Appell Transforms Associated With Expansions in Terms of Generalized Heat Polynomials

B.B.Waphare
MIT ACSC, Alandi, Tal: Khed, Dist: Pune, Pin: 412 105, Maharashtra, India.

Abstract: In this paper we have discussed the regions of convergence of the series $\sum_{n=0}^{\infty} a_{n} p_{n, \alpha, \beta}(x, t)$ and $\sum_{n=0}^{\infty} b_{n} W_{n, \alpha, \beta}\left(x_{1} t\right)$.We have also discussed the class H^{*} of generalized temperature functions having the Huygens property. Finally expansions for generalized temperature functions in terms of polynomials are derived and criteria for the expansions of functions in terms of $W_{n, \alpha, \beta}(x, t)$ is also established.
Keywords: Generalized heat polynomials, Appell transforms, generalized temperature function, Huygens property

1. INTRODUCTION

Rosenbloom and Widder [8] discussed expansions of solutions $u(x, t)$ of the heat equation $u_{x x}=u_{t}$ in series of polynomial solutions $v_{n}(x, t)$ and of their Apell transforms $W_{n}(x, t)$. It is our goal to extend this study by considering the generalized heat equation.

$$
\begin{equation*}
\Delta_{x} u(x, t)=\frac{\partial}{\partial t} u(x, t) \tag{1.1}
\end{equation*}
$$

where $\Delta_{x} f(x)=f^{\prime \prime}(x)+\frac{4 \alpha}{x} f^{\prime}(x), \alpha$ a fixed positive number, and by seeking criteria for representing solutions of (1.1) in either of the form

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{n} P_{n, \alpha, \beta}(x, t) \tag{1.2}
\end{equation*}
$$

or

$$
\begin{equation*}
\sum_{n=0}^{\infty} b_{n} W_{n, \alpha, \beta}(x, t) \tag{1.3}
\end{equation*}
$$

where $P_{n, \alpha, \beta}(x, t)$ is the polynomial solution of (1.1) given explicitly by

$$
P_{n, \alpha, \beta}(x, t)=\sum_{k=0}^{n} 2^{2 k}\binom{n}{k} \frac{\Gamma(3 \alpha+\beta+n)}{\Gamma(3 \alpha+\beta+n-k)} x^{2 n-2 k} t^{k},
$$

and $W_{n, \alpha, \beta}(x, t)$ is its Appell transform. We note that $P_{n, 0}(x, t)=v_{2 n}(x)$ the ordinary heat polynomials of even order defined in [8, p.222]. Also, $P_{n, 0}(x,-1)=H_{2 n}(x / 2)$ the Hermite polynomials of even order defined in [1; p. 222].

We establish the fact that, in general, the series (1.2) converges in a strip $|t|<\sigma$, whereas (1.3) converges in a half plane $\sigma<t<\infty$. The representation of $u(x, t)$ by (1.2) for $|t|<\sigma$ is found to be valid if and only if $u(x, t)$ has Huygens property defined in $\S 4$, in that strip. These points up the analogy between expansions in terms of generalized heat polynomials for functions with the Huygens property and expansions in a Taylor series for analytic functions. The Huygens property is not sufficient for representing a function by (1.3), and, in this case, an additional integrability assumption is required.

2. SOME DEFINITIONS AND PRELIMINARY RESULTS

The generalized heat polynomial $P_{n, \alpha, \beta,}(x, t)$ is a polynomial of degree $2 n$ in x and n in t given by

$$
\begin{equation*}
P_{n, \alpha, \beta}(x, t)=\sum_{k=0}^{n} 2^{2 k}\binom{n}{k} \frac{\Gamma(3 \alpha+\beta+n)}{\Gamma(3 \alpha+\beta+n-k)} x^{2 n-2 k} t^{k}, \tag{2.1}
\end{equation*}
$$

where $\left(\alpha-\beta+\frac{1}{2}\right)$ a fixed positive number. For all values of its variables, the generalized heat polynomials is readily shown to satisfy the generalized heat equation.

$$
\begin{equation*}
\Delta_{x} u(x, t)=\frac{\partial}{\partial t} u(x, t) \tag{2.2}
\end{equation*}
$$

A C^{2}-function $u(x, t)$ belongs to class H , for $a<t<b$, and is called a generalized temperature function if and only if it is a solution of (2.2). The fundamental solution of (2.2) is the function $G(x ; t)$, where

$$
\begin{equation*}
G(x, y ; t)=\left(\frac{1}{2 t}\right)^{3 \alpha+\beta} e^{-\left(x^{2}+y^{2} / 4 t\right)} g\left(\frac{x y}{2 t}\right), \tag{2.3}
\end{equation*}
$$

with

$$
g(z)=2^{\alpha-\beta} \Gamma(3 \alpha+\beta) z^{-(\alpha-\beta)} I_{\alpha-\beta}(z),
$$

$I_{\lambda}(z)$ being the Bessel function of order λ of imaginary argument and $G(x ; t)=G(x, 0 ; t)$. Properties of $G(x, y ; t)$ are studied in detail in [2]. Corresponding to $P_{n, \alpha, \beta}(x, t)$ is its Appell transform $W_{n, \alpha, \beta}(x, t)$ given by

$$
\begin{equation*}
W_{n, \alpha, \beta}(x, t)=G(x, t) P_{n, \alpha, \beta}\left(\frac{x}{t},-\frac{1}{t}\right), t>0 . \tag{2.4}
\end{equation*}
$$

It follows from (2.1) that

$$
\begin{equation*}
W_{n, \alpha, \beta}(x, t)=t^{-2 n} G(x, t) P_{n, \alpha, \beta}(x,-t) \tag{2.5}
\end{equation*}
$$

$W_{n, \alpha, \beta}(x, t)$ likewise satisfies the generalized heat equation (2.2).
An integral representation for the generalized heat polynomial is given by the following result.
Lemma 2.1: For $0 \leq x<\infty, t>0$,

$$
\begin{equation*}
P_{n, \alpha, \beta}(x, t)=\int_{0}^{\infty} y^{2 n} G(x, y ; t) d \mu(y), d \mu(x)=2^{-(\alpha-\beta)}[\Gamma(3 \alpha+\beta)]^{-1} x^{4 \alpha} d x \tag{2.6}
\end{equation*}
$$

Proof: We have

$$
\int_{0}^{\infty} y^{2 n} G(x, y ; t) d \mu(y)=\left(\frac{1}{2 t}\right) e^{-x^{2 / 4 t}} x^{-(\alpha-\beta)} \int_{0}^{\infty} e^{-y^{2} / 4 t} y^{2 n+3 \alpha+\beta} I_{\alpha-\beta}\left(\frac{x y}{2 t}\right) d y,
$$

and the result follows by [10; p.394].
By Theorem 5.3 of [2], it is clear that the integral (2.6) represents an analytic function of x since

$$
\begin{equation*}
P_{n, \alpha, \beta}(x,-t)=(-1)^{n} P_{n, \alpha, \beta}(i x, t), \tag{2.7}
\end{equation*}
$$

the following corollary is immediate.
Corollary 2.2: For $0 \leq x<\infty, t>0$,

$$
\begin{equation*}
P_{n, \alpha, \beta}(x,-t)=(-1)^{n} \int_{0}^{\infty} y^{2 n} G(i x, y ; t) d \mu(y) . \tag{2.8}
\end{equation*}
$$

We next establish that $x^{2 n}$ is the Poisson-Hankel integral transform of $P_{n, \alpha, \beta}(x,-t)$.

Lemma 2.3: For $0 \leq x<\infty, t>0$,

$$
\begin{equation*}
x^{2 n}=\int_{0}^{\infty} G(x, y ; t) P_{n, \alpha, \beta}(y,-t) d \mu(y) . \tag{2.9}
\end{equation*}
$$

Proof : By (2.1) and an appeal to (2.6), we have

$$
\begin{align*}
\int_{0}^{\infty} G(x, y ; t) & P_{n, \alpha, \beta}(y,-t) d \mu(y) \\
& =\sum_{k=0}^{n}(-1)^{k} 2^{2 k}\binom{n}{k} \frac{\Gamma(3 \alpha+\beta+n)}{\Gamma(3 \alpha+\beta+n-k)} t^{k} P_{n-k, \alpha, \beta}(x, t) . \tag{2.10}
\end{align*}
$$

Another application of definition (2.1) and an inversion of the order of summation on the right of (2.10) yields

$$
\begin{equation*}
\sum_{m=o}^{n} 2^{2 m}\binom{n}{m} \frac{\Gamma(3 \alpha+\beta+n)}{\Gamma(3 \alpha+\beta+n-k)} x^{2 n-2 m} t^{m} \sum_{k=o}^{m}(-1)^{k}\binom{m}{k} . \tag{2.11}
\end{equation*}
$$

As the inner sum of (2.11) vanishes when $m \neq 0$, and $=1$ when $m=0$, the result follows.
Now we derive a generating function for the generalized heat polynomials.
Lemma 2.4: For $o \leq x<\infty,-\infty<t<\infty, z<1 / 4 t$,

$$
\begin{equation*}
\left(\frac{1}{1-4 z t}\right)^{3 \alpha+\beta} e^{\left(x^{2} z / 1-4 z t\right)}=\sum_{n=o}^{\infty} \frac{z^{n}}{n!} P_{n, \alpha, \beta}(x, t) . \tag{2.12}
\end{equation*}
$$

Proof: By (2.6), we have, for $t>0$,

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{z^{n}}{n!} P_{n, \alpha, \beta}(x, t) & =\int_{0}^{\infty} G(x, y ; t) d \mu(y) \sum_{n=0}^{\infty} \frac{\left(z y^{2}\right)^{n}}{n!} \\
& =\int_{0}^{\infty} e^{z y^{2}} G(x, y ; t) d \mu(y) \\
& =\left(\frac{1}{1-4 z t}\right)^{3 \alpha+\beta} e^{\left(x^{2} z / 1-4 z t\right)}, z<\frac{1}{4 t},
\end{aligned}
$$

where the interchange of summation and integration is valid since

$$
\int_{0}^{\infty} e^{z y^{2}} e^{-y^{2 / 4 t}} g\left(\frac{x y}{z t}\right) d \mu(y)<\int_{0}^{\infty} e^{-y^{2}(1 / 4 t-z)} e^{x y / 2 t} d \mu(y)<\infty, z<\frac{1}{4 t}
$$

For $t=0$, the Lemma is obvious and for $t<0$ it may be established similarly by an appeal to (2.8).
From (2.12), a corresponding generating function for $W_{n, \alpha, \beta}(x, t)$ is derived on appealing to (2.5).
Lemma 2.5: For $0 \leq x<\infty, z<\frac{1}{4 t}, t>0$,

$$
\begin{equation*}
G(x ; t+4 z)=\sum_{n=o}^{\infty} \frac{z^{n}}{n!} W_{n, \alpha, \beta}(x, t) . \tag{2.13}
\end{equation*}
$$

We may expand $G(x ; t+4 z)$ in a power series in z to get

$$
\begin{equation*}
G(x ; t+4 z)=\sum_{n=o}^{\infty} \frac{z^{n}}{n!} 2^{2 n}\left(\frac{\partial}{\partial t}\right)^{n} G(x, t) . \tag{2.14}
\end{equation*}
$$

By comparing (2.13) and (2.14), we conclude that

$$
\begin{equation*}
W_{n, \alpha, \beta}(x, t)=2^{2 n}\left(\frac{\partial}{\partial t}\right)^{n} G(x, t) . \tag{2.15}
\end{equation*}
$$

But

$$
\begin{align*}
\left(\frac{\partial}{\partial t}\right)^{n} G(x ; t) & =\left(\frac{\partial}{\partial t}\right)^{n} \int_{o}^{\infty} h(x u) e^{-t u^{2}} d \mu(u), h(x)=g(i x), \\
& =(-1)^{n} \int_{o}^{\infty} u^{2 n} h(x u) e^{-t u^{2}} d \mu(u) \tag{2.16}
\end{align*}
$$

so that we have the following integral representation for $W_{n, \alpha, \beta}(x, t)$.
Lemma 2.6: For $t>0,0 \leq x<\infty$,

$$
\begin{equation*}
W_{n, \alpha, \beta}(x, t)=\int_{0}^{\infty}(-1)^{n}(2 u)^{2 n} h(x u) e^{-t u^{2}} d \mu(u) \tag{2.17}
\end{equation*}
$$

Another useful generating function for $P_{n, \alpha, \beta}(x, t)$ is given by the following
Lemma 2.7: For $o \leq x<\infty,-\infty<t<\infty$, all complex z,

$$
\begin{equation*}
e^{4 z^{2} t} g(2 x z)=\sum_{n=0}^{\infty} \frac{\Gamma(3 \alpha+\beta)}{\Gamma(3 \alpha+\beta+n)} \cdot \frac{z^{2 n}}{n!} P_{n, \alpha, \beta}(x, t) \tag{2.18}
\end{equation*}
$$

Proof: For $t>0$, by (2.6) and the definition of $g(z)$, we have

$$
\begin{array}{rl}
\sum_{n=0}^{\infty} \frac{\Gamma(3 \alpha+\beta)}{\Gamma(3 \alpha+\beta+n)} \cdot \frac{z^{2 n}}{n!} P_{n, \alpha, \beta}(x, t) & =\int_{0}^{\infty} G(x, y ; t) d \mu(y) \sum_{n=0}^{\infty} \frac{\Gamma(3 \alpha+\beta)(z y)^{2 n}}{n!\Gamma(3 \alpha+\beta+n)} \\
& =\int_{0}^{\infty} g(2 z y) G(x, y ; t) d \mu(y) \\
=e^{4 z^{2}} & g(2 x z)
\end{array}
$$

where the interchange of summation and integration is valid since

$$
\begin{gathered}
\int_{0}^{\infty} e^{-y^{2} / 4 t} g\left(\frac{x y}{2 t}\right) g(2|z| y) d \mu(y) \leq \int_{0}^{\infty} e^{-y^{2} / 4 t+x y / 2 t+2| | y} d \mu(y), \\
<\infty, t>0
\end{gathered}
$$

Again, for $t<0$, the Lemma is similarly proved by an appeal to (2.8).
The dual for $W_{n, \alpha, \beta}(x, t)$, a consequence of (2.5) and (2.18) is the following
Lemma 2.8: For $t>0,0 \leq x<\infty$, and all complex z ,

$$
\begin{equation*}
G(x, z ; t)=\sum_{n=o}^{\infty} k_{n} W_{n, \alpha, \beta}(x, t) z^{2 n} \tag{2.19}
\end{equation*}
$$

where

$$
\begin{equation*}
k_{n}=\Gamma(3 \alpha+\beta) /\left[2^{4 n} n!\Gamma(3 \alpha+\beta+n)\right] \tag{2.20}
\end{equation*}
$$

An important property of the sets $P_{n, \alpha, \beta}(x, t)$ and $W_{n, \alpha, \beta}(x, t)$ is that they form a biorthogonal sytem. We determine this fact.

Theorem 2.9: For $t>0$,

$$
\begin{equation*}
\int_{0}^{\infty} W_{n, \alpha, \beta}(x, t) P_{m, \alpha, \beta}(x,-t) d \mu(x)=\delta_{m n} k_{n} \tag{2.21}
\end{equation*}
$$

where k_{n} is given by (2.20).
Proof: We have

$$
\begin{equation*}
P_{n, \alpha, \beta}(x,-t)=(-1)^{n} 2^{2 n} n!t^{n} L_{n}^{\alpha-\beta}\left(\frac{x^{2}}{4 t}\right) \tag{2.22}
\end{equation*}
$$

where $L_{n}^{a}(x)$ is the generalized Laguerre polynomial, [1; p.188]. The result then follows immediately from the definitions and the fact that

$$
\int_{0}^{\infty} e^{-x} x^{a} L_{m}^{a}(x) L_{n}^{a}(x) d x=\delta_{m n} \frac{\Gamma(a+n+1)}{\Gamma(n+1)}
$$

(Sec [1; p.188]).

Next, we establish a fundamental generating function for the biorthogonal set

$$
P_{n, \alpha, \beta}(x,-t), W_{n, \alpha, \beta}(x, t) .
$$

Theorem 2.10: For $0 \leq x, y<\infty,|t|<s, s>0$,

$$
\begin{equation*}
G(x, y ; s+t)=\sum_{n=o}^{\infty} k_{n} W_{n, \alpha, \beta}(y, s) P_{n, \alpha, \beta}(x, t) \tag{2.23}
\end{equation*}
$$

where k_{n} is defined in (2.20).
Proof: By (2.17), for $s>0$, we have

$$
\begin{aligned}
\sum_{n=0}^{\infty} k_{n} P_{n, \alpha, \beta}(x, t) W_{n, \alpha, \beta}(y, s) & =\sum_{n=0}^{\infty} k_{n} P_{n, \alpha, \beta}(x, t)(-1)^{n} 2^{2 n} \int_{0}^{\infty} u^{2 n} h(y u) e^{-s u^{2}} d \mu(u) \\
& =\int_{0}^{\infty} h(y u) e^{-s u^{2}} d \mu(u) \sum_{n=0}^{\infty}(-1)^{n}(2 u)^{2 n} k_{n} P_{n, \alpha, \beta}(x, t)
\end{aligned}
$$

By (2.18), the right hand side becomes

$$
\int_{0}^{\infty} h(y u) e^{-s u^{2}} e^{-u^{2} t} h(x u) d \mu(u)=G(x, y ; s+t), s+t>0
$$

The interchange of summation and integration is valid since

$$
\begin{aligned}
& \quad \int_{0}^{\infty}|h(y u)| e^{-s u^{2}} d \mu(u) \sum_{n=0}^{\infty}(2 u)^{2 n} k_{n}\left|P_{n, \alpha, \beta}(x, t)\right| \\
& \quad \leq \int_{0}^{\infty} e^{-s u^{2}} d \mu(u) \sum_{n=0}^{\infty}(2 u)^{2 n} k_{n} P_{n, \alpha, \beta}(x,|t|) \\
& \leq \int_{0}^{\infty} e^{-s u^{2}} e^{u^{2}|t|} g(x u) d \mu(u) \\
& \leq \int_{0}^{\infty} e^{-(s-t \mid) u^{2}} e^{x u} d \mu(u)<\infty,|t|<s,
\end{aligned}
$$

and the Theorem is proved.

3. REGION OF CONVERGENCE

In order to establish the regions of convergence of the series

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{n} P_{n, \alpha, \beta}(x, t) \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=0}^{\infty} b_{n} W_{n, \alpha, \beta}(x, t) \tag{3.2}
\end{equation*}
$$

we need some preliminary results.
Lemma 3.1: Let the series (3.1) converge at $\left(x_{0}, t_{0}\right), x_{0} \geq 0, t_{0}>0$. Then

$$
\begin{equation*}
a_{n}=\mathrm{O}\left(\frac{e}{4 n t_{0}}\right)^{n}, n \rightarrow \infty . \tag{3.3}
\end{equation*}
$$

Proof: The assumed convergence of the series (3.1) at $\left(x_{0}, t_{0}\right)$ implies that the general term tends to zero as $n \rightarrow \infty$. Hence we have $a_{n}=\mathrm{O}\left(\frac{1}{P_{n, \alpha, \beta}\left(x_{0}, t_{0}\right)}\right), n \rightarrow \infty ;$

However, by the definition of $P_{n, \alpha, \beta}\left(x_{0}, t_{0}\right)$, it is clear that

$$
\begin{equation*}
P_{n, \alpha, \beta}\left(x_{0}, t_{0}\right) \geq P_{n, \alpha, \beta}\left({ }_{0}, t_{0}\right)=2^{2 n} \frac{\Gamma(3 \alpha+\beta+n)}{\Gamma(3 \alpha+\beta)} t_{0}^{n} . \tag{3.5}
\end{equation*}
$$

By applying (3.5) to (3.4) and using Stirling's formula, we establish the Lemma.
We need an asymptotic estimate of $P_{n, \alpha, \beta}(x,-t)$ for our next result. To this end we note that by [1; p. 199], we have for $n \rightarrow \infty$,

$$
L_{n}^{\alpha-\beta}\left(\frac{x^{2}}{4 t}\right)=\pi^{-1 / 2} e^{x^{2} / 8 t}\left(\frac{x^{2}}{4 t}\right)^{-\alpha} n^{-\beta} \cos \left(\frac{n^{1 / 2} x}{t^{1 / 2}}-\alpha \pi\right)+\mathrm{O}\left(n^{-\alpha-2 \beta}\right),
$$

uniformly for $0<\epsilon \leq\left(x^{2} / 4 t\right) \leq \omega<\infty$. Now, by (2.22) and Stirling's formula, it follows that

$$
P_{n, \alpha, \beta}(x,-t)=(-1)^{n} 2^{1 / 2}\left(\frac{4 n t}{e}\right)^{n+\alpha} e^{x^{2} / 8 t+\alpha} x^{-2 \alpha}\left[\cos \left(\frac{n^{1 / 2} x}{t^{1 / 2}}-\alpha \pi+\mathrm{O}\left(n^{-1 / 2}\right)\right)\right] .
$$

Thus we may derive the following:
Lemma 3.2: If the series (3.1) converges for each point (x, t) on the line segment $0<a \leq x \leq b, t=t_{0}<0$, then

$$
\begin{equation*}
a_{n}=o\left(\frac{e}{4 n\left|t_{0}\right|}\right)^{n+\alpha}, n \rightarrow \infty . \tag{3.7}
\end{equation*}
$$

Proof: We give a proof by contradiction. Let

$$
c_{n}=\left(\frac{4 n \tau}{e}\right)^{n+\alpha}, n \rightarrow \infty
$$

and assume that $\lim _{n \rightarrow \infty} a_{n} c_{n} \neq 0$. Then there exists a subsequence of positive integers m for which, for some number A,

$$
\left|a_{m} c_{m}\right|>A>0 .
$$

Now the convergence of the series (3.1) for $a \leq x \leq b$ implies that

$$
\lim _{m \rightarrow \infty} \frac{a^{2} m P_{m, \alpha, \beta}^{2}\left(x, t_{0}\right)}{a_{m}^{2} c_{m}^{2}}=0 .
$$

Further, by (3.6), we have

$$
\begin{aligned}
& \left|\frac{P_{m, \alpha, \beta}(x,-r)}{c_{m}}\right|=2^{1 / 2} e^{x^{2} / 8 t+\alpha} \cdot x^{-2 \alpha}\left[\cos \left(\frac{m^{1 / 2} x}{\tau^{1 / 2}}-\alpha \pi\right)+\mathrm{O}\left(m^{-1 / 2}\right)\right] \\
& \quad \leq 2^{1 / 2} e^{b^{2} / 8 t+\alpha} a^{-4 \alpha}\left[1+\mathrm{O}\left(m^{-1 / 2}\right)\right] \\
& \quad \leq K m^{1 / 2},
\end{aligned}
$$

where K is a constant independent of x in $a \leq x \leq b$. Hence $\left(1 / c_{m}\right) P_{m, \alpha, \beta}(x,-\tau)$ is uniformly bounded in $a \leq x \leq b$. An appeal to the Lebesgue limit theorem thus yields

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \int_{a}^{b} \frac{P_{m, \alpha, \beta}^{2}\left(x, t_{o}\right)}{c_{m}^{2}} d x=0 \tag{3.8}
\end{equation*}
$$

But by (3.6), we have

$$
\begin{aligned}
& \int_{a}^{b} \frac{P_{m, \alpha, \beta}^{2}\left(x, t_{0}\right)}{c_{m}^{2}} d x \\
& =2 e^{2 \alpha} \int_{a}^{b} e^{x^{2} / 4 \tau} x^{-4 \alpha} \cos ^{2}\left(\frac{m^{1 / 2} x}{\tau^{1 / 2}}-\alpha \pi\right)+\mathrm{O}\left(m^{-1 / 2}\right) \\
& =e^{2 \alpha} \int_{a}^{b} e^{x^{2} / 4 \tau} x^{-4 \alpha} d x+e^{2 \alpha} \int_{a}^{b} e^{x^{2} / 4 \tau} x^{-4 \alpha} \cos \left(\frac{2 m^{1 / 2} x}{\tau^{1 / 2}}-2 \alpha \pi\right) d x+\mathrm{O}\left(m^{-1 / 2}\right) \\
& =e^{2 \alpha} \int_{a}^{b} e^{x^{2} / 4 \tau} x^{-4 \alpha} d x+e^{2 \alpha} \cos (2 \alpha \pi) \int_{a}^{b} e^{x^{2} / 4 \tau} x^{-4 \alpha} \cos \left(\frac{2 m^{1 / 2} x}{\tau^{1 / 2}}\right) d x \\
& +e^{2 \alpha} \sin (2 \alpha \pi) \int_{a}^{b} e^{x^{2} / 4 \tau} x^{-4 \alpha} \sin \left(\frac{2 m^{1 / 2} x}{\tau^{1 / 2}}\right) d x+\mathrm{O}\left(m^{-1 / 2}\right)
\end{aligned}
$$

By the Riemann-Lebesgue theorem, both the second and third integrals on the right vanish as $m \rightarrow \infty$. It, therefore follows by (3.8) that

$$
e^{2 \alpha} \int_{a}^{b} e^{x^{2} / 4 \tau} x^{-4 \alpha} d x=0
$$

which is clearly a contradiction. Hence our assumption that $\lim _{n \rightarrow \infty} a_{n} c_{n} \neq 0$ is false and the Lemma is proved.
Next we need to determine bounds for the generalized heat polynomials. We first establish the following inequality.
Lemma 3.3: For $0 \leq x<\infty, t>0, \delta>0$,

$$
\begin{equation*}
\left|P_{n, \alpha, \beta}(x, t)\right| \leq\left(1+\frac{t}{\delta}\right)^{3 \alpha+\beta}\left[\frac{4 n(t+\delta)}{e}\right]^{n} e^{x^{2} / 4 \delta}, n=1,2 \tag{3.9}
\end{equation*}
$$

Proof: This is an immediate consequence of (2.6) and the elementary inequality

$$
x^{2 n} e^{-\left[x^{2} / 4(t+\delta)\right]} \leq\left[\frac{4(t+\delta) n}{e}\right]^{n} .
$$

By [1; p. 207], (3.6) and Stirling's formula, we also have the following result.

Lemma 3.4: For $0 \leq x<\infty, t>0$ and some constant A,

$$
\begin{equation*}
\left|P_{n, \alpha, \beta}(x, t)\right| \leq A\left[\frac{4 t(n+\alpha-\beta)}{e}\right](n+\alpha-\beta)^{2 \alpha} e^{x^{2} / 8 t} . \tag{3.10}
\end{equation*}
$$

Further, (3.10) and (2.5) yields a bound for $W_{n, \alpha, \beta}(x, t)$.
Lemma 3.5: For $0 \leq x<\infty, t>0$ and some constant A,

$$
\begin{equation*}
\left|W_{A, \alpha, \beta}(x, t)\right| \leq A\left[\frac{4(n+\alpha-\beta)}{e t}\right]^{n} \frac{(n+\alpha-\beta)}{t^{3 \alpha+\beta}} e^{-x^{2} / 8 t} . \tag{3.11}
\end{equation*}
$$

Now we are ready to establish the region of convergence of the series (3.1).

Theorem 3.6: If

$$
\begin{equation*}
\overline{\overline{\lim }}\left|a_{n}\right|^{1 / n} \frac{4 n}{e}=\frac{1}{\sigma}<\infty, \tag{3.12}
\end{equation*}
$$

then the series (3.1) converges absolutely in the strip $|t|<\sigma$ and does not converge everywhere in any including strip.
Proof: If $\sigma=0$, the strip reduces to a straight line, and if $\sigma=\infty$, the strip is the whole plane. Suppose that σ is a finite positive number. If $0<\theta<1$, then (3.12) implies the existence of a number $N=N(\theta)$ such that

$$
\begin{equation*}
\left|a_{n}\right| \leq\left(\frac{e}{4 n \sigma \theta}\right)^{n}, n \geq N . \tag{3.13}
\end{equation*}
$$

Now, for $t>0$, we have by (3.13) and (3.9),

$$
\begin{aligned}
\sum_{n=0}^{\infty}\left|a_{n} P_{n, \alpha, \beta}(x, t)\right| & \leq \sum_{n=0}^{\infty}\left(\frac{e}{4 n \sigma \theta}\right)^{n}\left(1+\frac{t}{\delta}\right)^{3 \alpha+\beta}\left[\frac{4 n(t+\delta)}{e}\right]^{n} e^{x^{2} / 4 \delta} \\
& =\left(1+\frac{t}{\delta}\right)^{3 \alpha+\beta} e^{x^{2} / 4 \delta} \sum_{n=o}^{\infty}\left(\frac{t+\delta}{\sigma \theta}\right)^{n} .
\end{aligned}
$$

Since the dominating series on the right converges for $t+\delta<\sigma \theta$, and since δ may be taken arbitrarily close to 0 and θ arbitrarily close to 1 , it follows that the series (3.1) converges absolutely for $0 \leq t<\sigma$. Suppose now that $t<0$. Then by (3.13) and (3.10), we have

$$
\sum_{n=0}^{\infty}\left|a_{n} P_{n, \alpha, \beta}(x, t)\right| \leq A \sum_{n=0}^{\infty}\left(\frac{e}{4 n \sigma \theta}\right)^{n}\left[\frac{4 t(n+\alpha-\beta)}{e}\right]^{n}(n+\alpha-\beta)^{2 \alpha} e^{x^{2} \delta t}
$$

and again, the dominating series on the right converges for $-\sigma \theta<t<0$, or since θ may be taken arbitrarily close to 1 , for $-\sigma<t<0$.

To prove the second part of the theorem, assume that the series (3.1) converges everywhere in the including strip $-\sigma<t<\sigma^{\prime}, \sigma^{\prime}>\sigma$, or in $-\sigma^{\prime}<t<\sigma, \sigma^{\prime}>\sigma$. In the former case, for some $t_{0}, \sigma^{\prime}>t_{0}>\sigma$, we apply Lemma 3.1 to get

$$
a_{n}=\square\left(\frac{e}{4 n t_{0}}\right)^{n}, n \rightarrow \infty .
$$

Hence

$$
\overline{\lim _{n \rightarrow \infty}} \frac{4 n}{e}\left|a_{n}\right|^{1 / n} \leq \frac{1}{t_{0}}<\frac{1}{\sigma},
$$

contradicting the hypothesis. In the later case, we apply Lemma 3.2 with $-\sigma^{\prime}<t_{0}<-\sigma$, to obtain

$$
a_{n}=\square\left(\frac{e}{4 n\left|t_{0}\right|}\right)^{n+\alpha}, n \rightarrow \infty .
$$

whence

$$
\overline{\lim }_{n \rightarrow \infty} \frac{4 n}{e}\left|a_{n}\right|^{1 / n} \leq \frac{1}{\left|t_{0}\right|}<\frac{1}{\sigma},
$$

equally contradicting the hypothesis and to so the theorem is proved.
Next we show that within its strip of convergence, the series (3.1) represents a generalized temperature function. To state the result fully, we need the following definition.
Definition 3.7: An even entire function

$$
f(x)=\sum_{n=0}^{\infty} a_{n} x^{2 n}
$$

belongs to the class (ρ, τ) or has growth (ρ, τ) if and only if

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{n}{e \rho}\left|a_{n}\right|^{\rho / n} \leq \tau \tag{3.14}
\end{equation*}
$$

Theorem 3.8: Let

$$
\begin{equation*}
u(x, t)=\sum_{n=0}^{\infty} a_{n} P_{n, \alpha, \beta}(x, t), \tag{3.15}
\end{equation*}
$$

the series converging for $|t|<\sigma$. Then $u(x, t) \in H$ there and $u(x, 0)$ is an even function of growth $(1,1 / 4 \sigma)$.

Proof: Since $P_{n, \alpha, \beta}(x, t) \in H, u(x, t)$ will also be a generalized temperature function if we can justify differentiating under the summation sign. To this end, we must show that

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{n} \frac{\partial}{\partial t} P_{n, \alpha, \beta}(x, t) \tag{3.16}
\end{equation*}
$$

converges uniformly. This will be so if the series (3.16) is dominated by a convergent series independent of x and t.
Now, for $o<t_{0}<\sigma$, we have, by Lemma 3.1,

$$
\begin{equation*}
a_{n}=\mathrm{O}\left(\frac{e}{4 n t_{0}}\right)^{n}, n \rightarrow \infty \tag{3.17}
\end{equation*}
$$

Further, by Lemma 3.3, it follows that, for $t>0, \delta>0$,

$$
P_{n-1, \alpha, \beta}(x, t) \leq\left(1+\frac{t}{\delta}\right)^{3 \alpha+\beta}\left[\frac{4(n-1)(t+\delta)}{e}\right]^{n-1} e^{x^{2} / 4 \delta}
$$

With these bounds, we have

$$
\begin{aligned}
& \sum_{n=0}^{\infty} a_{n} \frac{\partial}{\partial t} P_{n, \alpha, \beta}(x, t) \\
& =\sum_{n=0}^{\infty} a_{n} 4 n(n+3 \alpha+\beta) P_{n-1, \alpha, \beta}(x, t) \\
& \leq K \sum_{n=0}^{\infty}\left(\frac{e}{4 n t_{o}}\right)^{n} 4 n(n+3 \alpha+\beta)\left(1+\frac{t}{\delta}\right)^{3 \alpha+\beta}\left[\frac{4(n-1)(t+\delta)}{e}\right]^{n-1} e^{x^{2} / 4 t} \\
& \leq K \frac{(t+\delta)^{\alpha-\beta}}{\delta^{3 \alpha+\beta}} e^{1+x^{2} / 4 \delta} \sum_{n=0}^{\infty}(n+3 \alpha+\beta)\left[\frac{(n-1)}{n}\right]^{n-1}\left(\frac{t+\delta}{t_{0}}\right)^{n}
\end{aligned}
$$

The series on the right converges for $|t+\delta|<t_{0}$ and since δ may be taken arbitrarily close to o and to arbitrarily close to $\sigma, u(x, t) \in H$ throughout the strip $|t|<\sigma$.

Finally, we have from (3.15) and the definition of $P_{n, \alpha, \beta}(x, t)$,

$$
u(x, 0)=\sum_{n=o}^{\infty} a_{n} x^{2 n}
$$

so that $u(x, 0)$ is an even function. Moreover by (3.17),

$$
\overline{\lim }_{n \rightarrow \infty} \frac{n}{e}\left|a_{n}\right|^{1 / n} \leq \frac{1}{4 t_{0}}
$$

so that $u(x, 0)$ is of growth $\left(1,1 / 4 t_{0}\right)$ and allowing t_{0} to tend to σ. We derive the desired result.
Corollary 3.9: For each fixed $t, 0<t<\sigma$, the series (3.1) converges uniformly in any compact region of the complex x plane.

Proof: Let $x=x_{1}+i x_{2}$. Now, by (2.6), we have for $\left|x_{1}\right| \leq R$,

$$
\left|P_{n, \alpha, \beta}(x, t)\right| \leq\left(\frac{1}{2 t}\right)^{3 \alpha+\beta}\left|e^{-x^{2} / 4 t}\right| \int_{0}^{\infty} e^{R|y| 2 t} e^{-y^{2} / 4 t} y^{2 n} d \mu(y)
$$

Hence, for $\left|x_{1}\right| \leq R,\left|x_{2}\right| \leq R$, we have

$$
\left|\sum_{n=0}^{\infty} a_{n} P_{n, \alpha, \beta}(x, t)\right| \leq\left(\frac{1}{2 t}\right)^{3 \alpha+\beta} e^{R^{2} / 4 t} \int_{0}^{\infty} e^{R|y| / 2 t} e^{-y^{2} / 4 t} d \mu(y) \sum_{n=0}^{\infty}\left|a_{n}\right| y^{2 n},
$$

where the interchange of summation and integration is valid if

$$
\begin{equation*}
\int_{0}^{\infty} e^{R|y| 2 t} e^{-y^{2} / 4 t} d \mu(y) \sum_{n=0}^{\infty}\left|a_{n}\right| y^{2 n}<\infty \tag{3.18}
\end{equation*}
$$

But, by the theorem, $u(x, 0)$ has growth $(1,1 / 4 \sigma)$, and hence, so does $\sum_{n=0}^{\infty}\left|a_{n}\right| x_{n}^{2}$, so that, for $0<t<\sigma^{\prime}<\sigma$,

$$
\sum_{n=0}^{\infty}\left|a_{n}\right| y^{2 n}<M \quad e^{y^{2} / 4 \sigma^{\prime}},
$$

For a suitable constant m . Thus we have

$$
\int_{0}^{\infty} e^{R \mid y / 2 t} e^{-y^{2} / 4 t} d \mu(y) \sum_{n=0}^{\infty}\left|a_{n}\right| y^{2 n}<M \int_{0}^{\infty} e^{R|y| 2 t} e^{-y^{2} / 4 t+y^{2} / 4 \sigma} d \mu(y)<\infty
$$

Now by the Weierstrass M-test, we have thus established that the series (3.1) converges uniformly in very square of the complex plane.

Now we determine the region of convergence for the series (3.2).
Theorem 3.10: Let

$$
\begin{equation*}
\overline{\lim _{n \rightarrow \infty}} \frac{4 n}{e}\left|b_{n}\right|^{1 / n}=\sigma<\infty, \tag{3.19}
\end{equation*}
$$

Then the series (3.2) converges absolutely in the half plane $t>\sigma$, and does not converge everywhere in any including half plane.

Proof: If $0<\theta<1$, then (3.19) implies the existence of a number $N=N(\theta)$ such that

$$
\begin{equation*}
\left|b_{n}\right| \leq\left(\frac{e \sigma}{4 n \theta}\right)^{n}, \quad n \geq N . \tag{3.20}
\end{equation*}
$$

Hence this bound and (3.11) yields

$$
\left|\sum_{n=0}^{\infty} b_{n} W_{n, \alpha, \beta}(x, t)\right| \leq \frac{A e^{-x^{2} / 8 t}}{t^{3 \alpha+\beta}} \sum_{n=0}^{\infty}\left(\frac{e \sigma}{4 n \theta}\right)^{n}\left[\frac{4(n+\alpha-\beta)}{e t}\right]^{n}(n+\alpha-\beta)^{2 \alpha} .
$$

It is clear that the dominating series converges for $\theta t>\sigma$ and since θ may be chosen arbitrarily close to 1 , we have established the absolute convergence of the series (3.2) for $t>\sigma$.

To prove that the half plane of convergence cannot be extended, assume that the series (3.2) converges everywhere in a half plane including $t>\sigma$. Then it follows that the series

$$
\sum_{n=0}^{\infty} b_{n} W_{n, \alpha, \beta}\left(x, t_{0}\right)=G\left(x ; t_{0}\right) \sum b_{n} t_{0}^{-2 n} P_{n, \alpha, \beta}\left(x,-t_{0}\right)
$$

converges for all x and some $t_{0}<\sigma$. By Lemma 3.2, we have $b_{n}=\mathrm{O}\left(\frac{e t_{0}}{4 n}\right)^{n+\alpha}, n \rightarrow \infty$, or

$$
\overline{\lim _{n \rightarrow \infty}} \frac{4 n}{e}\left|b_{n}\right|^{1 / n} \leq t_{0}<\sigma,
$$

contradicting hypothesis (3.19). Since $W_{n, \alpha, \beta}(x, t)$ is not defined for $t \leq o$, the second fact of the theorem is meaning-less if $\sigma=0$.

The result corresponding to Theorem 3.8 for the series (3.2) has a similar proof and is stated as follows.

Theorem 3.11: Let

$$
u(x, t)=\sum_{n=0}^{\infty} b_{n} W_{n, \alpha, \beta}(x, t),
$$

the series converging for $t>\sigma \geq 0$. Then $u(x, t) \in H$ there.

4. THE HUYGENS PROPERTY

Significant in our theory is the class H^{*} of generalized temperature functions which have the Huygens property. We define the members of the class H^{*} as follows. :

Definition 4.1: A function $u(x, t) \in H^{*}$, or has the Huygens property, for $a<t<b$, if and only if $u \in H$ and

$$
\begin{equation*}
u(x, t)=\int_{0}^{\infty} G\left(x, y ; t-t^{\prime}\right) u\left(y, t^{\prime}\right) d \mu(y), \tag{4.1}
\end{equation*}
$$

for every $t, t^{\prime}, a<t^{\prime}<t<b$, the integral converging absolutely.
It is proved in [5] that any function $u(x, t)$ having a Poisson-Hankel-Stieltjes integral representation,

$$
\begin{equation*}
u(x, t)=\int_{0}^{\infty} G(x, y ; t) d(y) \tag{4.2}
\end{equation*}
$$

belongs to H^{*} in the strip of absolute convergence of (4.2). In particular, as established in [2], every positive generalized temperature function has a representation (4.2) and is thus a function of H^{*}.

It is of importance in our theory that the generalized heat polynomials and their Appell transforms have the Huygens property. Since for $0 \leq t<\infty, P_{n, \alpha, \beta}(x, t)$ is a positive generalized temperature function, it is a member of H^{*} in that interval. Moreover, $P_{n, \alpha, \beta}(x,-t) \in H$ for $-\infty<t<0$ and by an appeal to (2.8), it may readily be shown that $P_{n, \alpha, \beta}(x, t)$ satisfies the relation (4.1) for $-\infty<t<0$, so that $P_{n, \alpha, \beta}(x, t) \in H^{*}$ for $-\infty<t<\infty$. That $W_{n, \alpha, \beta}(x, t) \in H^{*}$ for $0<t<\infty$ follows from the fact that it is a member of H and by an application of (2.17), relation (4.1) may be established.

Note that we may use the fact that $P_{n, \alpha, \beta}(x, t) \in H^{*}$ to verify equation (2.9). For, by (4.1), we have, for $-\infty<-t<t^{\prime}<\infty$,

$$
P_{n, \alpha, \beta}\left(x, t^{\prime}\right)=\int_{0}^{\infty} G\left(x, y ; t^{\prime}+t\right) P_{n, \alpha, \beta}(y,-t) d \mu(y),
$$

and taking $t^{\prime}=0$, we obtain the desired relation.
Following [5], we can prove that following result.
Theorem 4.2: Let $g(x, t) \in H^{*}$ for $a<t<b$, and $h(x, t) \in H^{*}$ for $a<-t<b$. If

$$
\begin{equation*}
\int_{0}^{\infty}|g(y, t)| d \mu(y) \int_{0}^{\infty} G\left(y, u ; t^{\prime}-t\right)\left|h\left(u,-t^{\prime}\right)\right| d \mu(u)<\infty \tag{4.3}
\end{equation*}
$$

for $a<t<t^{\prime}<b$, then, for $a<t<b$,

$$
\begin{equation*}
\int_{0}^{\infty} g(y, t) h(y,-t) d \mu(y) \tag{4.4}
\end{equation*}
$$

is a constant.
Special cases of this theorem are of interest to us.

Corollary 4.3: If $u(x,-t) \in H^{*}$ for $0<t<\infty$, then

$$
\begin{equation*}
\int_{0}^{\infty} u(x,-t) W_{n, \alpha, \beta}(x, t) d \mu(x) \tag{4.5}
\end{equation*}
$$

is a constant.
Corollary 4.4: If $u(x, t) \in H^{*}$ for $0<t<\infty$, then

$$
\begin{equation*}
\int_{0}^{\infty} u(x, t) P_{n, \alpha, \beta}(x,-t) d \mu(x) \tag{4.6}
\end{equation*}
$$

is a constant.
Note that in each of these corollaries, hypothesis (4.3) is satisfied by an appeal to (3.11) and (3.10) respectively.

It was shown in [5] that a function with the Huygens property has a complex integral representation. Indeed, we established the following result.
Theorem 4.5: If $u(x, t) \in H^{*}$ for $a<t<b$, then for $a<t<t^{\prime}<b$

$$
\begin{equation*}
u(x, t)=\int_{0}^{\infty} G\left(i x, y ; t^{\prime}-t\right) u\left(i y, t^{\prime}\right) d \mu(y) \tag{4.7}
\end{equation*}
$$

This enables us to extend Theorem 4.2 further to include the following special case.
Theorem 4.6: If $u(x, t) \in H^{*}$ for $0<t<\infty$, then

$$
\begin{equation*}
\int_{0}^{\infty} u(i x, t) W_{n, \alpha, \beta}(x, t) d \mu(x) \tag{4.8}
\end{equation*}
$$

is a constant.
We conclude this section with two simple Lemmas.
Lemma 4.7: Let $u(x, t) \in H^{*}$ for $|t|<\sigma$. Then for $-\sigma<t^{\prime}<0$,

$$
\begin{equation*}
\int_{0}^{\infty} e^{y^{2} / 8 t^{\prime}}\left|u\left(y, t^{\prime}\right)\right| d \mu(y)<\infty . \tag{4.9}
\end{equation*}
$$

Proof: Clearly, for $0<-t^{\prime}<c$, we have

$$
\begin{aligned}
& \quad\left[\frac{1}{2\left(c-t^{\prime}\right)}\right]^{3 \alpha+\beta} \int_{0}^{\infty} e^{y^{2} / 8 t^{\prime}}\left|u\left(y, t^{\prime}\right)\right| d \mu(y) \\
& \leq \int_{0}^{\infty} G\left(y ; c-t^{\prime}\right)\left|u\left(y, t^{\prime}\right)\right| d \mu(y)
\end{aligned}
$$

and the dominating integral converges since $u(x, t) \in H^{*}$.
Lemma 4.8: Let $u(x, t) \in H^{*}$ for $a<t<b$. Then, for $a<t^{\prime}<t<b$,

$$
\begin{equation*}
u(i x, t)=\mathrm{O}\left(e^{\left[x^{2} / 4\left(t-t^{\prime}\right)\right]}\right), x \rightarrow \infty \tag{4.10}
\end{equation*}
$$

Proof: By Theorem 5.3 of [2] and the fact that $u(x, t) \in H^{*}$, we have

$$
|u(i x, t)|=\int_{0}^{\infty}\left|G\left(i x, y ; t-t^{\prime}\right)\right|\left|u\left(y, t^{\prime}\right)\right| d \mu(y), \leq e^{\left[x^{2} / 4\left(t-t^{\prime}\right)\right]} \int_{0}^{\infty} G\left(y ; t-t^{\prime}\right)\left|u\left(y, t^{\prime}\right)\right| d \mu(y)
$$

$a<t^{\prime}<t<b$.
Now the result is immediate when we note that the dominant integral converges as $u(x, t) \in H^{*}$.

5. HEAT POLYNOMIAL EXPANSIONS

In this section we derive expansions for generalized temperature functions in terms of the polynomials considered.
Theorem 5.1: A necessary and sufficient condition that

$$
\begin{equation*}
u(x, t)=\sum_{n=0}^{\infty} a_{n} P_{n, \alpha, \beta}(x, t), \tag{5.1}
\end{equation*}
$$

the series converging for $|t|<\sigma$, is that $u(x, t) \in H^{*}$. The coefficients a_{n} have either of the determinations

$$
\begin{equation*}
a_{n}=\frac{u^{(2 n)}(0,0)}{(2 n)!} \tag{5.2}
\end{equation*}
$$

or

$$
\begin{equation*}
a_{n}=k_{n} \int_{0}^{\infty} u(y,-t) W_{n, \alpha, \beta}(y, t) d \mu(y), \quad 0<t<\sigma, \tag{5.3}
\end{equation*}
$$

where k_{n} is defined in (2.20).
Proof: To prove the sufficiency of the condition, we assume that $u(x, t) \in H^{*}$ for $|t|<\sigma$. Then, we have

$$
\begin{equation*}
u(x, t)=\int_{0}^{\infty} G\left(x, y ; t-t^{\prime}\right) u\left(y, t^{\prime}\right) d \mu(y), \quad-\sigma<t^{\prime}<t<\sigma . \tag{5.4}
\end{equation*}
$$

Let us choose $t^{\prime}<0$. Now, (2.23) gives us

$$
\begin{equation*}
G\left(x, y ; t-t^{\prime}\right)=\sum_{n=0}^{\infty} k_{n} W_{n, \alpha, \beta}\left(y,-t^{\prime}\right) P_{n, \alpha, \beta}(x, t), \tag{5.5}
\end{equation*}
$$

and substituting this in (5.4), we find that

$$
\begin{equation*}
u(x, t)=\sum_{n=0}^{\infty} k_{n} P_{n, \alpha, \beta}(x, t) \int_{0}^{\infty} u\left(y, t^{\prime}\right) W_{n, \alpha, \beta}\left(y,-t^{\prime}\right) d \mu(y), \tag{5.6}
\end{equation*}
$$

provided that the interchange of summation and integration is valid.
This will be so if

$$
J=\sum_{n=0}^{\infty} k_{n}\left|P_{n, \alpha, \beta}(x, t)\right| \int_{0}^{\infty}\left|u\left(y, t^{\prime}\right) W_{n, \alpha, \beta}\left(y,-t^{\prime}\right)\right| d \mu(y)<\infty .
$$

But, for $t^{\prime}<0<t$, we have, by (3.9) and (3.11)

$$
\begin{equation*}
J \leq \frac{A}{\left(-t^{\prime}\right)^{3 \alpha+\beta}}\left(1+\frac{t}{\delta}\right)^{3 \alpha+\beta} e^{x^{2} / 4 \delta} \sum_{n=0}^{\infty} k_{n}\left[\frac{4^{2} n(t+\delta)(n+\alpha-\beta)}{-e^{2} t^{\prime}}\right]^{n}(n+\alpha-\beta)^{2 \alpha} \int_{0}^{\infty}\left|u\left(y, t^{\prime}\right)\right| e^{x^{2} / \delta t^{\prime}} d \mu(y) . \tag{5.7}
\end{equation*}
$$

Lemma 4.7 assures the convergence of the integral to the right of (5.8), and the ratio test establishes the fact that the series converges for $t+\delta<\left|t^{\prime}\right|$. Further for $t^{\prime}<t<0$, we have by (3.10) and (3.11),

$$
J \leq \frac{A^{2}}{\left(-t^{\prime}\right)^{3 \alpha+\beta}} e^{-x^{2} / \delta t} \sum_{n=0}^{\infty} k_{n}\left[\frac{4^{2} t(n+\alpha-\beta)^{2}}{e^{2} t^{\prime}}\right]^{n}(n+\alpha-\beta)^{4 \alpha} \int_{0}^{\infty}\left|u\left(y, t^{\prime}\right)\right| e^{y^{2} / \delta t^{\prime}} d \mu(y),
$$

with the series converging for $|t|<\left|t^{\prime}\right|$. Thus since δ may be chosen arbitrarily small, we have established the absolute convergence of the series (5.6) for $|t|<\left|t^{\prime}\right|$. By taking t^{\prime} arbitrarily close to $-\sigma$, the series (5.6) converges to $u(x, t)$ for $|t|<\sigma$ as required. By taking

$$
a_{n}=k_{n} \int_{0}^{\infty} u(y,-t) W_{n, \alpha, \beta}(y, t) d \mu(y), \quad 0<t<\sigma,
$$

in (5.6), we have the second determination (5.3), and by Corollary 4.3, we know that a_{n} is independent of t . To derive the first determination (5.2), we note that $u(x, 0)=\sum_{k=0}^{\infty} a_{n} x^{2 n}$, which is a power series, so that $a_{n}=\frac{u^{2 n}(0,0)}{(2 n)!}$.

To prove the necessity of the condition, we now assume that (5.1) holds for $|t|<\sigma$. Let c be a number, $0<c<\sigma$, and consider

$$
\begin{equation*}
\int_{0}^{\infty} G(x, y ; t+c) u(y,-c) d \mu(y) . \tag{5.9}
\end{equation*}
$$

We shall establish that this integral is equal to $u(x, t)$ for $|t|<c$. To this end, substitute the series (5.1) for $u(y,-c)$ in (5.9). This yields, provided term wise integration is valid,

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{n} \int_{0}^{\infty} G(x, y ; t+c) P_{n, \alpha, \beta}(y,-c) d \mu(y)=\sum_{n=0}^{\infty} a_{n} P_{n, \alpha, \beta}(x, t)=u(x, t) \tag{5.10}
\end{equation*}
$$

where we have used the fact that $P_{n, \alpha, \beta}(x, t) \in H^{*}$. We now justify our computation.
We have, by (3.10)

$$
\begin{align*}
& \sum_{n=0}^{\infty}\left|a_{n}\right| \int_{0}^{\infty} G(x, y ; t+c)\left|P_{n, \alpha, \beta}(y,-c)\right| d \mu(y) \tag{5.11}\\
& \quad \leq A \sum_{n=0}^{\infty}\left|a_{n}\right|\left[\frac{4 c(n+\alpha-\beta)}{e}\right]^{n}(n+\alpha-\beta)^{2 \alpha} \int_{0}^{\infty} G(x, y ; t+c) e^{y^{2} / 8 c} d \mu(y)
\end{align*}
$$

The integral on the right of inequality (5.11) clearly converges for $|t|<c$. Further by Lemma 3.1,

$$
a_{n}=\mathrm{O}\left(\frac{e}{4 n t_{0}}\right)^{n}, n \rightarrow \infty,
$$

for any positive $t_{o}<\sigma$. If we choose $t_{o}>c$, the dominating series of (5.11) converges. Hence we have

$$
\begin{equation*}
u(x, t)=\int_{0}^{\infty} G(x, y ; t+c) u(y,-c) d \mu(y),|t|<c \tag{5.12}
\end{equation*}
$$

But we have shown that the integral (5.12) converges absolutely for every t and c with $-\sigma<-c<t<\sigma$, and so by the definition of class $H^{*}, u(x, t) \in H^{*}$ for $|t|<\sigma$.

An example illustrating the theorem is given by

$$
\begin{equation*}
u(x, t)=e^{a^{2} t} g(a x) \tag{5.13}
\end{equation*}
$$

Here we have, for $-\infty<t<\infty$,

$$
\begin{equation*}
e^{a^{2} t} g(a x)=\sum_{n=0}^{\infty} k_{n}(2 a)^{2 n} P_{n, \alpha, \beta}(x, t) \tag{5.14}
\end{equation*}
$$

In addition to (5.2) and (5.3), we also establish a complex determination of the coefficients, as given in the following.

Theorem 5.2 : Let

$$
\begin{equation*}
u(x, t)=\sum_{n=0}^{\infty} a_{n} P_{n, \alpha, \beta}(x, t) \tag{5.15}
\end{equation*}
$$

the series converging for $|t|<\sigma$. Then

$$
\begin{equation*}
a_{n}=(-1)^{n} k_{n} \int_{0}^{\infty} u(i x, t) W_{n, \alpha, \beta}(x, t) d \mu(x), 0<t<\sigma, \tag{5.16}
\end{equation*}
$$

where k_{n} is defined in (2.20).
Proof: Since $u(x, t)$ has the series expansion (5.15), the preceding theorem assures its membership in H^{*}. Hence we have

$$
\begin{equation*}
u(x, t)=\int_{0}^{\infty} G(x, y ; t) u(y, 0) d \mu(y), 0<t<\sigma \tag{5.17}
\end{equation*}
$$

the integral converging absolutely. Now for any fixed t in this integral, the integral (5.17) defines $u(x, t)$ as an analytic function of x. Further by Corollary 3.9, for each fixed $t, 0<t<\sigma$, the series (5.15) define $u(x, t)$ as an analytic function in any compact region of the complex x-plane. Since the two functions are equal for real x, by analytic continuation, the expansion of the series must also hold for complex x and we have, by (2.7),

$$
\begin{equation*}
u(i x, t)=\sum_{n=0}^{\infty}(-1)^{n} a_{n} P_{n, \alpha, \beta}(x,-t) \tag{5.18}
\end{equation*}
$$

Now, by (4.7) and Theorem 5.3 of [2], we find that

$$
\begin{equation*}
u(i x, t)=\int_{0}^{\infty} G\left(x, y ; t^{\prime}-t\right) u\left(i y, t^{\prime}\right) d \mu(y), 0<t<t^{\prime}<\sigma \tag{5.19}
\end{equation*}
$$

Further (2.23) gives us

$$
\begin{equation*}
G\left(x, y ; t^{\prime}-t\right)=\sum_{n=0}^{\infty} k_{n} W_{n, \alpha, \beta}\left(y, t^{\prime}\right) P_{n, \alpha, \beta}(x,-t) . \tag{5.20}
\end{equation*}
$$

Substituting (5.20) in (5.19), we obtain

$$
\begin{equation*}
u(i x, t)=\sum_{n=0}^{\infty} k_{n} P_{n, \alpha, \beta}(x,-t) \int_{0}^{\infty} u\left(i y, t^{\prime}\right) W_{n, \alpha, \beta}\left(y, t^{\prime}\right) d \mu(y) \tag{5.21}
\end{equation*}
$$

provided that term wise integration is justifiable. But, by (3.10) and (3.11)

$$
\begin{align*}
& \sum_{n=0}^{\infty} k_{n}\left|P_{n, \alpha, \beta}(x,-t)\right| \int_{0}^{\infty}\left|u\left(i y, t^{\prime}\right)\right| W_{n, \alpha, \beta}\left(y, t^{\prime}\right) d \mu(y) \\
& \quad \leq \frac{A^{2}}{\left(t^{\prime}\right)^{3 \alpha+\beta}} e^{x^{2} / 8 t} \sum_{n=0}^{\infty} k_{n}\left[\frac{4^{2} t_{o}(n+\alpha-\beta)^{2}}{e^{2} t^{\prime}}\right]^{n}(n+\alpha-\beta)^{4 \alpha} \tag{5.22}\\
& \quad \times \int_{0}^{\infty}\left|u\left(i y, t^{\prime}\right)\right| e^{-y^{2} / 8 t^{\prime}} d \mu(y)
\end{align*}
$$

Now by Lemma 4.8,

$$
u(i y, t)=\mathrm{O}\left(e^{\left[y^{2} / 4(t-a)\right]}\right), y \rightarrow \infty,
$$

where a may be chosen arbitrarily close to $-\sigma$. It follows that the integral of the dominant series of (5.22) converges for $0<t^{\prime}<-a$ and hence for $0<t^{\prime}<\sigma$. Since $t<t^{\prime}$, the series itself converges. We have thus established the validity of (5.21). Now, comparing coefficients in the expansions (5.18) and (5.21), we find that a_{n} has the determination (5.16) required and it is independent of t by Theorem 4.6.

6. EXPANSION IN TERMS OF THE APPELL TRANSFORM

Criterion for the expansions of functions in terms of $W_{n, \alpha, \beta}(x, t)$ are derived in this section. We find that membership in H^{*} is no longer a sufficient condition in this case. Before we establish the needed modification for a theorem corresponding to Theorem 5.1, we need a series representation theorem with conditions of a different nature.

Theorem 6.1: A necessary and sufficient condition that

$$
\begin{equation*}
u(x, t)=\sum_{n=0}^{\infty} b_{n} W_{n, \alpha, \beta}(x, t), \tag{6.1}
\end{equation*}
$$

the series converging for $0 \leq \sigma<t$, is that

$$
\begin{equation*}
u(x, t)=\int_{0}^{\infty} h(x y) e^{-t y^{2}} \phi(y) d \mu(y) \tag{6.2}
\end{equation*}
$$

where $\phi(y)$ is an even entire function of growth $(1, \sigma)$ and

$$
\begin{equation*}
b_{n}=(-1)^{n} \frac{\phi^{(2 n)}(0)}{2^{2 n}(2 n)!} . \tag{6.3}
\end{equation*}
$$

Proof: To prove sufficiency, assume that (6.2) holds with $\phi(y)$ as described. Now, let

$$
\begin{equation*}
\phi(y)=\sum_{n=0}^{\infty} c_{n} y^{2 n}, \tag{6.4}
\end{equation*}
$$

and substitute the series for $\phi(y)$ in (6.2). Hence if we may interchange the order of summation and integration, we obtain

$$
\begin{equation*}
u(x, t)=\sum_{n=0}^{\infty} c_{n} \int_{0}^{\infty} h(x y) e^{-t y^{2}} y^{2 n} d \mu(y), \tag{6.5}
\end{equation*}
$$

or by (2.17)

$$
\begin{equation*}
u(x, t)=\sum_{n=0}^{\infty} \frac{(-1)^{n} c_{n}}{2^{2 n}} W_{n, \alpha, \beta}(x, t) . \tag{6.6}
\end{equation*}
$$

From (6.4), we get

$$
\begin{equation*}
c_{n}=\frac{\phi^{(2 n)}(0)}{(2 n)!}, \tag{6.7}
\end{equation*}
$$

and hence taking

$$
\begin{equation*}
b_{n}=\frac{(-1)^{n} c_{n}}{2^{2 n}} \tag{6.8}
\end{equation*}
$$

we have the determination (6.3). It remains to prove the validity of the termwise integration. Since $\phi(y)$ is of growth $(1, \sigma)$, the same is true of $\sum_{n=o}^{\infty}\left|c_{n}\right| y^{2 n}$, and for a suitable constant M, and any $\sigma^{\prime}>\sigma$, we have

$$
\sum_{n=0}^{\infty}\left|c_{n}\right| y^{2 n}<M e^{\sigma^{\prime} y^{2}}, 0<y<\infty .
$$

Hence

$$
\int_{0}^{\infty} e^{-t y^{2}} d \mu(y) \sum_{n=0}^{\infty}\left|c_{n}\right| y^{2 n}<M \int_{0}^{\infty} e^{-t y^{2}+\sigma^{\prime} y^{2}} d \mu(y),
$$

which converges for $t>\sigma^{\prime}$. Thus condition is sufficient. Conversely, assume that (6.1) holds for $0 \leq \sigma<t$. Choose a number $c>\sigma$. Now, by (2.5)

$$
\begin{equation*}
\sum_{n=0}^{\infty} b_{n} W_{n, \alpha, \beta}(x, t)=G(x, t) \sum_{n=0}^{\infty} b_{n} t^{-2 n} P_{n, \alpha, \beta}(x,-t), \tag{6.9}
\end{equation*}
$$

so that the series at the right of (6.9) converges for all x on the line $t=c$. We thus may apply Lemma 3.2 to obtain

$$
\begin{equation*}
b_{n}=\mathrm{O}\left(\frac{e c}{4 n}\right)^{n+\alpha}, n \rightarrow \infty . \tag{6.10}
\end{equation*}
$$

By (2.17), we have

$$
\begin{aligned}
u(x, t) & =\sum_{n=0}^{\infty} b_{n} W_{n, \alpha, \beta}(x, t) \\
& =\int_{0}^{\infty} h(x u) e^{-t u^{2}} d \mu(u) \sum_{n=0}^{\infty}(-1)^{n} b_{n}(2 u)^{2 n} \\
& =\int_{0}^{\infty} h(x u) e^{-t u^{2}} \phi(u) d \mu(u),
\end{aligned}
$$

where

$$
\begin{equation*}
\phi(u)=\sum_{n=0}^{\infty} c_{n} u^{2 n} \tag{6.11}
\end{equation*}
$$

with

$$
\begin{equation*}
c_{n}=(-1)^{n} 2^{2 n} b_{n}, \tag{6.12}
\end{equation*}
$$

provided that

$$
\begin{equation*}
\int_{0}^{\infty} e^{-t u^{2}} d \mu(u) \sum_{n=0}^{\infty}\left|b_{n}\right|(2 u)^{2 n}<\infty . \tag{6.13}
\end{equation*}
$$

As a consequence of (6.10) and (6.12), we have

$$
\overline{\lim _{n \rightarrow \infty}} \frac{2^{2} n}{e}\left|b_{n}\right|^{1 / n}={ }_{n \rightarrow \infty}^{\overline{\lim _{n}}} \frac{n}{e}\left|c_{n}\right|^{1 / n} .
$$

That is, $\phi(x)$ is of growth $(1, c)$ for every $c>\sigma$, and hence also of growth $(1, \sigma)$. Thus the integral (6.13) converges for $t>\sigma$ and $u(x, t)$ has the required representation.

An example illustrating the theorem is obtained by taking

$$
\begin{align*}
u(x, t) & =G\left(x ; x-\frac{1}{2}\right), \tag{6.14}\\
& =\int_{0}^{\infty} e^{-t u^{2}} h(x u) e^{u^{2} / 4} d \mu(u), t>\frac{1}{4} .
\end{align*}
$$

Here

$$
\phi(u)=e^{u^{2} / 4}
$$

an even function of growth $(1,1 / 4)$ and

$$
b_{n}=\frac{(-1)^{n}}{2^{4 n} n!}
$$

so that we have

$$
G\left(x ; t-\frac{1}{4}\right)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{4 n} n!} W_{n, \alpha, \beta}(x, t), t>1 / 4,
$$

verifying equation (2.13).
To derive the principal representation theorem, we need two preliminary lemmas:
Lemma 6.2: Let $E(x)$ be an even function for $-\infty<x<\infty$. Then

$$
\begin{equation*}
\int_{0}^{\infty} E(y) h(x y) d \mu(y)=x^{-(\alpha-\beta)} \int_{-\infty}^{\infty} E(y) y^{3 \alpha+\beta} H_{(3 \alpha+\beta)}^{(1)}(x y) d y . \tag{6.15}
\end{equation*}
$$

Proof: The proof is substantially that of Lemma 3.1 of [4] and is omitted.
Lemma 6.3: Let

$$
\begin{equation*}
u(x, t)=\int_{0}^{\infty} h(x y) e^{-t \nu^{2}} \phi(y) d \mu(y) \tag{6.16}
\end{equation*}
$$

where $\phi(y)$ is an even function of growth $(1, \sigma)$. Then, for each $c>\sigma$, there exists a constant $m(c)$ such that

$$
\begin{equation*}
|u(x, t)| \leq m(c) x^{-2 \alpha} \cdot \frac{e^{-\left[x^{2} / 4(t+c)\right]}}{\sqrt{t-c}}, t>c . \tag{6.17}
\end{equation*}
$$

Proof: Since $e^{-t y^{2}} \phi(y)$ is even, we may apply the preceding lemma to get

$$
\begin{equation*}
u(x, t)=x^{-(\alpha-\beta)} \int_{-\infty}^{\infty} e^{t y^{2}} \phi(y) y^{3 \alpha+\beta} H_{\alpha-\beta}^{(1)}(x y) d y \tag{6.18}
\end{equation*}
$$

Now we know that for $0<x<\infty, 0 \leq \eta \leq A$,

$$
\begin{equation*}
H_{\alpha-\beta}^{(1)}(x(\pm R+i \eta))=\mathrm{O}\left(\frac{1}{x R}\right)^{1 / 2}, R \rightarrow \infty, \tag{6.19}
\end{equation*}
$$

and, by the growth property of $\phi(y)$, that

$$
\begin{equation*}
|\phi(\xi+i \eta)| \leq \mathrm{N}(c) e^{c\left(\xi^{2}+\eta^{2}\right)} \tag{6.20}
\end{equation*}
$$

where $c>\sigma$ and $\mathrm{N}(c)$ depends only on c. Hence

$$
\begin{aligned}
& \left|x^{-(\alpha-\beta)} \int_{0}^{A} e^{-t(\pm R+i \eta)^{2}} \phi(\pm R+i \eta)(\pm R+i \eta)^{3 \alpha+\beta} H_{\alpha-\beta}^{(1)}(x(\pm R+i \eta)) d \eta\right| \\
& \quad \leq e^{-t R^{2}+c R^{2}} \mathrm{O}\left(\frac{R}{x}\right)^{2 \alpha} \int_{0}^{A} e^{t \eta^{2}+c \eta^{2}} d \eta \\
& \quad=o(1), R \rightarrow \infty .
\end{aligned}
$$

Thus, we use Cauchy's theorem to shift the path of integration to get

$$
\begin{equation*}
u(x, t)=x^{-\alpha-\beta} \int_{-\infty}^{\infty} e^{-t(\xi+i A)^{2}} \phi(\xi+i A)(\xi+i A)^{3 \alpha+\beta} H_{-(\alpha-\beta)}(x(\xi+i A)) d \xi . \tag{6.21}
\end{equation*}
$$

Now we know that

$$
\begin{equation*}
H_{-(\alpha-\beta)}^{(1)} x(\xi+i A)=\mathrm{O}\left(x^{-1 / 2} e^{-A x}\right), x \rightarrow \infty, \tag{6.22}
\end{equation*}
$$

uniformly for $-\infty<\xi<\infty$, and we may readily establish the inequality

$$
\left(\xi^{2}+A^{2}\right)^{\left(\frac{3 \alpha+\beta}{2}\right)} \leq e^{e\left(\xi^{2}+A^{2}\right)}\left(\frac{6 \alpha+2 \beta}{4 \in e}\right)^{\left(\frac{3 \alpha+\beta}{2}\right)}, \in>0
$$

Using (6.20), (6.22) and (6.23) in (6.21), we find that

$$
\begin{aligned}
& |u(x, t)| \leq N^{\prime}(c) x^{-2 \alpha} e^{(t+c+\epsilon) A^{2}-A x} \int_{-\infty}^{\infty} e^{(c+\epsilon-t) \xi^{2}} d \xi \\
& =N^{\prime}(c) x^{-2 \alpha} e^{(t+c+\epsilon) A^{2}-A x} \frac{\sqrt{\pi}}{\sqrt{t-c-\epsilon}}, t>c>\epsilon
\end{aligned}
$$

Choose

$$
A=\frac{x}{2(t+c+\epsilon)}
$$

to make the right hand side a minimum, and we have

$$
|u(x, t)| \leq N^{\prime}(c) x^{-2 \alpha} e^{-\left[x^{2} / 4(t+c+\epsilon)\right]} \frac{\sqrt{\pi}}{\sqrt{t-c-\epsilon}} .
$$

As \in is arbitrary, the lemma is proved.
Now we are ready to establish our main theorem.
Theorem 6.4: A necessary and sufficient condition that

$$
\begin{equation*}
u(x, t)=\sum_{n=0}^{\infty} b_{n} W_{n, \alpha, \beta}(x, t), \tag{6.24}
\end{equation*}
$$

the series converging for $t>\sigma \geq 0$ is that $u(x, t) \in H^{*}$ and that

$$
\begin{equation*}
\int_{0}^{\infty}|u(x, t)| e^{x^{2} / 8 t} d \mu(x)<\infty, \sigma<t<\infty . \tag{6.25}
\end{equation*}
$$

The coefficients b_{n} have the determination

$$
\begin{equation*}
b_{n}=k_{n} \int_{0}^{\infty} u(y, t) P_{n, \alpha, \beta}(y,-t) d \mu(y), \sigma<t<\infty, \tag{6.26}
\end{equation*}
$$

where k_{n} is defined in (2.20).
Proof: To prove sufficiency, we assume that $u(x, t) \in H^{*}$ for $t>\sigma \geq o$ and (6.25) holds. Then

$$
\begin{equation*}
u(x, t)=\int_{0}^{\infty} G\left(x, t ; t-t^{\prime}\right) u\left(y, t^{\prime}\right) d \mu(y), \sigma<t^{\prime}<t<\infty . \tag{6.27}
\end{equation*}
$$

But, by (2.23)

$$
\begin{equation*}
G\left(x, y ; t-t^{\prime}\right)=\sum_{n=0}^{\infty} k_{n} P_{n, \alpha, \beta}\left(y,-t^{\prime}\right) W_{n, \alpha, \beta}(x, t) \tag{6.28}
\end{equation*}
$$

Inserting this in (6.27), we obtain

$$
\begin{equation*}
u(x, t)=\sum_{n=0}^{\infty} k_{n} W_{n, \alpha, \beta}(x, t) \int_{0}^{\infty} u\left(y, t^{\prime}\right) P_{n, \alpha, \beta}\left(y,-t^{\prime}\right) d \mu(y) \tag{6.29}
\end{equation*}
$$

which is the result sought, provided that term wise integration is valid. That this is so follows from the fact that

$$
\begin{equation*}
\sum_{n=0}^{\infty} k_{n}\left|W_{n, \alpha, \beta}(x, t)\right| \int_{0}^{\infty}\left|u\left(y, t^{\prime}\right)\right|\left|P_{n, \alpha, \beta}\left(y,-t^{\prime}\right)\right| d \mu(y) \tag{6.30}
\end{equation*}
$$

because of (3.10) and (3.11), is dominated by

$$
\begin{aligned}
& A^{2} \frac{e^{-x^{2} / 8 t}}{t^{3 \alpha+\beta}} \sum_{n=0}^{\infty} \\
& k_{n}\left[\frac{4^{2}(n+\alpha-\beta)^{2} t^{\prime}}{e^{2} t}\right]^{n}(n+\alpha-\beta)^{4 \alpha} \\
& \times \int_{0}^{\infty} e^{y^{2} / 8 t^{\prime}}\left|u\left(y, t^{\prime}\right)\right| d \mu(y)
\end{aligned}
$$

The integral of (6.31) converges, by hypothesis, for $t^{\prime}>\sigma$ and the series converges for $t^{\prime}<t$, so that the expansion (6.29) is established. That the coefficients are independent of t is a result of Corollary 4.4. Conversely, assume that (6.24) holds for $t>\sigma \geq 0$. Then by Theorem 6.1, we have

$$
u(x, t)=\int_{0}^{\infty} h(x y) e^{-t y^{2}} \phi(y) d \mu(y),
$$

with $\phi(y)$ an even function of growth $(1, \sigma)$. By the preceding Lemma, it follows that

$$
\begin{equation*}
|u(x, t)| \leq M(c) x^{-2 \alpha} \frac{e^{-\left[x^{2} / 4(t+c)\right]}}{\sqrt{t-c}}, \sigma<c<t<\infty . \tag{6.32}
\end{equation*}
$$

Hence

$$
\begin{gathered}
\int_{0}^{\infty}|u(x, t)| e^{x^{2} / 8 t} d \mu(x) \leq \frac{M(c)}{\sqrt{t-c}} \int_{0}^{\infty} x^{-2 \alpha} e^{\left(x^{2} / 8 t\right)-\left[x^{2} / 4(t+c)\right]} d \mu(x) \\
<\infty, c<t<\infty
\end{gathered}
$$

and (6.25) is established. To prove that $u(x, t) \in H^{*}$, we apply Lemma 6.1 of [5]. Since (6.32) holds, $u(x, t)$ is uniformly bounded for $t \geq c+\delta, \delta>0$. Hence $u(x, t) \in H^{*}$ for $t>c+\delta$ and, so also for $t>\sigma$, and the theorem is proved.

An example illustrating this theorem is obtained by taking

$$
u(x, t)=G(x, b ; t) .
$$

Here

$$
\begin{gathered}
\int_{0}^{\infty}|G(x, b ; t)| e^{x^{2} / 8 t} d \mu(t)<\infty, 0<t<\infty, \quad \text { and we have } \\
G(x, b ; t)=\sum_{n=0}^{\infty} k_{n} b^{2 n} W_{n, \alpha, \beta}(x, t)
\end{gathered}
$$

verifying equation (2.19).

ACKNOWLEDGEMNET

The author is thankful to the referee for his valuable suggestions and comments.

REFERENCES

[1] H. Bateman and A.Erdelyi, Higher transcendental functions, Vol. II, 1953.
[2] F.M. Cholewinski and D.T. Haimo, The Weierstrass-Hankel convolution transform, J. Analyse Math. (to appear).
[3] E.T. Copson, An introduction to the theory of a complex variable, 1935.
[4] D.T. Haimo, Integral equations associated with Hankel convolutions, Trans. Amer. Math. Soc., 116 (1965), 330-375.
[5] D.T. Haimo, Generalized temperature functions, Duke Math. J. (to appear).
[6] D.T. Haimo, Functions with the Huygens property, Bull. Amer. Math. Soc. 91 (1965), 528-532.
[7] I.I. Hirschman Jr. Variation diminishing Hankel transforms, J. d Analyse Math., 8 (1960-61), 307-336.
[8] P.C. Rosenbloom and D.V. Widder, Expansions in terms of heat polynomials and associated functions, Trans. Amer. Math. Soc., 92 (1959), 220-266.
[9] D.V. Widder, Series expansions of solutions of the heat equation in n dimensions, Annali di Matematica, 55 (1961), 389-409.
[10] J.N. Watson, A treatise on the theory of Bessel functions, $2^{\text {nd }}$ ed., Cambridge, 1958.

