A Note on Convolution Conditions

Dileep L¹. and S. Latha² ¹Asst. Prof., Dept. of Mathematics, VVCE, Mysore ²Professor, Dept. of Mathematics, YCM, Mysore

ABSTRACT: In this note, we define the subclasses $\Omega_{\lambda}^{\delta}(A,B)$ and $\Omega^{\delta}(A,B)$ of analytic functions using the fractional derivative Ω^{δ} . Some interesting sufficient conditions involving coefficients inequalities for functions belonging to the above classes are derived.

Key words and phrases: Fractional derivative, Convolution condition, Janowski class.

1. INTRODUCTION

Let A denote the class of analytic functions in the open unit disc $U = \{z; |z| < 1\}$ of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n \, z^n. \tag{1.1}$$

For $-1 \le B < A \le 1$, let P(A, B) [2] denote the class of functions which are of the form

 $p(z) = \frac{1 + A\omega(z)}{1 + B\omega(z)}$

where is a bounded analytic function satisfying the conditions $\omega(0) = 0$ and $|\omega(z)| < 1$. The Fractional derivative of order δ of an analytic function f is defined by

$$D_z^{\delta}f(z) = \frac{1}{\Gamma(1-\delta)} \frac{d}{dz} \int_0^z \frac{f(t)}{(z-t)^{\delta}} dt, \ 0 \le \delta < 1,$$
(1.2)

f is an analytic function in a simply connected region of the z-plane containing the origin and multiplicity of $(z-t)^{-\delta}$ is removed by requiring $\log(z-t)$ to be real when (z-t) is greater than zero. Clearly $f(z) = \lim_{\delta \to 0} D_z^{\delta} f(z)$ and $f'^{(z)} = \lim_{\delta \to 1} D_z^{\delta} f(z)$.

For the analytic function f of the form (1.1), Srivastava and Owa[5] introduced the operator Ω^{δ} which is defined by

$$\Omega^{\delta} f(z) = \Gamma(2-\delta) z^{\delta} D_z^{\delta} f(z)$$

= $z + \sum_{n=2}^{\infty} k(n,\delta) a_n z^n$

where $k(n, \delta) = \frac{n: \Gamma(2-\delta)}{\Gamma(n+1-\delta)}, \ 0 \le \delta < 1.$

Using the fractional derivative now we define following subclasses of *A*.

Let $\Omega_{\lambda}^{\delta}(A, B)$ denote the class of analytic functions f obeying the condition

$$\frac{e^{i\lambda} \frac{z(\Omega^{\delta} f(z))'}{\Omega^{\delta} f(z)} - i \sin \lambda}{\sum_{\substack{\text{cos } \lambda \\ \text{where } -1 \leq B < A \leq 1, 0 \leq \delta < 1, \lambda \geq 0}} \in P(A, B)$$

and $z \in U$.

For parametric values $\delta = 0$ and $\delta = 1$ we get the classes $S_{\lambda}^{*}(A, B)$ and $K_{\lambda}(A, B)$ studied by Ganesan [1] respectively. For $\lambda = 0$ the class $\Omega_{\lambda}^{\delta}(A, B)$ reduces to the class $\Omega_{\lambda}^{\delta}(A, B)$ consisting of analytic functions f such that

$$\frac{z(\Omega^{\delta}f(z))'}{\Omega^{\delta}f(z)} \in P(A,B),$$

where $-1 \le B < A \le 1, 0 \le \delta < 1$, and $z \in U$. For $\delta = 0$ and $\delta = 1$ we get the classes $S^*(A,B)$ and K(A,B) studied by Ganesan [1] respectively.

To prove the main the result we need the following preliminaries.

Lemma1.1

[3]A function p(z) ∈P(A, B), if and only if $p(z) \neq \frac{1+A\zeta}{1+R\zeta}$, $z \in$ $U, \zeta \in \mathbb{C}, |\zeta| = 1.$

Lemma1.2

A function $f \in A$ is in the class $\Omega^{\delta}_{\lambda}(A,B)$ if and only if

 $1 + \sum_{n=2}^{\infty} D_n z^{n-1} \neq 0$ (1.3)where $D_n = \frac{[(n-1)+(Bn-\gamma)\zeta]}{(B-A)\zeta} K(n,\delta)a_n, and \gamma =$ $(A\cos\lambda + iB\sin\lambda)e^{-i\lambda}$

<u>Proof:</u> A function $f \in A$ is in the class $\Omega_{\lambda}^{\delta}(A,B)$ if and only if

$$\frac{e^{i\lambda\frac{\Gamma(i-1)(i,j)}{\Omega\delta_{f(z)}}-i\sin\lambda}}{\cos\lambda}\neq\frac{1+A\zeta}{1+B\zeta}$$

That is

$$(\mathbf{1} + B\zeta) \left(z \left(\Omega^{\delta} \mathbf{f}(z) \right)' \right) \neq (\mathbf{1} + \gamma\zeta) \left(\Omega^{\delta} \mathbf{f}(z) \right).$$

This simplifies into

$$(B-A)\overline{\zeta z} + \sum_{n=2}^{\infty} k(n,\delta)[(n-1) + (Bn-\gamma)\zeta]a_n z^n \neq 0.$$
(1.4)

i.e., $1 + \sum_{n=2}^{\infty} \frac{[(n-1) + (Bn-\gamma)\zeta]}{(B-A)\zeta z} k(n,\delta)a_n z^n \neq 0.$

Hence the proof.

For parametric values $\delta = 0$ and $\delta = 1$ in Lemma 1.2 get we the characterization theorems for the classes $S_{\lambda}^{*}(A,B)$ and $K_{\lambda}(A,B)$ in [3] respectively. As a special case of Lemma 1.2 we get the following result.

Lemma1.3[]

A function $f \in A$ is in the class $\Omega^{\delta}(A,B)$ if and only if

$$1 + \sum_{n=2}^{\infty} D_n z^{n-1} \neq 0$$
where $D_n = \frac{[(n-1)+(Bn-A)\zeta]}{(B-A)\zeta} K(n,\delta) a_n$
(1.3)

For parametric values $\delta = 0$ and $\delta = 1$ in Lemma 1.3 we get the characterization theorems for the classes $S^*(A,B)$ and K(A,B) in [3] respectively.

Remark1.4: It follows from the normalization conditions $a_0 = 0$ and $a_1 = 1$ that $D_0 = \frac{-(1+\gamma\zeta)}{(B-A)}(1-\delta) = 0$, and $D_{1} = \frac{(1+B\zeta) - (1+\gamma\zeta)}{(B-A)\zeta} a_{1} = 1.$ **<u>Remark1.5:</u>** The assertion (1.3), of Lemma 1.2 is equivalent to

$$\frac{1}{z}\left(f(z) * \frac{\zeta z(B-\gamma) + (1+\gamma\zeta)z^2}{(1-z)^2}k(n,\delta)\right) \neq 0,$$

$$|z| < R, |\zeta| < 1.$$

For $\lambda = \delta = 0$; $\lambda = 0, \delta = 1$, we get the assertions given by Ganesan [1].

2. MAIN RESULTS

Theorem2.1: If $f \in A$ satisfies the following condition

$$\sum_{n=2}^{\infty} \begin{bmatrix} \left| \sum_{k=1}^{n} \left(\sum_{j=1}^{k} (-1)^{k-j} (j-1) \mathbf{k}(j, \delta) \begin{pmatrix} \beta \\ \mathbf{k} - j \end{pmatrix} \mathbf{a}_{j} \right) \begin{pmatrix} \eta \\ \mathbf{n} - \mathbf{k} \end{pmatrix} \right| + \\ \left| \sum_{k=1}^{n} \left(\sum_{j=1}^{k} (-1)^{k-j} (j\mathbf{B} - \gamma) \mathbf{k}(j, \delta) \begin{pmatrix} \beta \\ \mathbf{k} - j \end{pmatrix} \mathbf{a}_{j} \right) \begin{pmatrix} \eta \\ \mathbf{n} - \mathbf{k} \end{pmatrix} \right| \\ < B - A \tag{2.1}$$

where $\gamma = (A \cos \lambda + iB \sin \lambda)e^{-i\lambda}$, with $\beta, \eta \in \mathbb{R}$ and $-1 \leq B < A \leq 1$ then $f(z) \in \Omega_{\lambda}^{\delta}(A, B).$

Proof: We note that
$$(1-z)^{\beta} \neq 0$$
 and $(1-z)^{\eta} \neq 0$, $(\beta, \eta \in \mathbb{R})$.

$$\begin{pmatrix} 1 + \sum_{n=2}^{\infty} D_n z^{n-1} \end{pmatrix} (1-z)^{\beta} (1-z)^{\eta} \neq 0, \\ (z \in U, \beta, \eta \in \mathbb{R}).$$

$$(2.2)$$

If the (2.2) holds true, then we have $1 + \sum_{n=2}^{\infty} D_n z^{n-1} \neq 0$, which is the relation (1.3) of Lemma 1.2. Equation (1.3) is equivalent to

International Journal of Mathematics Trends and Technology – Volume 6 – February 2014

$$\begin{pmatrix} 1 + \sum_{n=2}^{\infty} D_n z^{n-1} \end{pmatrix} \begin{pmatrix} 1 + \sum_{n=0}^{\infty} (-1)^n b_n z^n \end{pmatrix}$$

(1 + \sum \lambda_n \vec c_n z^n \rangle \neq 0 (2.3)

where $b_n = {\beta \choose n}$ and $c_n = {\eta \choose n}$. Using the Cauchy product of the first two factor, we can write the expression (2.3), as

$$(1 + \sum_{n=2}^{\infty} C_n z^{n-1})(1 + \sum_{n=0}^{\infty} c_n z^n) \neq 0 \quad (2.4)$$

where $C_n = \sum_{j=1}^n (-1)^{n-j} D_j b_{n-j}$.

Further, by applying the Cauchy product again in (2.4), we find that

$$1 + \sum_{n=2}^{\infty} \left(\sum_{k=1}^{n} C_k c_{n-k} \right) z^{n-1} \neq 0.$$

Equivalently, we have
$$1 + \sum_{n=2}^{\infty} \left[\left(\sum_{k=1}^{n} (-1)^{k-j} D_j b_{k-j} \right) c_{n-k} \right] z^{n-1} \neq 0, \quad (z \in U).$$

If $f \in A$ satisfies the following inequality
$$\sum_{n=2}^{\infty} \left| \sum_{k=1}^{n} \left(\sum_{j=1}^{k} (-1)^{k-j} D_j b_{k-j} \right) c_{n-k} z^{n-1} \right| \leq 0, \quad (z \in U).$$

That is if
$$\frac{1}{\zeta(B-\gamma)} \sum_{n=2}^{\infty} \left| \sum_{k=1}^{n} \left(\sum_{j=1}^{k} (-1)^{k-j} D_j b_{k-j} \right) c_{n-k} z^{n-1} \right| \leq 0, \quad (z \in U).$$

 $\leq \frac{1}{(B-\gamma)} \sum_{n=2}^{\infty} \left(\left| \sum_{k=1}^{n} \sum_{j=1}^{k} (-1)^{k-j} (j-1)^{k-j} (j-1)^{k$

≤ 1

for $-1 \le B < A \le 1$, $\zeta \in \mathbb{C}$, $|\zeta| = 1$, then $f \in \Omega_{\lambda}^{\delta}(A, B)$ which establishes the result. For particular choices of the parameter δ we get the Theorem 4.2 and Theorem 4.3 in [3] respectively.

For $A = 1 - 2\alpha$, B = -1, $\delta = 0$ and $\delta = 1$ we get coefficient conditions for functions in the classes $S_{\lambda}^{*}(\alpha)$ and $K_{\lambda}(\alpha)$ in [1] with

suitable modifications. As a special case of Theorem 2.1 yields the following result.

<u>**Corollary2.2:**</u> If $f \in A$ satisfies the following condition

$$\sum_{n=2}^{\infty} \left[\left| \sum_{k=1}^{n} \left(\sum_{j=1}^{k} (-1)^{k-j} (j-1) \mathbf{k}(j, \delta) \binom{\beta}{k-j} \mathbf{a}_{j} \right) \binom{\eta}{n-k} \right| + \left| \sum_{k=1}^{n} \left(\sum_{j=1}^{k} (-1)^{k-j} (jB-A) \mathbf{k}(j, \delta) \binom{\beta}{k-j} \mathbf{a}_{j} \right) \binom{\eta}{n-k} \right| + \left| \sum_{k=1}^{n} \left(\sum_{j=1}^{k} (-1)^{k-j} (jB-A) \mathbf{k}(j, \delta) \binom{\beta}{k-j} \mathbf{a}_{j} \right) \binom{\eta}{n-k} \right| + \left| \sum_{k=1}^{n} \left(\sum_{j=1}^{k} (-1)^{k-j} (jB-A) \mathbf{k}(j, \delta) \binom{\beta}{k-j} \mathbf{a}_{j} \right) \binom{\eta}{n-k} \right| + \left| \sum_{k=1}^{n} \left(\sum_{j=1}^{k} (-1)^{k-j} (jB-A) \mathbf{k}(j, \delta) \binom{\beta}{k-j} \mathbf{a}_{j} \right) \binom{\eta}{n-k} \right| + \left| \sum_{k=1}^{n} \left(\sum_{j=1}^{k} (-1)^{k-j} (jB-A) \mathbf{k}(j, \delta) \binom{\beta}{k-j} \mathbf{a}_{j} \right) \binom{\eta}{n-k} \right| + \left| \sum_{k=1}^{n} \left(\sum_{j=1}^{k} (-1)^{k-j} (jB-A) \mathbf{k}(j, \delta) \binom{\beta}{k-j} \mathbf{a}_{j} \right) \binom{\eta}{n-k} \right| + \left| \sum_{k=1}^{n} \left(\sum_{j=1}^{k} (-1)^{k-j} (jB-A) \mathbf{k}(j, \delta) \binom{\beta}{k-j} \mathbf{a}_{j} \right) \binom{\eta}{n-k} \right| + \left| \sum_{k=1}^{n} \left(\sum_{j=1}^{k} (-1)^{k-j} (jB-A) \mathbf{k}(j, \delta) \binom{\beta}{k-j} \mathbf{a}_{j} \right) \binom{\eta}{n-k} \right| + \left| \sum_{k=1}^{n} \left(\sum_{j=1}^{k} (-1)^{k-j} (jB-A) \mathbf{k}(j, \delta) \binom{\beta}{k-j} \mathbf{a}_{j} \right) \binom{\eta}{n-k} \right| + \left| \sum_{j=1}^{n} \left(\sum_{j=1}^{k} (-1)^{k-j} (jB-A) \mathbf{k}(j, \delta) \binom{\beta}{k-j} \mathbf{a}_{j} \right) \binom{\eta}{n-k} \right| + \left| \sum_{j=1}^{n} \left(\sum_{j=1}^{n} (-1)^{k-j} (jB-A) \mathbf{k}(j, \delta) \binom{\beta}{k-j} \mathbf{a}_{j} \right) \binom{\eta}{n-k} \right| + \left| \sum_{j=1}^{n} \left(\sum_{j=1}^{n} (-1)^{k-j} (jB-A) \mathbf{k}(j, \delta) \binom{\beta}{k-j} \mathbf{a}_{j} \right) \binom{\eta}{n-k} \right| + \left| \sum_{j=1}^{n} \left(\sum_{j=1}^{n} (-1)^{k-j} (jB-A) \mathbf{k}(j, \delta) \binom{\beta}{k-j} \mathbf{a}_{j} \right) \binom{\eta}{n-k} \right| + \left| \sum_{j=1}^{n} \left(\sum_{j=1}^{n} (-1)^{k-j} (jB-A) \mathbf{k}(j, \delta) \binom{\beta}{k-j} \mathbf{a}_{j} \right) \binom{\eta}{n-k} \right| + \left| \sum_{j=1}^{n} (-1)^{k-j} (jB-A) \mathbf{k}(j, \delta) \binom{\beta}{k-j} \mathbf{a}_{j} \binom{\eta}{n-k} \binom{\eta}{n-k} \right| + \left| \sum_{j=1}^{n} (-1)^{k-j} (jB-A) \mathbf{k}(j, \delta) \binom{\eta}{k-j} \binom{\eta}{n-k} \binom{\eta}{n-k$$

 $\beta, \eta \in \mathbb{R} \text{ and } -1 \leq B < A \leq 1$ then $f(z) \in \Omega_{\lambda}^{\delta}(A, B).$

For particular choices of the parameter δ we get the Theorem 3.1 and Theorem 3.5 in [3] respectively.

For

 $A = 1 - 2\alpha$, B = -1, $\delta = 0$ and $\delta = 1$ we get coefficient conditions for functions in the classes $S^*(\alpha)$ and $K(\alpha)$ in [1] with suitable modifications.

REFERENCES:

- 1. M. S. Ganesan and K. S. Padmanabhan, *Convolution condition for certain classes of analytic functions*, International J.Pure and Appl. Math., 15(7), 777-780, July 1984.
- W. Janowski, Some extremal problems for certain families of analytic functions, I. Ann. Polan. Math., 28, 298-326, 1973.
- S. Latha, Coefficient inequalities and convolution conditions, Int. J. Contemp. Math. Sci., Vol.3, No.30, 1461-1467, 2008.
- 4. H. Silverman, Silvia, E.M. and Telage D., Convolution conditions for convexity, starlikeness and spiral likeness, Math. Z., 162, 125-130, 1978.
- H. M. Srivastava and S Qwa, An application of the fractional derivative, Math. Japan, 29, 383-389, 1984.
- 6. Toshio Hayami, Shigeyoshi Owa and H.M. Srivastava, *Coefficient inequalities for certain classes of analytic and univalent functions*, Journal of Inequalities in Pure and Applied Mathematics, Vol. 8, Issue 4, Article 95, 2007.