8) gpr -closed but not conversely.  

Proof: Let A  be a (g*p)*-closed set. Let UA  and  U  be open .Then U  is pg * –open.  

Since A  is (g*p)*-closed, 

(1) Ucl  and hence A  is g –closed. 
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(2)      UAclAcl  and hence A  is g –closed. 

(3)      UAclAscl  and hence A  is gs –closed. 

(4)      UAclApcl  and hence A  is gp –closed. 

(5)  Ucl  and which implies     UAclAcl int  hence A  is wg –closed. 

(6) UAcl )(  and hence   UAspcl  therefore A  is gsp–closed. 

Proof for 7 & 8 

(7) UAcl )( and hence A  is rg –closed. 

(8)      UAclApcl  and hence A  is gpr –closed. 

Example 3.4:  Let  cbaX ,,   and    aX ,,   and let  baA , . Then A  is g –closed, 

g -closed, gs-closed, rg-closed, gp-closed, wg-closed,gsp-closed, gpr-closed but it is not (g*p)*- closed. 

Proposition 3.5: If A  and B  are (g*p)*- closed sets, then BA   is also a (g*p)*- closed set. 

Proof follows from the fact that      BclAclBAcl  . 

Proposition 3.6: If A  is both pg *  –open and (g*p)*- closed, then A  is closed. 

Proof follows from the definition of (g*p)*- closed sets. 

Proposition 3.7: If  A  is (g*p)* closed set of  ,X , such that  AclBA  , then  B  is also a (g*p)*- 

closed set of  ,X . 

Proof: Let U  be a pg * open   set of  ,X  , such that  UB  .Then UA  where U is  

g*p–open.      

Since  A   is (g*p)*- closed,   UAcl  .Then   UBcl  .Hence B is (g*p)*- closed. 

The above results can be represented in the following figure. 
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Where A               B     represents A implies B  and B need not imply A 

 4. (g*p)*-CONTINUOUS MAPS AND (g*p)*-IRRESOLUTE MAPS 

We introduce the following definitions. 

Definition: 4.1: A map  is called - continuous if the inverse image of every 

closed set in  is - closed in . 

Definition: 4.2: A map  is said to be a - irresolute map if  is a  ** pg

- closed set in  for every (g*p)*- closed set V of  ,Y . 

Theorem 4.3: Every   continuous map is (g*p)* - continuous. 

Proof: Let      ,,: YXf   be a continuous map and let F  be a closed set in  ,Y .Then   Ff 1  is 

closed in  ,X .Since every closed set is (g*p)*- closed,  Ff 1  is (g*p)*- closed. Then f is (g*p)*-

continuous. 

Theorem   4.4: Every (g*p)* -continuous map is  g  continuous, g –continuous, gs -continuous, rg-

continuous, gp -continuous, wg -continuous, gsp –continuous and gpr-continuous but not conversely. 

Proof: Let      ,,: YXf   be a  ** pg - continuous map. Let V  be a closed set in ,Y . Since  f  

is (g*p)* -continuous,  Vf 1   is (g*p)* closed in  ,X . Then  Vf 1  is g –closed, 

g  -closed, gs -closed ,rg-closed, gp -closed, wg -closed, gsp –closed and gpr-closed set of   ,X . 

    ,,: YXf   ** pg

),( Y  ** pg  ,X

    ,,: YXf   ** pg  Vf 1

 ,X

closed closedg   

closedg   

closedgs  

closedrg 
 closedgp  

closedgpr 
 

closedgsp
 

closedwg   

closedpg *)*(  
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Example 4.5: Let    cbaYX ,, ,   aX ,,   ,   cY ,,       ,,: YXf   be the identity 

map. Then     babaf ,,1   is not (g*p)* -closed in  ,X .But   ba,  is g  –closed set, g -closed set, 

gs-closed set. Then f is g -continuous, g - continuous, gs  - continuous but not (g*p)*-continuous. 

Example 4.6:  Let    cbaYX ,, ,   aX ,,   ,   cY ,,  .     ,,: YXf   is defined by 

acfcbfbaf  )(,)(,)( . Then     cabaf ,,1   is not (g*p)*- closed in  ,X .But ca,  is 

rg -closed. Hence f is rg - continuous but not (g*p)* -continuous. 

Example 4.7: Let    cbaYX ,, ,   aX ,,   ,   cY ,,  .     ,,: YXf   is defined as 

acfcbfbaf  )(,)(,)( . Then     cabaf ,,1   is gp -closed but not (g*p)*-closed. Then f is gp - 

continuous but not (g*p)*-continuous. 

Example 4.8: Let    cbaYX ,, ,   aX ,,   ,   cbY ,,,  .     ,,: YXf   is defined as 

bcfabfcaf  )(,)(,)( . Then     baf 1  is wg -closed but not (g*p)*-closed in  .,X  Hence f

is wg - continuous but not (g*p)* -continuous. 

Example 4.9:  Let  cbaYX ,, ,   ,,, aX  }}.,{},{,,{ baaY                    

    ,,: YXf   is defined as ccfabfbaf  )(,)(,)( .Then     cacbf ,,1   is not  

(g*p)*-closed in  ,X ,but it is gsp -closed .Hence f is gsp  - continuous but not (g*p)*-continuous. 

Example 4.10: Let    cbaYX ,, ,   aX ,,   ,   .},{},{,,, babaY                   

    ,,: YXf   be defined by ccfabfbaf  )(,)(,)( . Then     cacbf ,,1   is not  

(g*p)*-closed in  ,X , but it is gpr-closed .Hence f is gpr-continuous but not  (g*p)* -continuous. 

Theorem 4.11: Every (g*p)*- irresolute map is (g*p)* -continuous. 

Proof follows from the definition. 

Theorem 4.12: Every (g*p)* -irresolute map is g continuous, g - continuous, gs  -continuous,  

rg-continuous, gp - continuous, wg - continuous, gsp  - continuous and gpr-continuous 

Proof follows from theorems (4.4) and (4.11). 

The converse   of the above theorem need not be true in general as seen in the following examples. 
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Example 4.13: Let   cbaYX ,,      aX ,,    and     cacaY ,,,,,  .Let  

    ,,: YXf   be the identity map.      cbbabY ,,,,,,  are closed sets of Y. 

    babaf ,,1   ,     cbcbf ,,1 
  and }{}{1 bbf  are g-closed, gs-closed, rg-closed set,  

gp-closed, wg-closed, gsp-closed, gpr-closed. Hence f is g continuous, gs  -continuous,  

rg-continuous, gp - continuous, wg - continuous, gsp  - continuous and gpr-continuous.(g*p)*-closed sets of 

Y are         cbbabY ,,,,,, .     babaf ,,1   is not (g*p)*-closed in ),( X . Hence f is not a 

(g*p)*-irresolute.  

Example 4.14: Let   cbaYX ,,    }{,, aX    and     cacaY ,,,,,  .Let  

    ,,: YXf   be defined by bcfcbfaaf  )(,)(,)(  . Then     cbf 1 ,     cabaf ,,1   

and      cbcbf ,,1 
 are g -closed, and hence f  is g -continuous.  

(g*p)*-closed sets are      cbbabY ,,,,,, .     cabaf ,,1   is not (g*p)*-closed in ),( X . Hence 

f is g -continuous but not a (g*p)*-irresolute.  

The above results can be represented in the following figure. 

 

where  A               B   represents A implies B  and B need not imply A.  

Theorem 4.15: Let  and  be two functions. Then 

[1]  is (g*p)*-continuous if is continuous and  is (g*p)*-continuous. 

[2]  is (g*p)* -irresolute if both  and  are (g*p)* -irresolutes. 

    ,,: YXf      ,,: ZYg 

fg  g f

fg  f g

continuous  continuousg 
 

continuousg 

continuousgs 
 

continuousrg 
 

continuousgp

continuousgpr 

continuousgsp 
 

continuouswg 

continuouspg *)*(irresolutepg *)*(  
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[3]  is (g*p)*-continuous if  is (g*p)*-continuous and  is (g*p)*-irresolute.  

Proof [1]: Let  be (g*p)*-continuous and be continuous. Let be 

a closed set in .Since  is continuous,  is closed in . Since  is  

(g*p)*-continuous,  is (g*p)* -closed in . Hence  is (g*p)*-closed.  

is (g*p)*-continuous. 

Proof [2]: Let  and  be (g*p)*- irresolutes. Let  be a (g*p)*-

closed set in . .Since  is (g*p)*-irresolute,  is (g*p)*-closed in 

. Since  is (g*p)*-irresolute, is (g*p)*-closed in .  is (g*p)*-irresolute. 

Proof [3]: Let  be (g*p)*-irresolute and  be (g*p)*-continuous.  Let 

be closed in .Since is (g*p)*-continuous, is (g*p)*- closed in . Since  is (g*p)*-

irresolute, is (g*p)*-closed in .  is (g*p)*-continuous 

                                 5. APPLICATION OF (g*p)*-CLOSED SETS 

We introduce the following definitions.  

Definition: 5.1: A space  is called a  if every set (g*p)*-closed set is closed. 

Definition: 5.2: A space  is called a pgT *  if every  set is (g*p)*-closed. 

Theorem   5.3: Every   is   a . 

Proof: Let    be a   . Let  be a (g*p)*-closed set. Since every (g*p)*-closed set is

, A is g-closed. Since    is , A is closed.  is a . 

The converse of the above theorem need not be true in general as seen in the following example. 

Example 5.4: Let  and  }}.{,,{ aX     *)*( pg -closed sets of X are  },{,, cbX  and the g- 

closed sets are },{},,{},,{},{},{,, cbcabacbX . Every (g*p)*-closed set is closed. Hence the space ),( X

is pgT - space.  is g-closed but it is not closed. Hence the space ),( X  is not  

2
1T - space.  

 

fg  g f

    ,,: YXf      ,,: ZYg  F

 ,Z g  Fg 1  ,Y f

  Fgf 11   ,X    Ffg 1
  fg 

    ,,: YXf      ,,: ZYg  F

 ,Z       FgfFfg 111   g  Fg 1

 ,Y f   Fgf 11   ,X  fg 

    ,,: YXf      ,,: ZYg 

F  ,Z g  Fg 1  ,Y f

  Fgf 11   ,X  fg 

 ,X spaceTpg 

 ,X closedg 

spaceT 
2

1 spaceTpg 

 ,X spaceT 
2

1 A

closedg   ,X spaceT 
2

1  ,X spaceTpg 

},,{ cbaX 

}{bA 
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Theorem   5.5: Every  is a  but not conversely. 

Proof follows from the definitions.  

Example 5.6: Let  and  }}{,,{ aX    Here *)*( pg -closed sets are  },{,, cbX  and the 

g - closed sets are }.,{},,{},,{},{},{,, cbcabacbX  Since every (g*p)*-closed set is closed, the space 

),( X is a pgT - space. A = {c} is g -closed but not closed. Therefore the space ),( X  is not a bT - space. 

 Theorem   5.7: Every space is a  –space  

Proof follows from the definitions. The converse is not true.  

Example 5.8: Let  and  }}{,,{ aX   *)*( pg -closed sets are  },{,, cbX  and   

gs- closed sets are  }.,{},,{},,{},{},{,, cbcabacbX  Since every (g*p)*-closed set is closed, the space 

),( X is a pgT - space. A = {c} is gs-closed but not closed. Therefore the space ),( X  is not a  

bT - space.  

Theorem 5.9: Every   - space is a pgT *  - space. 

Proof follows from the definitions. 

Theorem 5.10: Every bT -space is a pgT *  - space. 

Proof: Let be a bT – space. Let  be -closed. Then A is g –closed. Since the space is  

bT -space,  is closed and hence  is –closed.  Therefore the space ),( X is a  

pgT * –space. 

Theorem 5.11: Every bT - space is a pgT * - space but not conversely. 

Proof follows from the definitions. 

Example 5.12: Let  cbaX ,, and   .},{},{,,, cacaX  Here (g*p)*-closed sets are  

}{},,{},,{,, bbacbX  , g- closed sets are  },{},,{},{,, cbbabX  and the gs-closed sets are  

},{},,{},{},{},{,, cbbacbaX .Since every (g*p)*-closed set is g-closed, the space ),( X is a  

pgT * - space. A = {c} is gs-closed but not closed. Therefore the space ),( X  is not a bT - space.  

spaceTb  spaceTpg 

},,{ cbaX 

bT pgT

},,{ cbaX 

2
1T

),( X A g

A A *)*( pg
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Theorem   5.13: Let f : (X, ) (Y, ) be a - continuous map and let (X, ) be a  

- space then f  is continuous. 

Proof: Let f : (X, ) (Y, ) be a - continuous map. Let F be a closed set of (Y, ). Since f  is 

-continuous, (F) is - closed in (X, ). Since (X, ) is a - space, (F) is 

closed in (X, ). Therefore f  is continuous. 

Theorem   5.14: Let f : (X, ) (Y, ) be a - continuous map where (X, ) is a pgT * -space. Then f  

is -continuous. 

Proof: Let f : (X, ) (Y, ) be a - continuous map. Let F be a closed set in (Y, ).Since f  is - 

continuous, therefore (F) is - closed in (X, ). Since (X, ) is a pgT *  space, (F) is  

(g*p)*-closed. Therefore f  is  -continuous. 
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