(i,j) Strongly a^{**}-Closed Sets in Bitopological Spaces

Pauline Mary Helen.M,Associate Professor,Nirmala College for women, Coimbatore. Sindhu Surya. R, PG Student, Nirmala College for women, Coimbatore.

ABSTRACT

In this paper we introduce a new class of sets namely, (i,j) strongly α^{**} -closed sets. Properties of this set are investigated and we introduce new spaces namely, (i,j) $T_{s\alpha^{**}}$ spaces, (i,j) $g^*T_{s\alpha^{**}}$ spaces and (i,j) $sg^*T_{s\alpha^{**}}$ spaces.

Keywords: (i,j) strongly α^{**} -closed sets, (i,j) $T_{s\alpha^{**}}$ spaces, (i,j) $g^*T_{s\alpha^{**}}$ spaces, (i,j) $sg^*T_{s\alpha^{**}}$ spaces.

1.INTRODUCTION

A triple (X,τ_1,τ_2) where X is a non-empty set and τ_1 and τ_2 are topologies on X is called bitopological space and Kelly[4] initiated the study of such spaces. Veera Kumar[15] introduced the concept of g^{*}-closed sets in 2000.Parimezlazhagan and Subramania Pillai[9] introduced the strongly g^{*}-closed sets in 2012.The purpose of this paper is to introduce the concept of strongly α^{**} closed sets in bitopological spaces. Three new spaces (i,j) $T_{s\alpha^{**}}$ space,(i,j) $_{g^*}T_{s\alpha^{**}}$ space,(i,j) $_{sg^*}T_{s\alpha^{**}}$ space in bitopological spaces are introduced and some of their properties are investigated.

2.PRELIMINARIES

Throughout this paper (X,τ_1,τ_2) , (Y,σ_1,σ_2) represent non-empty bitopological spaces on which no separation axioms are assumed unless otherwise mentioned. If A is a subset of X with topology τ then cl(A) and int(A) denote the closure of A and the interior of A in X respectively. We recall the following definitions, which will be used often throughout this paper:

Definition 2.1: A subset A of a topological space (X,τ) is called

(1) a semi-open set[6] if $A \subseteq cl(int(A))$ and a semi-closed set if $int(cl(A)) \subseteq A$

(2)a α -open set[8] if A \subseteq int(cl(int(A)) and a α -closed set if cl(int(cl(A)) \subseteq A

(3)a g-closed set [7] if $cl(A) \subseteq U$, whenever $A \subseteq U$ and U is open in (X,τ) .

(4)a g^{*}-closed set [13] if cl(A) \subseteq U, whenever A \subseteq U and U is g open in (X, τ).

(5)a g^{**} -closed set [10] if cl(A) \subseteq U, whenever A \subseteq U and U is g^{*} -open in (X, τ).

(6)a strongly g^* -closed set [9] if cl(int(A)) $\subseteq U$, whenever $A \subseteq U$ and U is g-open in (X, τ).

(7) a sg-closed set [3] if scl(A) \subseteq U, whenever A \subseteq U and U is semi-open in (X, τ).

International Journal of Mathematics Trends and Technology – Volume 6 – February 2014

- (8) a gs-closed set [2] if $scl(A) \subseteq U$, whenever $A \subseteq U$ and U is open in (X,τ) .
- (9) a ψ -closed or sg^{*} closed set [14] if scl(A) \subseteq U, whenever A \subseteq U and U is sg-open in (X, τ).
- (10) a α^* -closed set [15]if cl(A) \subseteq U, whenever A \subseteq U and U is α -open in (X, τ)
- (11)a α^{**} -closed set [17] if cl(A) \subseteq U,whenever A \subseteq U and U is α^{*} -open in (X, τ)

Definition 2.2:

A subset A of bitopological space (X, τ_1, τ_2) is called

(1) an (i,j) g^{*}-closed [11] if τ_{j} - cl(A) \subseteq U, whenever A \subseteq U and U is g open in τ_{i} .

(2)an (i,j) α^{**} -closed [17] if τ_j - cl(A) \subseteq U, whenever A \subseteq U and U is α^{*} -open in τ_i .

(3)an (i,j) gs-closed [12] if τ_j - scl(A) \subseteq U, whenever A \subseteq U and U is open in τ_i .

(4)an (i,j) sg-closed [4] if τ_j -scl(A) \subseteq U, whenever A \subseteq U and U is semi-open in τ_i .

(5)an (i,j) ψ -closed or sg^{*} closed[1] if τ_j -scl(A) \subseteq U, whenever A \subseteq U and U is sg-open in τ_i .

(6)an (i,j) strongly g^* -closed [16] if τ_j -cl(int(A)) $\subseteq U$, whenever $A \subseteq U$ and U is g-open in τ_i .

Definition 2.3:

A bitopological space (X, τ_1, τ_2) is called

(1) an (i,j)- $T_{1/2}^*$ space[11] if every (i,j)-g^{*}-closed set is τ_j -closed.

(2) an (i,j)- T_d space[12] if every (i,j)-gs-closed set in it is g-closed.

3.BASIC PROPERTIES OF (i,j)STRONGLY *a*^{**}-CLOSED SETS

We introduce the following definition:

Definition 3.1: A subset A of a bitopological space (X, τ_1, τ_2) is called (i,j)-strongly α^{**} closed if τ_i -cl(int(A)) \subseteq U whenever A \subseteq U and U is τ_i - α^* open.

Proposition 3.2: Every τ_i closed set A is (i,j) strongly α^{**} -closed

Proof follows from the definition.

The following example supports that a (i,j) strongly α^{**} -closed set need not be closed in general

Example 3.3:Let X={a,b,c}; τ_1 ={ ϕ ,{c},{a,c},X}; τ_2 ={ ϕ ,{a},X}. Then A={b} is (i,j) strongly α^{**} -closed but not τ_i -closed in (X, τ_1 , τ_2).

Proposition 3.4: Every (i,j) α^{**} -closed is (i,j) strongly α^{**} -closed.

Proof: Let A be (i,j) α^{**} -closed. Let A \subseteq U and U be τ_i - open. Since A is (i,j) α^{**} -closed., τ_j -cl(A) \subseteq U,

 τ_j -cl(int(A)) $\subseteq \tau_j$ -cl(A) $\subseteq U$. Hence A is (i,j) strongly α^{**} -closed.

The converse of above proposition need not be true in general as seen in following example:

Example 3.5: Let X={a,b,c}; τ_1 ={ ϕ ,X,{b}}; τ_2 ={ ϕ ,X,{c}}. Then A={b} is (i,j) strongly α^{**} -closed but not a (i,j)- α^{**} closed in (X, τ_1 , τ_2).

Proposition 3.6: Every (i,j) g^* -closed set is (i,j) strongly α^{**} -closed.

Proof: Let A be (i,j) g^* -closed.Let A \subseteq U and U be $\tau_i \cdot \alpha^*$ open. Then U is $\tau_i \cdot g$ open and hence $\tau_j \cdot cl(A) \subseteq U$,

since A is (i,j)-g^{*} closed. But τ_j -cl(int(A)) $\subseteq \tau_j$ -cl(A) $\subseteq U$. Then A is (i,j) strongly α^{**} -closed.

The converse of above proposition need not be true in general as seen in following example:

Example 3.7: Let $X = \{a,b,c\}$; $\tau_1 = \{\phi,X,\{b\}\}$; $\tau_2 = \{\phi,X,\{c\}\}$. Then $A = \{a\}$ is (i,j) strongly α^{**} -closed but not (i,j)-g^{*}closed in (X, τ_1, τ_2) .

Proposition 3.8: Every (i,j) strongly g^* -closed set is (i,j) strongly α^{**} -closed.

The converse of above proposition need not be true in general as seen in following example:

Example 3.9: Let $X = \{a,b,c\}$; $\tau_1 = \{\phi,X,\{b\}\}$; $\tau_2 = \{\phi,X,\{c\}\}$. Then $A = \{c\}$ is (i,j) strongly α^{**} -closed but not (i,j)-strongly g^* closed in (X, τ_1, τ_2) .

Remark 3.10: (i,j) strongly α^{**} -closedness is independent of (i,j) sg-closedness.

Example 3.11: Let $X = \{a, b, c\}$; $\tau_1 = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$; $\tau_2 = \{\phi, X, \{a\}, \{a, b\}\}$. Then $A = \{a, c\}$ is (i,j)

strongly α^{**} -closed but not (i,j) sg-closed in (X, τ_1 , τ_2).

Example 3.12: Let X={a,b,c}; τ_1 ={ ϕ ,X,{a},{a,b}}; τ_2 ={ ϕ ,X,{a},{b}}. Then A={a} is (i,j)

sg-closed but not (i,j) strongly α^{**} -closed in (X, τ_1 , τ_2).

Hence (i,j) strongly α^{**} -closedness is independent of (i,j) sg-closedness.

Remark 3.13: (i,j) strongly α^{**} -closedness is independent of (i,j) gs-closedness.

Example 3.14: Let $X = \{a, b, c\}; \tau_1 = \{\phi, X, \{a\}, \{a, b\}\}; \tau_2 = \{\phi, X, \{a\}, \{b, c\}\}$. Then $A = \{b\}$ is (i,j) strongly

 α^{**} -closed but not (i,j) gs-closed in (X, τ_1 , τ_2).

Example 3.15: Let $X = \{a, b, c\}$; $\tau_1 = \{\phi, X, \{a\}, \{a, b\}\}$; $\tau_2 = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$. Then $A = \{b\}$ is (i,j)

gs-closed but not (i,j) strongly α^{**} -closed in (X, τ_1 , τ_2).

Hence (i,j) strongly α^{**} -closedness is independent of (i,j) gs-closedness.

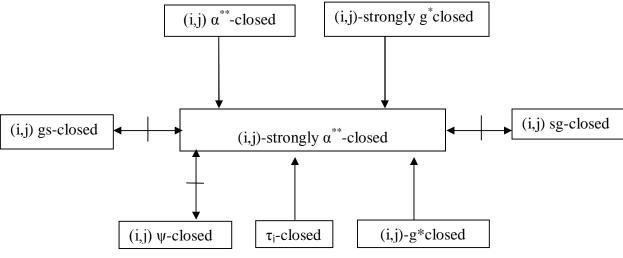
Remark 3.16: (i,j) strongly α^{**} -closedness is independent of (i,j) ψ -closedness.

Example 3.17: Let $X = \{a, b, c\}$; $\tau_1 = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$; $\tau_2 = \{\phi, X, \{a\}, \{a, b\}\}$. Then $A = \{a, c\}$ is (i,j) strongly α^{**} -closed set but not (i,j) ψ -closed in (X, τ_1, τ_2) .

Example 3.18: Let $X = \{a, b, c\}$; $\tau_1 = \{\phi, X, \{a\}, \{a, b\}\}$; $\tau_2 = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$. Then $A = \{a\}$ is (i,j)

 ψ -closed but not (i,j) strongly α^{**} -closed in (X, τ_1 , τ_2).

Hence (i,j) strongly α^{**} -closedness is independent of (i,j) ψ -closedness.



The above results can be represented in the following figure:

where $A \longrightarrow B$ represents A implies B and B need not imply A

A $\triangleleft \Rightarrow$ B represents A and B are independent.

4.APPLICATIONS OF (i,j) **STRONGLY** α^{**} -CLOSED SETS

As applications of (i,j) strongly α^{**} -closed sets, new spaces, namely (i,j) $T_{s\alpha}^{**}$ spaces, (i,j) $g^{*}T_{s\alpha}^{**}$ spaces, (i,j) $g^{*}T_{s\alpha}^{**}$ spaces, (i,j) $g^{*}T_{s\alpha}^{**}$ spaces are introduced.

We introduce the following definitions.

Definition 4.1:A space (X, τ_1, τ_2) is called a $(i,j)T_{s\alpha}^{**}$ space if every (i,j) strongly α^{**} -closed set is τ_i -closed.

Definition 4.2: A space (X, τ_1, τ_2) is called a (i,j) $g^*T_{s\alpha}^{**}$ space if every (i,j) strongly α^{**} -closed set is (i,j) g^* -closed.

Definition 4.3: A space (X, τ_1, τ_2) is called a (i,j) sg^{*}T_{sa}** space if every (i,j) strongly α^{**} -closed set is (i,j) strongly g^{*}-closed.

Theorem 4.4: Every $(i,j)T_{s\alpha}^*$ space is a $(i,j)T_{1/2}^*$ space

Proof:Let A be a (i.j)- g^* closed set. Then A is (i,j) strongly α^{**} -closed .Since (X, τ_1 , τ_2) is a (i,j)- $T_{s\alpha^{**}}$

space, A is τ_j -closed. \therefore (X, τ_1 , τ_2) is a (i,j) $T_{1/2}^{*}$ space.

The converse of above theorem need not be true in general as seen in following example

Example 4.5:Let X={a,b,c}; τ_1 ={ ϕ ,X,{a}}; τ_2 ={ ϕ ,X,{a},{a,b}}. Then (X, τ_1 , τ_2) is a $T_{1/2}$ *space.A={a,b} is

 $(i,j) \text{ strongly } \alpha^{**}\text{-closed but not } \tau_j\text{-closed }. \ \therefore \text{ The space } (X,\tau_1,\tau_2) \text{ is not } a \ (i,j) \ Ts \alpha^{**} \text{ space.}$

Theorem 4.6: Every (i,j) T_{sa}^{**} space is a (i,j) $sg^*T_{sa}^{**}$ space

Proof follows from the definitions

The converse of above theorem need not be true

Example 4.7:Let $X = \{a, b, c\}; \tau_1 = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}; \tau_2 = \{\phi, X, \{a\}, \{a, b\}\}$. Then (X, τ_1, τ_2) is a (i, j)

sg^{*}T_{sa}^{**} space.A={b} is (i,j) strongly α^{**} -closed but not a τ_j -closed set. \therefore The space (X, τ_1 , τ_2) is not a (i,j) Ts α^{**} space.

Theorem 4.8:Every (i,j) $g^*T_{sa}^{**}$ space is a (i,j) $sg^*T_{sa}^{**}$ space

Proof:Let A be a (i,j) strongly α^{**} -closed set .Then A is (i,j)-g^{*} closed and hence ,A is (i,j) strongly g^{*} closed. \therefore (X, τ_1 , τ_2) is a (i,j) sg^{*}T_{sa}** space

The converse of above theorem is not true.

Example 4.9: Let $X = \{a,b,c\}; \tau_1 = \{\phi, X, \{a\}, \{b\}, \{a,b\}\}; \tau_2 = \{\phi, X, \{a\}, \{a,b\}\}$. Then (X, τ_1, τ_2) is a (i,j)

sg^{*}T_{sa}^{**} space. A={b} is (i,j) strongly α^{**} -closed but not (i,j) g^{*}-closed. \therefore The space (X, τ_1 , τ_2) is not a (i,j) g^{*} Ts α^{**} space.

Theorem 4.10: A space (X, τ_1 , τ_2) which is both (i,j) $T_{1/2}s^*$ space and (i,j) $sg^*T_{sa}**$ space is a (i,j) $g^*T_{sa}**$ space

Proof:Let A be a (i,j)-strongly α^{**} -closed set. Then A is (i,j)-strongly g^{*} -closed, since (X, τ_1, τ_2) is a sg^{*}T_{sa}** space. Now A is τ_j -closed, since the space is a (i,j) T_{1/2}s^{*} space. Hence A is (i,j) g^{*}-closed. \therefore The space (X, τ_1, τ_2) is a (i,j) g^{*} Tsa^{**} space.

Remark 4.11: (i,j) T_d ness is independent from (i,j) $-Ts\alpha^{**}$ ness,(i,j) $sg^*T_{s\alpha}$ ** ness.

Example 4.12: Let X={a,b,c}; τ_1 ={ ϕ ,X,{a}}; τ_2 ={ ϕ ,X,{a},{a,b}}. Then (X, τ_1 , τ_2) is a (i,j) T d space.

A={b} is (i,j) - strongly α^{**} -closed but not a τ_2 closed set .Hence (X, τ_1 , τ_2) is not a (i,j) -Ts α^{**} space.

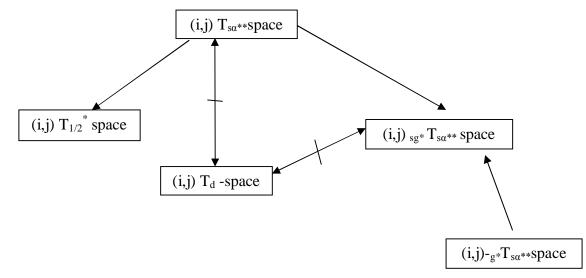
Let X={a,b,c}; τ_1 ={ ϕ ,X,{a},{a,b}}; τ_2 ={ ϕ ,X,{a},{b}}. Then (X, τ_1 , τ_2) is a (i,j) $T_{s\alpha}^{**}$ space. A={a}

is (i,j) - gs closed but not a (i,j) g closed set .Hence (X, τ_1 , τ_2) is not a (i,j) -T d space.

Hence (i,j) T_d ness is independent from (i,j) -Ts α^{**} ness.

Example 4.13: Let $X = \{a,b,c\}; \tau_1 = \{\phi,X,\{a\}\}; \tau_2 = \{\phi,X,\{a\},\{a,b\}\}$. Then (X, τ_1, τ_2) is a $(i,j) T_d$ space. A= $\{a,b\}$ is (i,j) - strongly α^{**} -closed but not (i,j) strongly g *closed. Hence (X, τ_1, τ_2) is not a (i,j) - (i,j)sg*Ts α^{**} space.

Let $X=\{a,b,c\};\tau_1=\{\phi,X,\{a\},\{b\},\{a,b\}\};\tau_2=\{\phi,X,\{a\},\{a,b\}\}$. Then (X, τ_1, τ_2) is a (i,j) sg^{*}T_{sa}^{**} space. A={b} is (i,j) - gs closed but not (i,j) g closed set .Hence (X, τ_1, τ_2) is not a (i,j) -T_d space. Hence (i,j) T_dness is independent from (i,j) sg^{*}T_{sa}^{**}ness.



The above results can be represented in the following figure:

where $A \longrightarrow B$ represents A implies B and B need not imply A

A \triangleleft B represents A and B are independent.

Bibliography:

[1] Arockiarani.I and selvi.A, pairwise ψ -open sets in bitopological spaces (accepted on 4.7.11)

[2] Arya .S.P and Nour .T, characterizations of s-normal spaces , Indian.J.Pure appl.Math.,21(8) (1990),717-719

[3]Bhattacharya .P and Lahiri .B.K., semi generalized closed sets in topology ,Indian J.Math. 29(3) (1987),375-382

[4]Devi .R. Balachandran .K and Maki .H , Semi generalized homeomorphisms and generalized semi-

homeomorphisms, Indian j.pure.appl(math), 26(1995), 271-284.

[5]Kelly J.C proc .london.math,sci.13(1963),71-89

[6]Levine .N, semi-open sets and semi continuity in topological spaces, Amer.math, monthly, 70(1963) 36-41.

[7]Levine .N , Generalized closed sets in topology, Rend.circ, math.Palermo,19(2)(1970), 89-96

[8]Njastad .O, on some classes of nearly open sets, pacific .J.Math.,15(1965),961-970.

[9]Parimelazhagan .R and Subramania Pillai .V, strongly g^{*}-closed sets in topological spaces, IJCA, volume 6, (30)(2012),1481-1489.

[10] Paulin Mary Helen .M , Veronica Vijayan, Ponnuthai Selvarani .S ,g**-closed sets in topological spaces , IJMA, 3(5),2012,1-15.

[11]Sheik John .M and Sundaram .P , Indian J.Pure Appl.Math., 35(1)(2004),71-80.

International Journal of Mathematics Trends and Technology – Volume 6 – February 2014

[12]Tantawy.O.A.E.I and H.M.abu donia, generalized separation axioms in bitopological spaces. The Arabian JI for science and Engg.Vol.30.No.1A(2005),117-129

[13] Veera Kumar .M.K.R.S ,mem.fac.sci.Kochi Univ.(Math.),21(2000),1-19.

[14] Veera Kumar .M.K.R.S , Between semiclosed sets and semipreclosed sets, Rend.Instint,

Univ.Trieste(Italy) XXXII,25-41(2000).

[15]Veronica Vijayan, Priya .F, α^* -closed sets in Topological space IJCA Issue 3,volume 4,(July-August 2013) ISSN :2250-1797.

[16]Veronica Vijayan, Thenmozhi.B, strongly g*-closed set in bitopological spaces, IJCA Issue 3, Volume 3(May-june 2013)ISSN :2250-1797.

[17]Veronica Vijayan, K.S. Sangeetha, α^{**} -closed sets in Topological spaces ,IJCA Issue 3,Volume 6,(November-December 2013) ISSN 2250-1797.