(g*p)*-Closed Sets In Topological Spaces

Paulin mary Helen M, Associate Professor, Nirmala College for Women, Coimbatore.

Anitha.P, PG student, Nirmala College for Women, Coimbatore.

Abstract: In this paper, we have introduced a new class of sets called $(g^*p)^*$ -closed sets which is properly placed in between the class of closed sets and the class of g-closed sets. As an application, we introduce two new spaces namely, ${}_{g}T_{p}$ and ${}_{g}T_{p}^{*}$ spaces. We have also introduced $(g^*p)^*$ -continuous and $(g^*p)^*$ -irresolute maps and their properties are investigated.

Keywords: (g*p)*-closed sets, (g*p)*-continuous maps, (g*p)*-irresolute maps and gTp and gT*p spaces

1 INTRODUCTION

Levine [9] introduced the class of g-closed sets in 1970. Maki.et.al [11] defined αg -closed sets and

 $g\alpha$ -closed sets in 1994..Arya and Tour[3] defined gs -closed sets in 1990.Dontchev[7], Gnanambal[8] and Palaniappan and Roa[16]introduced gsp -closed sets gpr-closed sets and rg-closed sets respectively. Veerakumar[17] introduced and studied the concepts of g*-preclosed sets and g*-precontinuity in topological spaces in 1991.

The purpose of the paper is to introduce the concept of $(g^*p)^*$ -closed sets, ${}_gT_p$ spaces and ${}_gT^*_p$ spaces. Further we have introduced $(g^*p)^*$ -continuous and $(g^*p)^*$ -irresolute maps.

2. PRELIMINARIES

Throughout this paper (X,τ) and (Y,σ) represents non-empty topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a (X,τ) space, cl(A) and int(A) denote the closure and the interior of A respectively.

The class of all closed subsets of a space of a space (X, τ) is denoted by $C(X, \tau)$.

Definition 2.1: A subset A of a topological space (X, τ) is called

(1) pre – open [13] if $A \subseteq int(cl(A))$ and a pre – closed set if $cl(int(A)) \subseteq A$.

(2) semi – open [10] if $A \subseteq cl(int(A))$ and a semi – closed if $int(cl(A)) \subseteq A$.

- (3) semi preopen [1] if $A \subseteq cl(int(cl(A)))$ and a semi preclosed if $int(cl(int(A))) \subseteq A$.
- (4) α open [14] if $A \subseteq int(cl(int(A)))$ and α closed if $cl(int(cl(A))) \subseteq A$.
- (5) regular-open [18] if A = int(cl(A))

Definition 2.2: A subset A of a topological space (X, τ) is called

(1) generalized closed (briefly g-closed) [9] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .

(2) *regular generalized* closed (briefly rg-closed) [15] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in (X, τ) .

(3) generalized semi – closed (briefly gs - closed) [3] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .

(4) α - generalized closed (briefly αg - closed) [11] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .

(5) wg - closed [17] if $cl(int(A)) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .

(6) generalized preregular closed (briefly gpr-closed) [8] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in (X, τ) .

(7) generalized semi- preclosed (briefly gsp - closed) [7] if $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .

(8) generalized preclosed (briefly gp - closed) [12] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ)

(9) g^* -preclosed (briefly $g^* p$ -closed)[16] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in (X, τ)

Definition 2.3: A function $f:(X,\tau) \rightarrow (Y,\sigma)$ is called

(1) g - continuous [4] if $f^{-1}(V)$ is a g - closed set of (X, τ) for every closed set V of (Y, σ) .

International Journal of Mathematics Trends and Technology – Volume 6 – February 2014

(2) αg - continuous [8] if f⁻¹(V) is an αg - closed set of (X,τ) for every closed set V of (Y,σ)
(3) gs - continuous [6] if f⁻¹(V) is a gs - closed set of (X,τ) for every closed set V of (Y,σ).
(4) rg - continuous [15] if f⁻¹(V) is a rg - closed set of (X,τ) for every closed set V of (Y,σ)
(5) gp - continuous [2] if f⁻¹(V) is a gp - closed set of (X,τ) for every closed set V of (Y,σ)
(6) wg - continuous [17] if f⁻¹(V) is a wg - closed set of (X,τ) for every closed set V of (Y,σ).
(7) gsp - continuous [7] if f⁻¹(V) is a gsp - closed set of (X,τ) for every closed set V of (Y,σ).
(8) gpr - continuous [8] if f⁻¹(V) is a gpr - closed set of (X,τ) for every closed set V of (Y,σ).

Definition: 2.4: A topological space (X, τ) is said to be

(1) a $T_{\frac{1}{2}}$ space [9] if every g – closed set in it is closed.

(2) a T_b space [5] if every gs – closed set in it is closed

(3) a $_{\alpha}T_{b}$ space [4] if every αg – closed set in it is closed.

3. BASIC PROPERTIES OF (g*p)*-CLOSED SETS

We now introduce the following definition.

Definition 3.1: A subset A of a topological space (X, τ) is called a $(g^*p)^*$ -closed set, if $cl(A) \subseteq U$.

whenever $A \subseteq U$ and U is g * p - open.

Proposition 3.2: Every closed set is $(g^*p)^*$ -closed.

Proof follows from the definitions.

Proposition 3.3: Every $(g^*p)^*$ -closed set is (1) g-closed (2) αg -closed (3) gs-closed (4) gp-closed (5) wg-closed (6) gsp-closed(7) rg-closed and (8) gpr-closed but not conversely.

Proof: Let A be a $(g^*p)^*$ -closed set. Let $A \subseteq U$ and U be open. Then U is g^*p -open.

Since A is $(g^*p)^*$ -closed,

(1) $cl \subseteq U$ and hence A is g-closed.

- (2) $\alpha cl(A) \subseteq cl(A) \subseteq U$ and hence A is αg -closed.
- (3) $scl(A) \subseteq cl(A) \subseteq U$ and hence A is gs-closed.
- (4) $pcl(A) \subseteq cl(A) \subseteq U$ and hence A is gp -closed.
- (5) $cl \subseteq U$ and which implies $cl(int(A) \subseteq cl(A) \subseteq U)$ hence A is wg -closed.
- (6) $cl(A) \subseteq U$ and hence $spcl(A) \subseteq U$ therefore A is gsp-closed.

Proof for 7 & 8

- (7) $cl(A) \subseteq U$ and hence A is rg –closed.
- (8) $pcl(A) \subseteq cl(A) \subseteq U$ and hence A is gpr-closed.

Example 3.4: Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}\}$ and let $A = \{a, b\}$. Then A is g-closed, αg -closed, gs-closed, gp-closed, gp-clos

Proposition 3.5: If A and B are $(g^*p)^*$ - closed sets, then $A \cup B$ is also a $(g^*p)^*$ - closed set.

Proof follows from the fact that $cl(A \cup B) = cl(A) \cup cl(B)$.

Proposition 3.6: If A is both g * p –open and (g*p)*- closed, then A is closed.

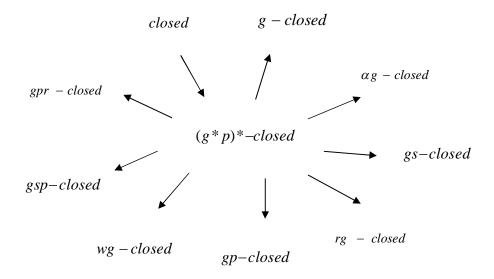
Proof follows from the definition of $(g^*p)^*$ - closed sets.

Proposition 3.7: If A is $(g^*p)^*$ closed set of (X, τ) , such that $A \subseteq B \subseteq cl(A)$, then B is also a $(g^*p)^*$ closed set of (X, τ) .

Proof: Let U be a g * p-open set of (X, τ) , such that $B \subseteq U$. Then $A \subseteq U$ where U is g^*p -open.

Since A is $(g^*p)^*$ -closed, $cl(A) \subseteq U$. Then $cl(B) \subseteq U$. Hence B is $(g^*p)^*$ -closed.

The above results can be represented in the following figure.



Where A \longrightarrow B represents A implies B and B need not imply A

4. (g*p)*-CONTINUOUS MAPS AND (g*p)*-IRRESOLUTE MAPS

We introduce the following definitions.

Definition: 4.1: A map $f:(X,\tau) \to (Y,\sigma)$ is called $(g*p)^*$ - continuous if the inverse image of every closed set in (Y,σ) is $(g*p)^*$ - closed in (X,τ) .

Definition: 4.2: A map $f:(X,\tau) \to (Y,\sigma)$ is said to be a $(g * p)^*$ - irresolute map if $f^{-1}(V)$ is a $(g * p)^*$ - closed set in (X,τ) for every $(g^*p)^*$ - closed set V of (Y,σ) .

Theorem 4.3: Every continuous map is $(g^*p)^*$ - continuous.

Proof: Let $f:(X,\tau) \to (Y,\sigma)$ be a continuous map and let F be a closed set $in(Y,\sigma)$. Then $f^{-1}(F)$ is closed $in(X,\tau)$. Since every closed set is $(g^*p)^{*-}$ closed, $f^{-1}(F)$ is $(g^*p)^{*-}$ closed. Then f is $(g^*p)^{*-}$ continuous.

Theorem 4.4: Every $(g^*p)^*$ -continuous map is g - continuous, αg -continuous, gs -continuous, rg-continuous, gg -continuous, gg -continuous, gg -continuous, gg -continuous and gpr-continuous but not conversely.

Proof: Let $f:(X,\tau) \to (Y,\sigma)$ be a (g * p)* - continuous map. Let V be a closed set $in(Y,\sigma)$. Since f is (g*p)* -continuous, $f^{-1}(V)$ is (g*p)* closed $in(X,\tau)$. Then $f^{-1}(V)$ is g-closed, αg -closed, gs -closed, rg-closed, gp -closed, gsp-closed and gpr-closed set of (X,τ) . **Example 4.5:** Let $X = Y = \{a, b, c\}, \tau = \{\phi, X, \{a\}\}, \sigma = \{\phi, Y, \{c\}\}\}$ $f : (X, \tau) \to (Y, \sigma)$ be the identity map. Then $f^{-1}(\{a, b\}) = \{a, b\}$ is not $(g^*p)^*$ -closed in (X, τ) .But $\{a, b\}$ is g -closed set, αg -closed set, g -

Example 4.6: Let $X = Y = \{a, b, c\}, \tau = \{\phi, X, \{a\}\}, \sigma = \{\phi, Y, \{c\}\}, f : (X, \tau) \rightarrow (Y, \sigma)$ is defined by f(a) = b, f(b) = c, f(c) = a. Then $f^{-1}(\{a, b\}) = \{a, c\}$ is not $(g^*p)^*$ - closed in (X, τ) . But $\{a, c\}$ is rg-closed. Hence f is rg- continuous but not $(g^*p)^*$ - continuous.

Example 4.7: Let $X = Y = \{a, b, c\}, \tau = \{\phi, X, \{a\}\}, \sigma = \{\phi, Y, \{c\}\}, f : (X, \tau) \rightarrow (Y, \sigma)$ is defined as f(a) = b, f(b) = c, f(c) = a. Then $f^{-1}(\{a, b\}) = \{a, c\}$ is gp-closed but not $(g^*p)^*$ -closed. Then f is gp-continuous but not $(g^*p)^*$ -continuous.

Example 4.8: Let $X = Y = \{a, b, c\}, \tau = \{\phi, X, \{a\}\}, \sigma = \{\phi, Y, \{b, c\}\}, f : (X, \tau) \rightarrow (Y, \sigma)$ is defined as f(a) = c, f(b) = a, f(c) = b. Then $f^{-1}(\{a\}) = \{b\}$ is wg -closed but not $(g^*p)^*$ -closed in (X, τ) . Hence f is wg - continuous but not $(g^*p)^*$ -continuous.

Example 4.9: Let $X = Y = \{a, b, c\}, \tau = \{\phi, X, \{a\}\}, \sigma = \{\phi, Y, \{a\}, \{a, b\}\}.$

$$f:(X,\tau) \to (Y,\sigma)$$
 is defined as $f(a) = b, f(b) = a, f(c) = c$. Then $f^{-1}(\{b,c\}) = \{a,c\}$ is not

 $(g^*p)^*$ -closed in (X, τ) , but it is gsp-closed. Hence f is gsp - continuous but not $(g^*p)^*$ -continuous.

Example 4.10: Let $X = Y = \{a, b, c\}, \tau = \{\phi, X, \{a\}\}, \sigma = \{\phi, Y, \{a\}, \{b\}, \{a, b\}\}.$

 $f:(X,\tau) \to (Y,\sigma)$ be defined by f(a) = b, f(b) = a, f(c) = c. Then $f^{-1}(\{b,c\}) = \{a,c\}$ is not $(g^*p)^*$ -closed in (X,τ) , but it is gpr-closed. Hence f is gpr-continuous but not $(g^*p)^*$ -continuous.

Theorem 4.11: Every $(g^*p)^*$ - irresolute map is $(g^*p)^*$ -continuous.

Proof follows from the definition.

Theorem 4.12: Every $(g^*p)^*$ -irresolute map is g - continuous, αg - continuous, gs - continuous, rg- continuous, gp - continuous, gg - continuous,

Proof follows from theorems (4.4) and (4.11).

The converse of the above theorem need not be true in general as seen in the following examples.

Example 4.13: Let $X = Y = \{a, b, c\}$ $\tau = \{\phi, X, \{a\}\}$ and $\sigma = \{\phi, Y, \{a\}, \{c\}, \{a, c\}\}$. Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be the identity map. ϕ , Y, $\{b\}$, $\{a, b\}$, $\{b, c\}$ are closed sets of Y. $f^{-1}(\{a, b\}) = \{a, b\}$, $f^{-1}(\{b, c\}) = \{b, c\}$ and $f^{-1}\{b\} = \{b\}$ are g-closed, gs-closed, rg-closed set, gp-closed, wg-closed, gsp-closed, gpr-closed. Hence f is g - continuous, gs - continuous, rg-continuous, gs - continuous, gsp - continuous,

Example 4.14: Let $X = Y = \{a, b, c\}$ $\tau = \{\phi, X, \{a\}\}$ and $\sigma = \{\phi, Y, \{a\}, \{c\}, \{a, c\}\}$. Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be defined by f(a) = a, f(b) = c, f(c) = b. Then $f^{-1}(\{b\}) = \{c\}, f^{-1}(\{a, b\}) = \{a, c\}$ and $f^{-1}(\{b, c\}) = \{b, c\}$ are αg -closed, and hence f is αg -continuous. $(g^*p)^*$ -closed sets are ϕ , $Y, \{b\}, \{a, b\}, \{b, c\}, f^{-1}(\{a, b\}) = \{a, c\}$ is not $(g^*p)^*$ -closed in (X, τ) . Hence f is αg -continuous but not a $(g^*p)^*$ -irresolute.

The above results can be represented in the following figure.



where $A \longrightarrow B$ represents A implies B and B need not imply A.

Theorem 4.15: Let $f:(X,\tau) \to (Y,\sigma)$ and $g:(Y,\sigma) \to (Z,\eta)$ be two functions. Then

[1] $g \circ f$ is $(g^*p)^*$ -continuous if g is continuous and f is $(g^*p)^*$ -continuous.

[2] $g \circ f$ is $(g^*p)^*$ -irresolute if both f and g are $(g^*p)^*$ -irresolutes.

International Journal of Mathematics Trends and Technology – Volume 6 – February 2014

[3] $g \circ f$ is $(g^*p)^*$ -continuous if g is $(g^*p)^*$ -continuous and f is $(g^*p)^*$ -irresolute.

Proof [1]: Let $f:(X,\tau) \to (Y,\sigma)$ be $(g^*p)^*$ -continuous and $g:(Y,\sigma) \to (Z,\eta)$ be continuous. Let F be a closed set in (Z,η) . Since g is continuous, $g^{-1}(F)$ is closed in (Y,σ) . Since f is $(g^*p)^*$ -continuous, $f^{-1}(g^{-1}(F))$ is $(g^*p)^*$ -closed in (X,τ) . Hence $(g \circ f)^{-1}(F)$ is $(g^*p)^*$ -closed. $\therefore g \circ f$ is $(g^*p)^*$ -continuous.

Proof [2]: Let $f:(X,\tau) \to (Y,\sigma)$ and $g:(Y,\sigma) \to (Z,\eta)$ be $(g^*p)^*$ - irresolutes. Let F be a $(g^*p)^*$ closed set in (Z,η) . $(g \circ f)^{-1}(F) = f^{-1}(g^{-1}(F))$. Since g is $(g^*p)^*$ -irresolute, $g^{-1}(F)$ is $(g^*p)^*$ -closed in (Y,σ) . Since f is $(g^*p)^*$ -irresolute, $f^{-1}(g^{-1}(F))$ is $(g^*p)^*$ -closed in (X,τ) . $\therefore g \circ f$ is $(g^*p)^*$ -irresolute.

Proof [3]: Let $f:(X,\tau) \to (Y,\sigma)$ be $(g^*p)^*$ -irresolute and $g:(Y,\sigma) \to (Z,\eta)$ be $(g^*p)^*$ -continuous. Let *F* be closed in (Z,η) . Since *g* is $(g^*p)^*$ -continuous, $g^{-1}(F)$ is $(g^*p)^*$ - closed in (Y,σ) . Since *f* is $(g^*p)^*$ irresolute, $f^{-1}(g^{-1}(F))$ is $(g^*p)^*$ -closed in (X,τ) . $\therefore g \circ f$ is $(g^*p)^*$ -continuous

5. APPLICATION OF (g*p)*-CLOSED SETS

We introduce the following definitions.

Definition: 5.1: A space (X, τ) is called a ${}_{g}T_{p}$ - space if every set $(g^{*}p)^{*}$ -closed set is closed.

Definition: 5.2: A space (X, τ) is called a ${}_{g}T *_{p}$ if every g - closed set is (g*p)*-closed.

Theorem 5.3: Every $T_{\frac{1}{2}}$ - space is a $_{g}T_{p}$ - space.

Proof: Let (X,τ) be a $T_{\frac{1}{2}}$ - space. Let A be a $(g^*p)^*$ -closed set. Since every $(g^*p)^*$ -closed set is g - closed, A is g-closed. Since (X,τ) is $T_{\frac{1}{2}}$ - space, A is closed. $\therefore (X,\tau)$ is a $_{g}T_{p}$ - space.

The converse of the above theorem need not be true in general as seen in the following example.

Example 5.4: Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}\}$. (g * p) *-closed sets of X are $\phi, X, \{b, c\}$ and the gclosed sets are $\phi, X, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}$. Every (g*p)*-closed set is closed. Hence the space (X, τ) is ${}_{g}T_{p}$ - space. $A = \{b\}$ is g-closed but it is not closed. Hence the space (X, τ) is not $T_{\frac{1}{2}}$ -space. **Theorem 5.5:** Every $_{\alpha}T_{b}$ – space is a $_{g}T_{p}$ – space but not conversely.

Proof follows from the definitions.

Example 5.6: Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}\}$ Here $(g * p)^*$ -closed sets are $\phi, X, \{b, c\}$ and the αg -closed sets are $\phi, X, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}$. Since every $(g^*p)^*$ -closed set is closed, the space (X, τ) is a $_gT_p$ -space. A = {c} is αg -closed but not closed. Therefore the space (X, τ) is not a $_{\alpha}T_b$ -space.

Theorem 5.7: Every T_b space is a ${}_gT_p$ –space

Proof follows from the definitions. The converse is not true.

Example 5.8: Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}\}$ (g * p)*-closed sets are $\phi, X, \{b, c\}$ and gs- closed sets are $\phi, X, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}$. Since every $(g^*p)^*$ -closed set is closed, the space (X, τ) is a $_gT_p$ - space. A = $\{c\}$ is gs-closed but not closed. Therefore the space (X, τ) is not a

 T_b - space.

Theorem 5.9: Every $T_{\frac{1}{2}}$ - space is a ${}_{g}T *_{p}$ - space.

Proof follows from the definitions.

Theorem 5.10: Every $_{\alpha}T_{b}$ -space is a $_{p}T^{*}_{p}$ - space.

Proof: Let (X,τ) be a $_{\alpha}T_{b}$ - space. Let A be g -closed. Then A is αg -closed. Since the space is

 $_{\alpha}T_{b}$ -space, A is closed and hence A is (g * p)*-closed. Therefore the space (X, τ) is a $_{g}T*_{p}$ -space.

Theorem 5.11: Every T_b - space is a ${}_{g}T^*{}_{p}$ - space but not conversely.

Proof follows from the definitions.

Example 5.12: Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}, \{c\}, \{a, c\}\}$ Here $(g^*p)^*$ -closed sets are $\phi, X, \{b, c\}, \{a, b\}, \{b\}$, g- closed sets are $\phi, X, \{b\}, \{a, b\}, \{b, c\}$ and the gs-closed sets are $\phi, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}$. Since every $(g^*p)^*$ -closed set is g-closed, the space (X, τ) is a

 $_{g}T *_{p}$ - space. A = {c} is gs-closed but not closed. Therefore the space (X, τ) is not a T_{b} - space.

Theorem 5.13: Let $f: (X, \tau) \to (Y, \sigma)$ be a $(g * p)^*$ - continuous map and let (X, τ) be a ${}_{g}T_{p}$ - space then f is continuous.

Proof: Let $f: (X, \tau) \to (Y, \sigma)$ be a $(g * p)^*$ - continuous map. Let F be a closed set of (Y, σ) . Since f is $(g * p)^*$ - continuous, $f^{-1}(F)$ is $(g * p)^*$ - closed in (X, τ) . Since (X, τ) is a ${}_gT_p$ - space, $f^{-1}(F)$ is closed in (X, τ) . Therefore f is continuous.

Theorem 5.14: Let $f: (X, \tau) \to (Y, \sigma)$ be a g - continuous map where (X, τ) is a ${}_{g}T *_{p}$ -space. Then f is (g * p)*-continuous.

Proof: Let $f: (X, \tau) \to (Y, \sigma)$ be a g - continuous map. Let F be a closed set in (Y, σ) . Since f is g - continuous, therefore $f^{-1}(F)$ is g - closed in (X, τ) . Since (X, τ) is a ${}_{g}T^{*}{}_{p}$ space, $f^{-1}(F)$ is $(g^{*}p)^{*}$ -closed. Therefore f is $(g^{*}p)^{*}$ -continuous.

REFERENCES:

1. D. Andrijevic, Semi-preopen sets, Mat. Vesnik, 38(1) (1986), 24-32.

2. Arokiarani, K.Balachandran and J.Dontchev, Some characterizations of gp-irresolute and gp-continuous maps between topological spaces, Mem.Fac.Sci.Kochi.Univ.Ser.A.Math., 20(1999), 93-104.

3. S.P.Arya and T.Nour, Characterizations of s-normal spaces, Indian J.Pure.Appl.Math., 21(8) (1990), 717-719.

4. K.Balachandran, P.Sundram and H.Maki, On generlized continuous maps in tolopoligal spaces, Mem.Fac.Kochi Unvi.Ser.A, Math., 12 (1991), 5-13.

5. R.Devi, K.Balachandran and H.Maki, semi – generalized closed maps and generalized closed maps, Mem. Eac. Sci. Kochi Unvi. Ser. A.Math., 14(1993), 41-54.

6. R. Devi, K. Balachandran and H. Maki, semi- Generalized homeomorphisms and generalized semi-homeomorphism in topological spaces, Indian J. Pure. Appl. Math., 26(3) (1995), 271-284.

7. J. Dontchev. On generalizing semi- pre open sets, Mem. Fac. Sci. Kochi Ser. A. Math., 16 (1995), 35-48.

8. Y.Gnanambal, On generalized pre regular closed sets in topological spaces, Indian J. Pure. Appl. Math., 28(3) (1977), 351-360.

9. N.Levine, Generalized closed sets in topology, Rend .Circ. Math. Palermo, 19(2) (1970), 89-96.

International Journal of Mathematics Trends and Technology – Volume 6 – February 2014

10. N.Levine, Semi-open sets and semi-continuity in topological spaces, Amer.Math.Monthly, 70 (1963), 36-41.

11. H. Maki, R. Devi and K. Balachandran, Associated topologies of generalized α -closed and α -generalized closed sets, Mem. Fac. Sci. Kochi Univ. Ser. A, Math., 15 (1994), 51-63.

12. H. Maki, J.Umehara and T.Noiri, Every topological space is pre - $T_{\frac{1}{2}}$, Mem.Fac. Sci. Kochi Univ. Ser. A. Math., 17 (1996), 33-42.

13. A.S.Mashhour, M.E.Abd E1-Monsef and S.N.E1-Deeb, on pre-continuous and weak pre-continuous mappings, Proc.Math.and Phys.Soc.Egypt., 53(1982), 47-53.

14. O.Njastad, on some classes of nearly open sets, Pacific J.Math., 15 (1965), 961-970.

15. N.Palaniappan and K.C.Rao, Regular generalized closedsets, Kyungpook Math .J., 33(2) (1993), 211-219.

16. M.K.R.S.Veerakumar, between closed sets and g-closed sets, Mem.Fac.Kochi Unvi.Ser.A, Math., 17 (1996), 33-42.

17. N.Nagaveni, studies on generization of Homeomorphisms in topological spaces,ph.D.Thesis-Bharathiyar University ,July 1999.

18. M.Stone.Trans.Amer.Math .Soc.41 (1937), 374-481.