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                      1. Introduction and Statement of Results 
A classic result on the zeros of polynomials is the following theorem  due to 
Cauchy[2]: 
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Another classical result due to Cauchy [2] is the following: 
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Similar  results  due to Dehmer [1] are  the following: 
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1k  is the positive root of the equation  
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polynomial. Then all the zeros of P(z) lie in the closed disk ),1max( kz  , where 
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The following result is the famous Enestrom-Kakeya Theorem [2]: 
Theorem E: Let 0,......)( 1
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with real coefficients such that 
                         0...... 011   aaaa nn . 
Then all the zeros of P(z) lie in the closed disk 1z . 
    In this paper , we consider some special  lacunary polynomials  and see what 
happens to Theorems A,B,C, D and  E. In fact, we prove the following results: 
Theorem 1: Let npaazazazazazP pnn
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polynomial of degree n. Then all the zeros of P(z) lie in kz  , where k >1 is the  
root of the equation  
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Remark 1: Taking p=1in Theorem 1, we get k=1+M so that Theorem 1 reduces  
to Theorem A. 
Theorem 2: Let 11,0,......)( 2
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Remark 2: Taking p=n-1in Theorem 1, we get Theorem B of  Dehmer. 
Theorem 3: Let 11,0,......)( 2
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greatest positive root of the equation  
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2. Proofs of Theorems 
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This shows that the zeros of P(z) with modulus greater than 1 lie in the closed disk  
kz  , where k >1 is the  root of the equation  

                            01   Mkk pp . 
Since the zeros of P(z) of modulus less than or equal to 1 are already in kz  , the 
result follows. 
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Proof of Theorem 2: For 1z , we have  pj
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Define  
            MMzzzzF pnn   11)( . 

By using Descarte’s Rule of Signs, F(z) has exactly two positive zeros 1k  and 2k  
and 0)( 1 kF  with  Sign{F(0)}=1. Hence we conclude that  
                          0)( zF  for ),1max( kz  . 
Hence , it follows that all the zeros of P(z) lie in  ),1max( kz  , where k  1 is the 
positive root of the equation  
                            011   MMzzz pnn . 
That proves Theorem 2. 
Proof of Theorem 3: Consider the polynomial 
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For 1z , we have, by using the hypothesis, 
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This shows that  the zeros of F(z) with modulus greater than 1 lie the closed disk 
kz  , where k is the greatest positive root of the equation  

                    02 112   MzMzzz pnnn  
Since z=1 is a zero of the above equation, it follows that the zeros of F(z) with 
modulus less than 1 also lie in kz  . 
Since the zeros of P(z) are also the zeros of F(z) , it follows that all the zeros of 
P(z) lie in the  closed disk kz  , where k is the greatest positive root of the 
equation  
                    02 112   MzMzzz pnnn , 
thereby proving Theorem 3. 
Proof of Theorem 4: Consider the polynomial 
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  For 1z , we have, by using the hypothesis, 
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This shows that  the zeros of F(z) with modulus greater than 1 lie in  the closed 
disk 
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Since the zeros of F(z) with modulus less than 1already lie in the above disk, it 
follows that all the zeros of F(z) lie lie in  the closed disk 
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Since the zeros of P(z) are also the zeros of F(z), the result follows. 
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