On the Zeros of Lacunary Polynomials

M. H. Gulzar
Department of Mathematics
University of Kashmir, Srinagar 19000

Abstract : In this paper we find the bounds for the zeros of some special lacunary polynomials. Our results generalize some known results in the distribution of zeros of polynomials.
Mathematics Subject Classification: 30 C 10, 30 C 15
Keywords and Phrases: Coefficient, Polynomial, Zero

1. Introduction and Statement of Results

A classic result on the zeros of polynomials is the following theorem due to Cauchy[2]:
Theorem A: Let $P(z)=a_{0}+a_{1} z+a_{2} z^{2}+\ldots . .+a_{n-1} z^{n-1}+a_{n} z^{n}, a_{n} \neq 0$ be a complex polynomial. Then all the zeros of $\mathrm{P}(\mathrm{z})$ lie in the closed disk $|z| \leq r$, where r is the positive root of the equation

$$
\left|a_{0}\right|+\left|a_{1}\right| z+\ldots . .+\left|a_{n-1}\right| z^{n-1}-\left|a_{n}\right| z^{n}=0 .
$$

Another classical result due to Cauchy [2] is the following:
Theorem B: : Let $P(z)=a_{0}+a_{1} z+a_{2} z^{2}+\ldots \ldots .+a_{n-1} z^{n-1}+a_{n} z^{n}, a_{n} \neq 0$ be a complex polynomial. Then all the zeros of $\mathrm{P}(\mathrm{z})$ lie in the closed disk $|z| \leq 1+M$, where $M=\max \left|\frac{a_{j}}{a_{n}}\right|, j=0,1,2, \ldots \ldots, n-1$.
Similar results due to Dehmer [1] are the following:
Theorem C: Let $P(z)=a_{0}+a_{1} z+a_{2} z^{2}+\ldots . .+a_{n-1} z^{n-1}+a_{n} z^{n}, a_{n} \neq 0$ be a complex polynomial. Then all the zeros of $\mathrm{P}(\mathrm{z})$ lie in the closed disk $|z| \leq \max (1, k)$, where $k \neq 1$ is the positive root of the equation

$$
z^{n+1}-(1+M) z^{n}+M=0
$$

and $M=\max \left|\frac{a_{j}}{a_{n}}\right|, j=0,1,2, \ldots \ldots, n-1$.
Theorem D: Let $P(z)=a_{0}+a_{1} z+a_{2} z^{2}+\ldots . .+a_{n-1} z^{n-1}+a_{n} z^{n}, a_{n} \neq 0$ be a complex polynomial. Then all the zeros of $\mathrm{P}(\mathrm{z})$ lie in the closed disk $|z| \leq \max (1, k)$, where $k \neq 1$ is the positive root of the equation

$$
z^{n+2}-\left(1+M^{\prime}\right) z^{n+1}+M^{\prime}=0
$$

and $\quad M^{\prime}=\max \left|\frac{a_{n-j}-a_{n-j-1}}{a_{n}}\right|, j=0,1,2, \ldots \ldots, n ; a_{-1}=0$.
The following result is the famous Enestrom-Kakeya Theorem [2]:
Theorem E: Let $P(z)=a_{0}+a_{1} z+a_{2} z^{2}+\ldots \ldots+a_{n-1} z^{n-1}+a_{n} z^{n}, a_{n} \neq 0$ be a polynomial with real coefficients such that

$$
a_{n} \geq a_{n-1} \geq \ldots . . . \geq a_{1} \geq a_{0}>0 .
$$

Then all the zeros of $\mathrm{P}(\mathrm{z})$ lie in the closed disk $|z| \leq 1$.
In this paper, we consider some special lacunary polynomials and see what happens to Theorems A,B,C, D and E. In fact, we prove the following results: Theorem 1: Let $P(z)=a_{0} z^{n}+a_{p} z^{n-p}+a_{p+1} z^{n-p-1}+\ldots \ldots .+a_{n-1} z+a_{n}, a_{p} \neq 0, p<n$, be a polynomial of degree n . Then all the zeros of $\mathrm{P}(\mathrm{z})$ lie in $|z| \leq k$, where $\mathrm{k}>1$ is the root of the equation

$$
k^{p}-k^{p-1}+M=0
$$

and $M=\max \left|\frac{a_{j}}{a_{0}}\right|, j=p, p+1, \ldots \ldots ., n$. .
Remark 1: Taking $\mathrm{p}=1$ in Theorem 1, we get $\mathrm{k}=1+\mathrm{M}$ so that Theorem 1 reduces to Theorem A.
Theorem 2: Let $P(z)=a_{0}+a_{1} z+a_{2} z^{2}+\ldots \ldots .+a_{p} z^{p}+a_{n} z^{n}, a_{p} \neq 0,1 \leq p \leq n-1$, be a polynomial of degree n . Then all the zeros of $\mathrm{P}(\mathrm{z})$ lie in $|z| \leq \max (1, k)$, where k $\neq 1$ is the positive root of the equation

$$
z^{n+1}-z^{n}-M z^{p+1}+M=0
$$

and $M=\max \left|\frac{a_{j}}{a_{n}}\right|, j=0,1,2, \ldots \ldots, p$.
Remark 2: Taking $\mathrm{p}=\mathrm{n}-1$ in Theorem 1, we get Theorem B of Dehmer.
Theorem 3: Let $P(z)=a_{0}+a_{1} z+a_{2} z^{2}+\ldots \ldots .+a_{p} z^{p}+a_{n} z^{n}, a_{p} \neq 0,1 \leq p \leq n-1$, be a polynomial of degree n . Then all the zeros of $\mathrm{P}(\mathrm{z})$ lie in $|z| \leq k$, where k is the greatest positive root of the equation

$$
z^{n+2}-2 z^{n+1}+z^{n}-M z^{p+1}+M^{\prime}=0
$$

and $M^{\prime}=\max \left|\frac{a_{j}-a_{j-1}}{a_{n}}\right|, j=0,1,2, \ldots \ldots, p ; a_{-1}=0$.

Theorem 4: Let $P(z)=a_{0}+a_{1} z+a_{2} z^{2}+\ldots \ldots+a_{p} z^{n-p}+a_{n} z^{n}, a_{p} \neq 0, p<n$, be a polynomial of degree n such that

$$
a_{p} \geq a_{p-1} \geq \ldots \ldots \geq a_{1} \geq a_{0} .
$$

Then all the zeros of $\mathrm{P}(\mathrm{z})$ lie in the closed disk

$$
|z| \leq \frac{1}{\left|a_{n}\right|}\left[\left|a_{n}\right|+a_{p}-a_{0}+\left|a_{0}\right|\right]
$$

2. Proofs of Theorems

Proof of Theorem 1: For $|z|>1, \frac{1}{|z|^{j}}<1, \forall j=p, p+1, \ldots \ldots, n$, so that, by using the hypothesis, we have

$$
\begin{aligned}
&|P(z)|=\left|a_{0} z^{n}+a_{p} z^{n-p}+a_{p+1} z^{n-p-1}+\ldots \ldots+a_{n-1} z+a_{n}\right| \\
& \geq|z|^{n}\left[1-\left\{\left|\frac{a_{p}}{a_{0}}\right| \cdot \frac{1}{|z|^{p}}+\left|\frac{a_{p+1}}{a_{0}}\right| \cdot \frac{1}{|z|^{p+1}}+\ldots \ldots+\left|\frac{a_{n-1}}{a_{0}}\right| \cdot \frac{1}{|z|^{n-1}}+\left|\frac{a_{n}}{a_{0}}\right| \cdot \frac{1}{|z|^{n}}\right\}\right] \\
& \geq|z|^{n}\left[1-M\left\{\frac{1}{|z|^{p}}+\frac{1}{|z|^{p+1}}+\ldots . .+\frac{1}{|z|^{n}}\right\}\right] \\
&>|z|^{n}\left[1-M\left\{\frac{1}{|z|^{p}}+\frac{1}{|z|^{p+1}}+\ldots \ldots+\frac{1}{|z|^{n}}+\ldots \ldots\right\}\right] \\
&=|z|^{n}\left[1-\frac{M}{|z|^{p-1}\left(|z|^{n}-1\right)}\right] \\
&=\frac{|z|^{n}\left[|z|^{p}-|z|^{p-1}-M\right]}{|z|^{p-1}} \\
& \text { if }>0 \\
&|z|^{p}-|z|^{p-1}-M>0 .
\end{aligned}
$$

This shows that the zeros of $\mathrm{P}(\mathrm{z})$ with modulus greater than 1 lie in the closed disk $|z| \leq k$, where $\mathrm{k}>1$ is the root of the equation

$$
k^{p}-k^{p-1}+M=0 .
$$

Since the zeros of $\mathrm{P}(\mathrm{z})$ of modulus less than or equal to 1 are already in $|z| \leq k$, the result follows.

Proof of Theorem 2: For $|z|>1$, we have $\frac{1}{|z|^{n-j}}<1, \forall j=0,1,2, \ldots \ldots, p$, so that

$$
\begin{aligned}
|P(z)| & =\left|a_{n} z^{n}+a_{p} z^{p}+a_{p-1} z^{p-1}+\ldots \ldots+a_{1} z+a_{0}\right| \\
& \geq\left|a_{n}\right||z|^{n}-\left\{\left|a_{p}\right||z|^{p}+\left.\left|a_{p-1}\right| z\right|^{p-1}+\ldots \ldots+\left|a_{1}\right||z|+\left|a_{0}\right|\right\} \\
& =\left|a_{n}\right|\left[|z|^{n}-|z|^{p}\left\{\frac{\left|a_{p}\right|}{\left|a_{n}\right|}+\frac{\left|a_{p-1}\right|}{\left|a_{n}\right|} \cdot \frac{1}{|z|^{2}}+\ldots \ldots+\frac{\left|a_{1}\right|}{\left|a_{n}\right|} \cdot \frac{1}{|z|^{p-1}}+\frac{\left|a_{0}\right|}{\left|a_{n}\right|} \cdot \frac{1}{|z|^{p}}\right\}\right] \\
& \geq\left|a_{n}\right|\left[|z|^{n}-|z|^{p}\left\{M+\frac{M}{|z|}+\frac{M}{|z|^{2}}+\ldots \ldots+\frac{M}{|z|^{p-1}}+\frac{M}{|z|^{p}}\right\}\right] \\
& =\left|a_{n}\right|\left[|z|^{n}-|z|^{p} M\left\{1+\frac{1}{|z|}+\frac{1}{|z|^{2}}+\ldots \ldots+\frac{1}{|z|^{p-1}}+\frac{1}{|z|^{p}}\right\}\right] \\
& =\left|a_{n}\right|\left[|z|^{n}-\frac{M\left(|z|^{p+1}-1\right)}{|z|-1}\right] \\
& =\frac{\left|a_{n}\right|\left[|z|^{n+1}-|z|^{n}-M|z|^{p+1}+M\right]}{|z|^{p+1}} \\
& >0
\end{aligned}
$$

if

$$
|z|^{n+1}-|z|^{n}-M|z|^{p+1}+M>0 .
$$

Define

$$
F(z)=z^{n+1}-z^{n}-M z^{p+1}+M
$$

By using Descarte's Rule of Signs, $\mathrm{F}(\mathrm{z})$ has exactly two positive zeros k_{1} and k_{2} and $F\left(k_{1}\right)=0$ with $\operatorname{Sign}\{\mathrm{F}(0)\}=1$. Hence we conclude that

$$
|F(z)|>0 \text { for }|z|>\max (1, k) .
$$

Hence, it follows that all the zeros of $\mathrm{P}(\mathrm{z})$ lie in $|z| \leq \max (1, k)$, where $\mathrm{k} \neq 1$ is the positive root of the equation

$$
z^{n+1}-z^{n}-M z^{p+1}+M=0
$$

That proves Theorem 2.
Proof of Theorem 3: Consider the polynomial

$$
\begin{aligned}
F(z) & =(1-z) P(z)=(1-z)\left(a_{n} z^{n}+a_{p} z^{p}+\ldots \ldots+a_{1} z+a_{0}\right) \\
& =-a_{n} z^{n+1}+a_{n} z^{n}+\left(a_{p}-a_{p-1}\right) z^{p}+\left(a_{p-1}-a_{p-2}\right) z^{p-1}+\ldots \ldots+\left(a_{1}-a_{0}\right) z+a_{0} .
\end{aligned}
$$

For $|z|>1$, we have, by using the hypothesis,

$$
\begin{aligned}
|F(z)| & \geq\left|a_{n}\right||z|^{n=1}-\left|a_{n} z^{n}+\left(a_{p}-a_{p-1}\right) z^{p}+\left(a_{p-1}-a_{p-2}\right) z^{p-1}+\ldots \ldots+\left(a_{1}-a_{0}\right) z+a_{0}\right| \\
& \geq\left|a_{n}\right|\left[|z|^{n+1}-|z|^{n}-|z|^{p}\left\{\frac{\left|a_{p}-a_{p-1}\right|}{\left|a_{n}\right|}+\frac{\left|a_{p-1}-a_{p-2}\right|}{\left|a_{n}\right| z \mid}+\ldots \ldots+\frac{\left|a_{1}-a_{0}\right|}{\left.\left|a_{n}\right| z\right|^{p-1}}+\frac{\left|a_{0}-a_{-1}\right|}{\left|a_{n}\right| z| |^{p}}\right\}\right] \\
& \geq\left|a_{n}\right|\left[|z|^{n+1}-|z|^{n}-|z|^{p}\left\{M^{\prime}+\frac{M^{\prime}}{|z|}+\ldots \ldots .+\frac{M^{\prime}}{|z|^{p-1}}+\frac{M^{\prime}}{|z|^{p}}\right\}\right] \\
& =\left|a_{n}\right|\left[|z|^{n+1}-|z|^{n}-|z|^{p} M^{\prime}\left\{1+\frac{1}{|z|}+\ldots \ldots .+\frac{1}{|z|^{p-1}}+\frac{1}{|z|^{p}}\right\}\right] \\
& =\left|a_{n}\right|\left[|z|^{n+1}-|z|^{n}-\frac{\left||z|^{p+1}-1\right) M^{\prime}}{|z|^{\prime}}\right] \\
& =\frac{\mid a_{n}\left[\left.| | z\right|^{n+2}-2|z|^{n+1}+|z|^{n}-M^{\prime}|z|^{p+1}+M^{\prime}\right]}{|z|^{\prime} 1} \\
& >0
\end{aligned}
$$

if

$$
|z|^{n+2}-2|z|^{n+1}+|z|^{n}-M^{\prime}|z|^{p+1}+M^{\prime}>0 .
$$

This shows that the zeros of $\mathrm{F}(\mathrm{z})$ with modulus greater than 1 lie the closed disk $|z| \leq k$, where k is the greatest positive root of the equation

$$
z^{n+2}-2 z^{n+1}+z^{n}-M^{\prime} z^{p+1}+M^{\prime}=0
$$

Since $z=1$ is a zero of the above equation, it follows that the zeros of $\mathrm{F}(\mathrm{z})$ with modulus less than 1 also lie in $|z| \leq k$.
Since the zeros of $\mathrm{P}(\mathrm{z})$ are also the zeros of $\mathrm{F}(\mathrm{z})$, it follows that all the zeros of $\mathrm{P}(\mathrm{z})$ lie in the closed disk $|z| \leq k$, where k is the greatest positive root of the equation

$$
z^{n+2}-2 z^{n+1}+z^{n}-M^{\prime} z^{p+1}+M^{\prime}=0,
$$

thereby proving Theorem 3.
Proof of Theorem 4: Consider the polynomial

$$
\begin{aligned}
F(z) & =(1-z) P(z)=(1-z)\left(a_{n} z^{n}+a_{p} z^{p}+\ldots . .+a_{1} z+a_{0}\right) \\
& =-a_{n} z^{n+1}+a_{n} z^{n}+\left(a_{p}-a_{p-1}\right) z^{p}+\left(a_{p-1}-a_{p-2}\right) z^{p-1}+\ldots \ldots+\left(a_{1}-a_{0}\right) z+a_{0} .
\end{aligned}
$$

For $|z|>1$, we have, by using the hypothesis,

$$
\begin{aligned}
|F(z)| & \geq\left|a_{n}\right||z|^{n+1}-|z|^{n}\left\{\left|a_{n}\right|+\frac{\left|a_{p}-a_{p-1}\right|}{|z|^{n-p}}+\frac{\left|a_{p-1}-a_{p-2}\right|}{|z|^{n-p+1}}+\ldots \ldots+\frac{\left|a_{1}-a_{0}\right|}{|z|^{n-1}}+\frac{\left|a_{0}\right|}{|z|^{n}}\right\} \\
& >|z|^{n}\left[\left|a_{n}\right||z|-\left\{\left|a_{n}\right|+a_{p}-a_{p-1}+a_{p-1}-a_{p-2}+\ldots \ldots+a_{1}-a_{0}+\left|a_{0}\right|\right\}\right] \\
& =|z|^{n}\left[\left|a_{n}\right||z|-\left\{\left|a_{n}\right|+a_{p}-a_{0}+\left|a_{0}\right|\right]\right. \\
& >0
\end{aligned}
$$

if

$$
\left|a_{n}\right||z|-\left\{\left|a_{n}\right|+a_{p}-a_{0}+\left|a_{0}\right|>0\right.
$$

i.e. $\quad|z|>\frac{1}{\left|a_{n}\right|}\left[\left|a_{n}\right|+a_{p}-a_{0}+\left|a_{0}\right|\right]$.

This shows that the zeros of $\mathrm{F}(\mathrm{z})$ with modulus greater than 1 lie in the closed disk

$$
|z| \leq \frac{1}{\left|a_{n}\right|}\left[\left|a_{n}\right|+a_{p}-a_{0}+\left|a_{0}\right|\right] .
$$

Since the zeros of $\mathrm{F}(\mathrm{z})$ with modulus less than 1already lie in the above disk, it follows that all the zeros of $\mathrm{F}(\mathrm{z})$ lie lie in the closed disk

$$
|z| \leq \frac{1}{\left|a_{n}\right|}\left[\left|a_{n}\right|+a_{p}-a_{0}+\left|a_{0}\right|\right] .
$$

Since the zeros of $\mathrm{P}(\mathrm{z})$ are also the zeros of $\mathrm{F}(\mathrm{z})$, the result follows.

References

[1] M. Dehmer, On the Location of Zeros of Complex Polynomials, Journal Of Inequalities in Pure and Applied Mathematics, Vol. 7, Issue 1, article 26, 2006, 1-27.
[2]M.Marden, Geometry of Polynomials,M ath. Surveys No. 3, Amer. M ath Society(R.I. Providence) (1996).

