On Relative Preclosedness of Strongly Compact

(Countably p-Compact) Sets

Navpreet Singh Noorie^{#1}, Anakh Singh^{#2}

[#]Department of Mathematics, Punjabi University, Patiala- 147002, India.

Abstract— In this paper, we study the preclosedness of strongly compact (countably p-compact) subsets of subspaces of strongly p-normal spaces. Consequences of the result for unions of specific sets are given. Examples are given to illustrate the results. *Keywords*— preclosed, p*closed, pre-R₁, strongly compact, countably p-compact, pre-accumulation, p-convergent, pre-sequential, strongly p-normal, net.

I. INTRODUCTION

In [3] Ganster answered the question posed by Katetov as to when preopen sets form a topology. In fact he proved that, for space X having its unique Hewitt representation $X = F \cup G$, where F is closed and resolvable and G is open and hereditarily irresolvable, the preopen sets of X form a topology if and only if closure of G is open and each singleton in the interior of F is preopen in X. In this paper, we will call such spaces in which preopen sets form a topology as spaces having *Strong Hewitt Representation*. On the other hand, in [4] Garg and Singh took up the question of closedness of a compact (countably compact) set in S₂(sequential, S₂) and normal (sequential, normal) spaces. Since normality is not hereditary, in [5] Garg and Singh further generalized the results to closedness of a compact (countably compact) set in subspaces (sequential subspaces) of normal spaces. In [10], Noorie and A. Singh obtained necessary and sufficient conditions for p*closedness of a strongly compact (countably p-compact) set in pre-R₁ (pre-sequential, pre- R₁), p*normal (pre-sequential, p*normal) spaces and sufficient conditions for p*closedness of a strongly p – normal) and p-normal (pre-sequential, p-normal) spaces. Among others, the following results have been proved in [10]:

Theorem 1.1 [10]:

For a strongly compact (countably p-compact) subset K of a pre- R_1 (pre-sequential, pre- R_1) space X, the following conditions are equivalent:

(i) K is p*closed;

(ii) either K or K^{C} is a union of p*closed sets;

(iii) both K and K^{C} are unions of p*closed sets.

Theorem 1.2 [10]:

In a p-normal (pre-sequential, p-normal) space X, strongly compact (countably p-compact) set K is p*closed if K is a union of closed sets and K^{C} is of the form $G \cup C$, where G and C are arbitrary preopen and closed sets respectively.

Theorem 1.3 [10]:

In a strongly p-normal (pre-sequential, strongly p-normal) space X, strongly compact (countably p-compact) set K is p*closed if K is a union of preclosed sets and K^{C} is of the form $G \cup F$, where G and F are arbitrary preopen and preclosed sets respectively.

In this paper, results of [10] are generalized to subspaces (pre-sequential subspaces) of spaces having Strong Hewitt Representation, obtaining necessary and sufficient conditions for preclosedness of strongly compact (countably p-compact) subset of the preopen (presequential, preopen) subspace Y in strongly p-normal spaces [Theorem 2.9, Theorem 2.11]. Also sufficient conditions for relative preclosedness of arbitrary union of preclosed sets in strongly p-normal spaces [Corollary 2.10 (a), (b)] are obtained.

A subset A of a space X is *preclosed* [8] if closure of interior of A is contained in A. The complement of a preclosed set is called a *preopen* set and preclosure [2] is the intersection of all preclosed sets containing A and is denoted by pcl(A). A point $x \in X$ is a *pre-accumulation* (*p-convergent*) [6] of a net in X if the net is frequently (eventually) in every preopen set containing x. A subset A of space X is said to be *p*closed* [10] if no net in A p-converges to a point of A^C. A space X is, (i) *strongly compact* [10] (*countably p-compact*) [13] if every preopen (countable preopen) cover of X has finite subcover, (ii) *p-normal* [11] if for each pair of disjoint closed sets of X, there exist disjoint preopen sets containing them, (iii) *strongly p-normal*

International Journal of Mathematics Trends and Technology – Volume 6 – February 2014

[10] if for each pair of disjoint preclosed sets of X, there exist disjoint preopen sets containing them. (iv) pre-R₁ [1] if for points *x*, *y* in *X* with distinct preclosures there exist disjoint preopen sets containing pcl({x}) and pcl({y}), (v) pre-T₂ [7] if for each pair of distinct points x and y of X, there exists a pair of disjoint preopen sets, one containing *x* and the other containing *y*, (vi) pre-sequential [10] if for every non-preclosed subset A of X there is a sequence {x_n} in A which p-converges to a point of A^C, (vii) resolvable [3] if it is the disjoint union of two dense subsets, (viii) hereditarily irresolvable [3] if it does not contain a non-empty resolvable set. Also we will call a set pre-F_{σ}, if it is countable union of preclosed sets. A subset A of X is strongly compact (countably p-compact) relative to X [9] if every preopen (countable preopen) cover of A by preopen sets of X has finite subcover.

Throughout, by a space X we shall mean a topological space. In a space X, A^{C} will denote the complement of A for any subset A of X. Z^{+} will denote the set of all positive integers. G, F and C, respectively, will stand for arbitrary preopen, preclosed and subsets of X. G_{Y} , F_{Y} and C_{Y} respectively, will stand for relatively preclosed and relatively closed subsets of the subspace Y of X. For a set $S \subset Y$, $cl_{Y}(S)$, $pcl_{Y}(S)$, and Y-S, respectively will denote the closure, preclosure and complement of the set S in the subspace Y of X.

The following results will be used in the next section. *Lemma 1.4* [6]: A space X is strongly compact if and only if every net in X pre-accumulates to some point of X.

Lemma 1.5 [7]: If $A \subset Y \subset X$ and Y is preopen in X then, A is preopen in Y if and only if A is preopen in X.

Lemma 1.6 [12]: If $A \subset Y \subset X$ and Y is α -set in X then $pcl_Y(A) = pcl_X(A) \cap Y$.

Lemma 1.7 [1]: For a space X, the following conditions are equivalent: (i) X is pre-R₁; (ii) X is pre-T₂.

II. RESULTS

Proof of Lemma 2.1 follows from Lemma 1.5 and Lemma 1.6. Lemma 2.1: If $A \subset Y \subset X$, A is preclosed in Y and Y is preopen in X then, $A = pcl_X(A) \cap Y$.

Remark:

From now onwards, throughout this section, the space X is assumed to have Strong Hewitt Representation.

With the assumption that preopen sets of space X, form a topology and a directed set, the well known relationship between adherent points of a set and nets has the following analogous form. *Lemma 2.2:*

For $A \subset X$, $x \in pcl(A)$ if and only if there exists a net in A which p-converges to x.

The following Lemma gives another characterization of the preclosed sets. *Lemma 2.3:*

A subset A of X is p*closed if and only if it is preclosed.

Proof: Since every preclosed set is p*closed [10]. The converse follows with the help of Lemma 2.2.

We now obtain a necessary and sufficient condition for the preclosedness of a countably p-compact set in a strongly pnormal space in Theorem 2.4 and sufficient condition for the equality of the union of preclosures and the preclosure of the union of countable families of sets in strongly p-normal spaces are also obtained in Corollary 2.5 below.

Theorem 2.4:

Let X be a strongly p-normal space and K a countably p-compact subset of X. Then K is preclosed in X if and only if K is a pre- F_{σ} and K^{C} is of the form $G \cup F$.

International Journal of Mathematics Trends and Technology – Volume 6 – February 2014

Proof: Let $K = \bigcup_{i=1}^{\infty} F_n$, where each F_n is preclosed in X, and $K^C = G \cup F$. We prove K^C is preopen in X. For any $x \in K^C$, if $x \in G$, then $x \in G \subset K^C$, where G is preopen in X. Otherwise, $x \in F$. Since X is strongly p-normal, for each n, there exist disjoint preopen sets U_n and V_n in X containing F_n and F respectively. Then $\{U_n\}_{n=1}^{\infty}$ is a countable preopen cover of K and therefore, there exists a positive integer n, such that, $K \subset \bigcup_{i=1}^{n} U_n$ and $F \subset \bigcap_{i=1}^{n} V_n$. Then $U = \bigcup_{i=1}^{n} U_n$ and $V = \bigcap_{i=1}^{n} V_n$ are disjoint preopen sets such that $x \in V \subset U^C \subset K^C$. Therefore, K^C is preopen and hence K is preclosed.

Corollary 2.5:

In a strongly p-normal space X,

(a) a countable union of preclosed sets is preclosed, if it is countably p-compact and is of the form $G \cap F$;

(b) if ε is a family of subsets of X such that \cup {pcl (E) : E $\in \varepsilon$ }, in particular \cup {E : E $\in \varepsilon$ }, is countably p-compact and is of the form G \cap F, then pcl (\cup {E : E $\in \varepsilon$ }) = \cup {pcl (E) : E $\in \varepsilon$ }.

Lemma 2.6:

For a preopen subspace Y of X, the preopen sets of Y form a topology.

Proof: Preopen sets of Y form a topology if they satisfy finite intersection property. Let $\{U_{\alpha}\}$ be preopen sets of Y. By Lemma 1.5 since Y is preopen in X each U_{α} is also preopen in X. Since, finite intersection of preopen sets is preopen in X and the finite intersection will also be preopen in Y again by Lemma 1.5.

Lemma 2.7:

If $A \subset Y \subset X$ and Y is preopen set in X then, A is strongly compact (countably p-compact) relative to X if and only if A is strongly compact (countably p-compact) relative to Y.

Proof: Necessary condition is obvious and the sufficient part follows from Lemma 1.5 and Lemma 2.6.

Proof of Theorem 2.8 follows from Lemma 1.5 and Lemma 1.7.

Theorem 2.8:

Every preopen set Y of a pre- R_1 X is also pre- R_1 .

We now obtain the necessary and sufficient conditions for the preclosedness of a strongly compact (countably pcompact) subset of the preopen subspace (presequential, preopen subspace) of a strongly p-normal space in Theorem 2.9 and Corollary 2.10 as a generalization of Theorem 1.3 above in subspaces. *Theorem 2.9:*

Let K be a strongly compact (countably p-compact) subset of the preopen subspace (presequential, preopen subspace) Y of a strongly p-normal space X. Then K is relatively preclosed in Y,

(a) if and only if K is a union of relatively preclosed subsets of Y and Y – K is of the form $G_Y \cup F$,

(b) if K is a union of preclosed subsets of X and Y - K is of the form $G_Y \cup F_Y$;

(c) if K is a union of preclosed subsets of X and Y - K is a union of relatively preclosed subsets of Y;

(d) if K is a union of relatively preclosed subsets of Y and Y - K is a union of preclosed subsets of X.

Proof: (*a*) Since the necessary condition is obvious we prove the sufficient part. Let $K = \bigcup_a V_a$, where each V_a is a preclosed set in Y. Since Y is preopen set by Lemma 2.1, $K = \bigcup_a (F_a \cap Y)$, where each F_a is a preclosed set in X. By Lemma 2.3, if K is not relatively preclosed in Y then there exists a net $\{x_\lambda\}$ (a sequence $\{x_n\}$) in K such that $x_\lambda(\{x_n\})$ p-converges to point *a* and *a* is in Y - K. Then as K is strongly compact (countably p-compact) in Y, Lemma 1.4 implies that the net $\{x_\lambda\}$ (the sequence $\{x_n\}$) has a pre-accumulation point *b* in K. By Lemma 2.6 the net $\{x_\lambda\}$ (the sequence $\{x_n\}$) in K pre-accumulates relative to X to the point b. Therefore, there exists an α such that $b \in F_a$ and $a \notin F_a$. Thus *a* and *b* belong to the disjoint preclosed sets *F* and F_a of X and since X is strongly p-normal it follows that they have disjoint preopen sets U and V of X containing them respectively, and since Y is preopen in X and preopen sets of X form a topology $U \cap Y$ and $V \cap Y$ are disjoint preopen sets of Y (Lemma 1.5) containing a and b respectively, contradicting to the fact that x_λ p-converges to *a* (x_n p-converges to *a*) and *b* is a pre-accumulation point of $\{x_\lambda\}(\{x_n\})$. Hence K must be preclosed in Y and (a) follows.

The proofs of (b) - (d) are similar to that of part (a).

Corollary 2.10:

Let K be a strongly compact (countably p-compact) subset of the preopen subspace (presequential, preopen subspace) Y of a strongly p-normal space X. Then

International Journal of Mathematics Trends and Technology – Volume 6 – February 2014

(a) a union K of relatively preclosed subsets of Y is relatively preclosed in Y, if K is strongly compact (countably p- compact) and Y - K is either of the form $G_Y \cup F$ or is a union of preclosed subsets of X;

(b) a union $K \subset Y$ of preclosed subsets of X is relatively preclosed in Y if K is strongly compact (countably p- compact) and Y - K is either of the form $G_Y \cup F_Y$ or is a union of relatively preclosed subsets of Y;

(c) if ε is a family of subsets of X such that $K = \bigcup \{pcl_Y(E) : E \in \varepsilon\}$ is strongly compact (countably p-compact) and Y - K is of the form $G_Y \cup F$ or is a union of preclosed subsets of X, then $pcl_Y(\cup \{E : E \in \varepsilon\}) = \bigcup \{pcl_Y(E) : E \in \varepsilon\}$;

(d) if ϵ is a family of subsets of X such that $K = \bigcup \{pcl_Y(E) : E \in \epsilon\}$ is strongly compact (countably p-compact) and Y –K is of the form $G_Y \cup F_Y$ or is a union of relatively preclosed subsets of Y, then $pcl_Y(\cup \{E : E \in \epsilon\}) = \bigcup \{pcl_Y(E) : E \in \epsilon\}$.

We now obtain the necessary and sufficient conditions for the preclosedness of a countably p-compact subset of the preopen subspace of a strongly p-normal space as a generalization of Theorem 2.4 above in subspaces. *Theorem 2.11:*

Let K be a countably p-compact subset of the preopen subspace Y of a strongly p-normal space X. Then K is relatively preclosed in Y

(a) if and only if K is a relatively pre- F_{σ} set in Y and Y –K is of the form $G_{Y} \cup F$,

(b) if any one of the following conditions holds:

(i) K is an pre-F_{σ} in X and Y – K is of the form G_Y \cup F_Y;

(ii) K is an pre- F_{σ} in X and Y –K is a union of relatively closed subsets of Y;

(iii) K is a relatively pre- F_{σ} set in Y and Y –K is a union of closed subsets of X.

Proof: (a) Since necessity is obvious for any set K, we need prove only the sufficient part. Let $K = \bigcup_{i=1}^{\infty} P_n$, where each P_n is

preclosed in X. Since Y is preopen set by Lemma 2.1, we have $K = \bigcup_{i=1}^{\infty} (F_n \cap Y)$, where each F_n is a preclosed set in X and

 $Y - K = G_Y \cup F$. We prove that Y - K is relatively preopen in Y. For any $x \in Y - K$, if $x \in G_Y$, then $Y - K = G_Y \cup F$ implies

 $x \in G_Y \subset Y - K$. If $x \in F$, then since X is strongly p-normal and each F_n is disjoint from F, there exist, for each positive integer n, disjoint preopen sets U_n and V_n in X containing F_n and F respectively. Then $\{U_n\}_{n=1}^{\infty}$ is a countable preopen cover of K and therefore, there exists a positive integer n, such that, $K \subset \bigcup_{i=1}^{n} U_n$ and $F \subset \bigcap_{i=1}^{n} V_n$. Then $U = \bigcup_{i=1}^{n} U_n$ and $V = \bigcap_{i=1}^{n} V_n$ are disjoint preopen sets such that $x \in V \subset U^C \subset Y - K$. It follows that $x \in V \cap Y \subset Y - K$, where $V \cap Y$ is relatively preopen in Y (Lemma 1.5). Therefore, Y - K is relatively preopen and hence K is preclosed in Y. (b) The proof is similar to that of part (a) above.

III. EXAMPLES

Example 3.1 below shows that in a space which does not have strong Hewitt representation,

(i) a preopen subspace of strongly p-normal need not be strongly p-normal and (ii) a preopen subspace of $pre-R_1$ need not be $pre-R_1$.

Example 3.1:

Let $X = Z^+$, together with the topology, $T = \{G \subset X \mid G = \emptyset \text{ or } \{1, 2\} \subset G\}$. Then (X,T) strongly p-normal space which in not normal and a pre-R₁space which is not R₁ where preopen sets of X do not form a topology. Let Y be any set containing $\{1\}$ but not containing $\{2\}$. Y is a preopen subspace of X which is neither strongly p-normal space nor a pre-R₁space.

Example 3.2 below shows, (i) a strongly p-normal space which is not pre-R₁, (ii) a preopen subspace of strongly p-normal space need not be strongly p-normal even if the space has strong Hewitt representation, (iii) " $G_Y \cup F$ " in cannot be replaced by " $G_Y \cup F_Y$ " or " $G \cup F_Y$ " in Theorem 2.9(a) and Corollary 2.10(a).

Example 3.2 ([c.f. 15; 8.1 Problem 1 and 13; Example 27]):

Let $Y = N \cup x_1 \cup x_2$, such that x_1, x_2 are two distinct points and N is any infinite set neither containing x_1 nor x_2 . We topologize Y with topology T by calling any subset of N open and calling any set containing x_1 or x_2 open if and only if it contains all but finite number of points in N. Let $p \notin X$ and $X^* = Y \cup p$, with the topology $T^* = \{G \subset X^*: G \in T \text{ or } G = X^*\}$. Then (X^*, T^*) is a strongly p-normal space but (Y, T) is not strongly p-normal space. Let $K = G \cup x_1$, where G contains all but finite number of points in N, K is a strongly compact (countably p-compact) set which is union of relatively closed and preclosed sets of Y but K^C is not of the of the form $G_Y \cup F$ or $G_Y \cup C$ and K is not preclosed.

Example 3.3 below shows that if a space X has Strong Hewitt representation then subspace Y of X need not have Strong Hewitt representation.

Example 3.3: Let $X = \{a,b,c,d\}$, together with the topology $T = \{ \emptyset, \{a\}, \{a, b, c\}, X\}$. Then preopen sets of (X, T) form a topology. Further, $Y = \{b,c,d\}$ is a preclosed subspace of X the preopen sets of which do not form a topology.

REFERENCES

[1] M. Caldas, S. Jafari and T. Noiri, "Characterizations of pre-R₀ and pre-R₁ topological spaces", *Topology Proceedings*, **25**, 2000, 17-30.

[2] S. N. El-Deeb, I. A. Hasanein, A. S. Mashhour and T. Noiri, "On p-regular spaces", Bull. Math. Soc. Sci. Math. R.S. Roumanie, 27, 1983, 311-315.

[3] M. Ganster, "Preopen sets and resolvable spaces", Kyngpook, Math. J., 27(2), 1987, 135-143.

- [4] G. L. Garg and N. Singh, "When a compact (countably compact) set is closed", Acta. Math. Hungar., 94(3), 2002, 233-239.
- [5] G. L. Garg and N. Singh, "When a compact (countably compact) set is closed II", Acta. Math. Hungar., 105(4), 2004, 331-337.

[6] S. Jafari and T. Noiri, "More on strongly compact spaces", Missouri J. Math. Sci., 19(1), 2007, 52-61.

[7] A. Kar and P. Bhattacharyya, "Some weak separation axioms", Bull Calcutta Math.Soc., 82, 1990, 415-422.

[8] A. S. Mashhour, M. E. Abd El-Monsef, and S. N. El-Deeb, "On precontinuous and weak precontinuous mappings", *Proc. Math. Phys. Soc. Egypt*, 53, 1982, 47-53.

[9] A. S. Mashhour, M. E. Abd El-Monsef, I. A. Hasanein and T. Noiri, "Strongly compact spaces", Delta J. Sci., 8 (1), 1984, 30-46.

[10] N. S. Noorie and A. Singh, "Charachterizations of pre- R_0 , pre- R_1 spaces and p*closedness of strongly compact (countably p-compact) sets", *Journal of Advanced Studies in Topology*, **5**(1), 2014, 50-56.

[11] Paul and Bhattacharyya, "On p-normal spaces", Soochow J. Math., 21(3), 1995, 273-289.

[12] Paul and Bhattacharyya, "On Pre-Urysohn Space", Bull, Malaysian Math. Soc. (Second Series), 22, 1999, 23-34.

- [13] L. A. Steen and J. A. Seebach, Jr., Counterexamples in topology, Holt, Rinehart and Winston, Inc., 1970.
- [14] S. S. Thakur and P. Paik, "Countably p-compact spaces", Sci. Phys. Sci., 1(1), 1989, 48-51.

[15] A. Wilansky, Topology for Analysis, Xerox College Publishing, Lexington, Massa-chusetts, Toronto, 1970.