Some Results on Super Harmonic Mean Graphs

C. David Raj ${ }^{\# 1}$ and C. Jayasekaran ${ }^{* 2}$
* Department of Mathematics, Malankara Catholic College, Mariagiri, Kaliyakkavilai,
Kanyakumari-629 153, Tamil Nadu, India.
* Department of Mathematics, Pioneer Kumaraswamy College, Nagercoil, Kanyakumari - 629 003, Tamil Nadu, India.

Abstract

Let G be a graph with p vertices and q edges. Let $f: V(G) \rightarrow\{1,2, \ldots, p+q\}$ be a injective function. For a vertex labeling f, the induced edge labeling $f^{*}(\mathrm{e}=\mathrm{uv})$ is defined by $\mathrm{f}^{*}(\mathrm{e})=\left\lceil\frac{2 f(u) f(v)}{f(u)+f(v)}\right\rceil$ or $\left\lfloor\left.\frac{2 f(u) f(v)}{f(u)+f(v)} \right\rvert\,\right.$. Then f is called a Super harmonic mean labeling if $f(V(G)) \cup\{f(e) / e \in E(G)\}=\{1,2, \ldots, p+q\}$. A graph which admits Super harmonic mean labeling is called Super harmonic mean graphs. In this paper, we investigate Super harmonic mean labeling of some graphs.

Key words - Graph, Super harmonic mean labeling, Super harmonic mean graphs

I. INTRODUCTION

We begin with simple, finite, connected and undirected graph $G(V, E)$ with p vertices and q edges. For a detailed survey of graph labeling we refer to Gallian[1]. For all other standared terminology and notations we follow Harary[2]. S. Somasundram and R. Ponraj introduced mean labeling of graphs in [3]. R. Ponraj and D. Ramya introduced Super mean labeling of graphs in [4]. S. Somasundram and S.S. Sandhya introduced the concept Harmonic mean labeling in [5] and studied their behavior in [6, 7, 8]. S. Sandhya and C. David Raj introduced Super harmonic labeling in [9]. In this paper, we investigate Super harmonic mean labeling of some graphs. We now give the following definitions which are useful for the present investigation.

Definition 1.1. Let $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots, \mathrm{p}+\mathrm{q}\}$ be a injective function. For a vertex labeling f , the induced edge labeling $\mathrm{f}^{*}(\mathrm{e}=\mathrm{uv})$ is defined by $\mathrm{f}^{*}(\mathrm{e})=\left\lceil\frac{2 f(u) f(v)}{f(u)+f(v)}\right\rceil$ or $\left\lfloor\frac{2 f(u) f(v)}{f(u)+f(v)}\right\rfloor$. Then f is called a Super harmonic mean labeling if $\mathrm{f}(\mathrm{V}(\mathrm{G})) \cup\{\mathrm{f}(\mathrm{e}) / \mathrm{e} \in \mathrm{E}(\mathrm{G})\}=\{1,2$, $\ldots, p+q\}$. A graph which admits Super harmonic mean labeling is called Super harmonic mean graphs.

Definition 1.2. The corona $G_{1} \odot G_{2}$ of two graphs G_{1} and G_{2} is defined as the graph G obtained by taking one copy of G_{1} (which has p_{1} vertices) and p_{1} copies of G_{2} and then joining the $i^{\text {th }}$ vertex of G_{1} to every vertices in the $i^{\text {th }}$ copy of G_{2}.

Definition 1.3. The graph $\mathrm{P}_{\mathrm{n}} \odot \mathrm{K}_{1}$ is called Comb.
Definition 1.4. The graph $\mathrm{C}_{\mathrm{n}} \odot \mathrm{K}_{1}$ is called crown.
Definition 1.5. The prism $\mathrm{D}_{\mathrm{n}}, \mathrm{n} \geq 3$ is a trivalent graph which can be defined as the Cartesian product $\mathrm{P}_{2} \times \mathrm{C}_{\mathrm{n}}$ of a path on two vertices with a cycle on n vertices. We denote a graph obtained by attaching P_{2} at each vertex of outer cycle of D_{n} by $\left(D_{n} ; P_{2}\right)$.

II. SUPER HARMONIC MEAN LABELING FOR CONNECTED GRAPHS

Theorem $2.1 \mathrm{nP} \mathrm{P}_{\mathrm{m}}$ is a Super harmonic mean graph.

Proof. Let $\mathrm{v}_{\mathrm{i}, \mathrm{j}}, 1 \leq \mathrm{i} \leq \mathrm{n}, 1 \leq \mathrm{j} \leq \mathrm{m}$ be the vertices of $\mathrm{nP} \mathrm{m}_{\mathrm{m}}$. Then its edge set is $\mathrm{E}=\left\{\mathrm{u}_{\mathrm{i}, \mathrm{j}} \mathrm{u}_{\mathrm{i}, \mathrm{j}+1} / 1 \leq \mathrm{i} \leq \mathrm{n}, 1 \leq \mathrm{j} \leq \mathrm{m}-1\right\}$. Define a function $\mathrm{f}: \mathrm{V}\left(\mathrm{nP}_{\mathrm{m}}\right) \rightarrow\{1,2, \ldots, \mathrm{p}+\mathrm{q}\}$ by

$$
\mathrm{f}\left(\mathrm{v}_{\mathrm{i}, \mathrm{j}}\right)=(2 \mathrm{~m}-1)(\mathrm{i}-1)+2 \mathrm{j}-1,1 \leq \mathrm{i} \leq \mathrm{n}, 1 \leq \mathrm{j} \leq \mathrm{m}
$$

Then the induced edge labels are

$$
f^{*}\left(\mathrm{v}_{\mathrm{i}, \mathrm{j}} \mathrm{v}_{\mathrm{i}, \mathrm{j}+1}\right)=(2 \mathrm{~m}-1)(\mathrm{i}-1)+2 \mathrm{j}, 1 \leq \mathrm{i} \leq \mathrm{n}, 1 \leq \mathrm{j} \leq \mathrm{m}-1 ;
$$

Thus f provides a Super harmonic mean labeling for $n P_{m}$.
Example 2.2. A Super harmonic mean labeling of $4 \mathrm{P}_{7}$ is shown in figure 2.1.

Fig. $2.14 \mathrm{P}_{7}$

Theorem 2.3. $\mathrm{nK}_{1,3}$ is a Super harmonic mean graph.
Proof. Let $u_{i}, u_{i, j}, 1 \leq i \leq n, 1 \leq j \leq 3$ be the vertices of $n K_{1,3}$ in which u_{i} is the central vertex of $K_{1,3}$. Its edge set is $E=\left\{u_{i} u_{i, j} / 1 \leq i \leq n, 1 \leq j \leq 3\right\}$. Define a function $f: V\left(n K_{1,3}\right) \rightarrow\{1,2, \ldots, p+q\}$ by

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{u}_{1}\right)=7 ; \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=7 \mathrm{i}-2 ; 2 \leq \mathrm{i} \leq \mathrm{n} ; \\
& \mathrm{f}\left(\mathrm{u}_{1,1}\right)=1 ; \mathrm{f}\left(\mathrm{u}_{1,2}\right)=3 ; \mathrm{f}\left(\mathrm{u}_{1,3}\right)=5 ; \\
& \mathrm{f}\left(\mathrm{u}_{\mathrm{i}, \mathrm{j}}\right)=7(\mathrm{i}-1)+\mathrm{j}, 2 \leq \mathrm{i} \leq \mathrm{n}, 1 \leq \mathrm{j} \leq 2 ; \\
& \mathrm{f}\left(\mathrm{u}_{\mathrm{i}, 3}\right)=7 \mathrm{i}, 2 \leq \mathrm{i} \leq \mathrm{n} .
\end{aligned}
$$

Then the induced edge labels are

$$
\begin{aligned}
& f\left(u_{1} u_{1,1}\right)=2 ; f\left(u_{1} u_{1,2}\right)=4 ; f\left(u_{1} u_{1,3}\right)=6 ; \\
& f\left(u_{i} u_{i, j}\right)=7 i-5+j ; 2 \leq i \leq n, 1 \leq j \leq 2 ;
\end{aligned}
$$

$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}, 3}\right)=7 \mathrm{i}-1,2 \leq \mathrm{i} \leq \mathrm{n}$.
Thus both vertices and edges together get distinct labels from $\{1,2, \ldots, \mathrm{p}+\mathrm{q}\}$. Hence $\mathrm{nK}_{1,3}$ is a Super harmonic mean graph.

Example 2.4. A Super harmonic mean labeling of $4 \mathrm{~K}_{1,3}$ is given in figure 2.2

Figure 2.2. $4 \mathrm{~K}_{1,3}$

Theorem 2.5. $\left(\mathrm{D}_{\mathrm{n}} ; \mathrm{P}_{2}\right)$ is a Super harmonic mean graph.
Proof. Let u_{i} and v_{i} be the vertices of inner and outer cycle of $\left(D_{n} ; P_{2}\right)$ respectively in which u_{i} and v_{i} are adjacent, $1 \leq i \leq n$. Let w_{i} be a vertex which is joined with $v_{i}, 1 \leq i \leq n$. Its edge set is $E=\left\{u_{i} u_{i+1}, u_{n} u_{1}, v_{i} v_{i+1}, v_{n} v_{1} /\right.$ $1 \leq \mathrm{i} \leq \mathrm{n}-1\} \cup\left\{\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}} \mathrm{w}_{\mathrm{i}} / 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$. Define a function $\mathrm{f}: \mathrm{V}\left(\mathrm{D}_{\mathrm{n}} ; \mathrm{P}_{2}\right) \rightarrow\{1,2, \ldots, \mathrm{p}+\mathrm{q}\}$ by

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{u}_{1}\right)=7 ; \mathrm{f}\left(\mathrm{u}_{2}\right)=14 ; \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=7 \mathrm{i}-2,3 \leq \mathrm{i} \leq \mathrm{n} \\
& \mathrm{f}\left(\mathrm{v}_{1}\right)=3 ; \mathrm{f}\left(\mathrm{v}_{2}\right)=11 ; \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=7 \mathrm{i}, 3 \leq \mathrm{i} \leq \mathrm{n} \\
& \mathrm{f}\left(\mathrm{w}_{1}\right)=1 ; \mathrm{f}\left(\mathrm{w}_{2}\right)=8 ; \mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)=7 \mathrm{i}-5,3 \leq \mathrm{i} \leq \mathrm{n}
\end{aligned}
$$

Then the induced edge labels are

$$
\begin{aligned}
& \mathrm{f}^{*}\left(\mathrm{u}_{1} \mathrm{u}_{2}\right)=10 ; \mathrm{f}^{*}\left(\mathrm{u}_{2} \mathrm{u}_{3}\right)=17 ; \mathrm{f}^{*}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)=7 \mathrm{i}+1,3 \leq \mathrm{i} \leq \mathrm{n}-1 ; \\
& \mathrm{f}^{*}\left(\mathrm{u}_{\mathrm{n}} \mathrm{u}_{1}\right)=\left\{\begin{array}{l}
12 \text { if } n \leq 6 \\
13 \text { if } n>6
\end{array}\right. \\
& \mathrm{f}^{*}\left(\mathrm{u}_{1} \mathrm{v}_{1}\right)=5 ; \\
& \mathrm{f}^{*}\left(\mathrm{u}_{2} \mathrm{v}_{2}\right)=\left\{\begin{array}{l}
13 \text { if } n \leq 6 \\
12 \text { if } n>6
\end{array}\right.
\end{aligned}
$$

$\mathrm{f}^{*}\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right)=7 \mathrm{i}-1 ; 3 \leq \mathrm{i} \leq \mathrm{n} ;$
$\mathrm{f}^{*}\left(\mathrm{v}_{1} \mathrm{v}_{2}\right)=4 ; \mathrm{f}^{*}\left(\mathrm{v}_{2} \mathrm{~V}_{3}\right)=15 ; \mathrm{f}^{*}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right)=7 \mathrm{i}+3,3 \leq \mathrm{i} \leq \mathrm{n}-1 ; \mathrm{f}^{*}\left(\mathrm{v}_{\mathrm{n}} \mathrm{v}_{1}\right)=6 ;$
$\mathrm{f}^{*}\left(\mathrm{v}_{1} \mathrm{~W}_{1}\right)=2 ; \mathrm{f}^{*}\left(\mathrm{v}_{2} \mathrm{~W}_{2}\right)=9 ; \mathrm{f}^{*}\left(\mathrm{v}_{\mathrm{i}} \mathrm{W}_{\mathrm{i}}\right)=7 \mathrm{i}-3,3 \leq \mathrm{i} \leq \mathrm{n}$.
Thus the vertices and edges together get distinct labels from $\{1,2, \ldots, \mathrm{p}+\mathrm{q}\}$. Thus f provides a Super harmonic mean labeling for $\left(\mathrm{D}_{\mathrm{n}} ; \mathrm{P}_{2}\right)$.

Example 2.6. A Super harmonic mean labeling of $\left(\mathrm{D}_{7} ; \mathrm{P}_{2}\right)$ is shown in figure 2.3.

Fig. $2.3\left(\mathrm{D}_{7} ; \mathrm{P}_{2}\right)$

III. SUPER HARMONIC MEAN LABELING FOR DISCONNECTED GRAPHS

In this section, we prove $C_{m} \cup P_{n},\left(P_{m} \odot K_{1}\right) \cup C_{n},\left(C_{m} \odot K_{1}\right) \cup P_{n},\left(C_{m} \odot K_{1}\right) \cup C_{n}$ and $\left(C_{m} \odot K_{1}\right) \cup\left(P_{n} \odot K_{1}\right)$ are Super harmonic mean graphs.

Theorem 3.1. $\mathrm{C}_{\mathrm{m}} \cup \mathrm{P}_{\mathrm{n}}$ is a Super harmonic mean graph.
Proof. Let $u_{1} u_{2} \ldots u_{m} u_{1}$ be the cycle C_{m} and $v_{1} v_{2} \ldots v_{n}$ be the path P_{n}. Then $C_{m} \cup P n$ has edge set $E=\left\{u_{i} u_{i+1}\right.$, $u_{n} u_{1} /$ $1 \leq \mathrm{i} \leq \mathrm{m}-1\} \cup\left\{\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1} / 1 \leq \mathrm{i} \leq \mathrm{m}-1\right\}$. Define a function f: $\mathrm{V}\left(\mathrm{C}_{\mathrm{m}} \cup \mathrm{P}_{\mathrm{n}}\right) \rightarrow\{1,2, \ldots, \mathrm{p}+\mathrm{q}\}$ by

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{u}_{1}\right)=3 ; \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=2(\mathrm{i}+1), 2 \leq \mathrm{i} \leq \mathrm{m} \\
& \mathrm{f}\left(\mathrm{v}_{1}\right)=1 ; \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=2 \mathrm{~m}+2 \mathrm{i}-1,2 \leq \mathrm{i} \leq \mathrm{n}
\end{aligned}
$$

Then the induced edge labels are
$\mathrm{f}^{*}\left(\mathrm{u}_{1} \mathrm{u}_{2}\right)=4 ; \mathrm{f}^{*}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)=2 \mathrm{i}+3,2 \leq \mathrm{i} \leq \mathrm{m}-1 ; \mathrm{f}^{*}\left(\mathrm{u}_{1} \mathrm{u}_{\mathrm{m}}\right)=5 ;$
$\mathrm{f}^{*}\left(\mathrm{v}_{1} \mathrm{~V}_{2}\right)=2 ; \mathrm{f}^{*}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right)=2 \mathrm{~m}+2 \mathrm{i}, 2 \leq \mathrm{i} \leq \mathrm{n}-1$.
Thus the vertices and edges together get distinct labels from $\{1,2, \ldots, p+q\}$. Thus f provides a Super harmonic mean labeling for $C_{m} \cup P_{n}$.

Example 3.2. A Super harmonic mean labeling of $\mathrm{C}_{9} \cup \mathrm{P}_{7}$ is shown in figure 3.1.

Fig. 3.1 $\mathrm{C}_{9} \cup \mathrm{P}_{7}$

Theorem 3.3. $\left(\mathrm{P}_{\mathrm{m}} \odot \mathrm{K}_{1}\right) \cup \mathrm{C}_{\mathrm{n}}$ is a Super harmonic mean graph.
Proof. Let $u_{1} u_{2} \ldots u_{m}$ be the path P_{m}. Add vertices v_{i} such that v_{i} is adjacent to $u_{i}, 1 \leq i \leq m$. The resultant graph is $P_{m} \odot K_{1}$. Let $\mathrm{w}_{1} \mathrm{w}_{2} \ldots \mathrm{w}_{\mathrm{n}} \mathrm{w}_{1}$ be the cycle C_{n}. Let $\mathrm{G}=\left(\mathrm{P}_{\mathrm{m}} \odot \mathrm{K}_{1}\right) \cup C_{\mathrm{n}}$ whose edge set is $\mathrm{E}=\left\{\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1} / 1 \leq \mathrm{i} \leq \mathrm{m}-1\right\} \cup\left\{\mathrm{w}_{\mathrm{i}} \mathrm{w}_{\mathrm{i}+1}, \mathrm{w}_{\mathrm{n}} \mathrm{w}_{1} / 1 \leq \mathrm{i} \leq \mathrm{n}-1\right\} \cup$ $\left\{\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}} / 1 \leq \mathrm{i} \leq \mathrm{m}\right\}$. Define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots, \mathrm{q}+1\}$ by

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{w}_{1}\right)=3 ; \mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)=2(\mathrm{i}+1), 2 \leq \mathrm{i} \leq \mathrm{n} \\
& \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=2(\mathrm{~m}+1)+4 \mathrm{i}+3,1 \leq \mathrm{i} \leq \mathrm{m} \\
& \mathrm{f}\left(\mathrm{v}_{1}\right)=1 ; \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=2(\mathrm{~m}+2)+4 \mathrm{i}-2,2 \leq \mathrm{i} \leq \mathrm{m}
\end{aligned}
$$

Then the edges are labeled with

$$
\begin{aligned}
& \mathrm{f}^{*}\left(\mathrm{w}_{1} \mathrm{w}_{2}\right)=4 ; \mathrm{f}^{*}\left(\mathrm{w}_{\mathrm{i}} \mathrm{~W}_{\mathrm{i}+1}\right)=2 \mathrm{i}+3,2 \leq \mathrm{i} \leq \mathrm{n}-1 ; \mathrm{f}^{*}\left(\mathrm{w}_{\mathrm{n}} \mathrm{~W}_{1}\right)=5 ; \\
& \mathrm{f}^{*}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)=2(\mathrm{~m}+2)+4 \mathrm{i}+3,1 \leq \mathrm{i} \leq \mathrm{m}-1 ; \\
& \mathrm{f}^{*}\left(\mathrm{u}_{1} \mathrm{v}_{1}\right)=2 ; \mathrm{f}^{*}\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right)=2(\mathrm{~m}+2)+4 \mathrm{i}, 2 \leq \mathrm{i} \leq \mathrm{m} .
\end{aligned}
$$

Therefore, f is a Super harmonic mean labeling for G . Hence G is a Super harmonic mean graph.

Example 3.4. A Super harmonic mean labeling of $\left(\mathrm{P}_{6} \odot \mathrm{~K}_{1}\right) \mathrm{UC}_{9}$ is given in figure 3.2.

Fig. $3.2\left(\mathrm{P}_{6} \odot \mathrm{~K}_{1}\right) \mathrm{UC}_{9}$

Theorem 3.5. $\left(\mathrm{C}_{\mathrm{m}} \odot \mathrm{K}_{1}\right) \cup \mathrm{P}_{\mathrm{n}}$ is a Super harmonic mean graph.
Proof. Let $u_{1} u_{2} \ldots u_{m} u_{1}$ be the cycle C_{m}. Add vertices v_{i} such that v_{i} is adjacent to $u_{i}, 1 \leq i \leq m$. The resultant graph is $C_{m} \odot K_{1}$. Let $w_{1} W_{2} \ldots W_{n}$ be the path P_{n}. Let $G=\left(C_{m} \odot K_{1}\right) \cup P_{n}$ whose edge set is $E=\left\{u_{i} u_{i+1}, u_{m} u_{1} / 1 \leq i \leq m-1\right\} \cup\left\{w_{i} W_{i+1} / 1 \leq i \leq n-1\right\} \cup\left\{u_{i} v_{i} /\right.$ $1 \leq \mathrm{i} \leq \mathrm{m}-1\}$. Define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots, \mathrm{p}+\mathrm{q}\}$ by

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{u}_{1}\right)=3 ; \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=4 \mathrm{i}, 2 \leq \mathrm{i} \leq \mathrm{m} \\
& \mathrm{f}\left(\mathrm{v}_{1}\right)=1 ; \mathrm{f}\left(\mathrm{v}_{2}\right)=6 ; \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=4 \mathrm{i}-3,3 \leq \mathrm{i} \leq \mathrm{m} \\
& \mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)=4 \mathrm{~m}+2 \mathrm{i}-1,1 \leq \mathrm{i} \leq \mathrm{n}
\end{aligned}
$$

Then the edges are labeled with

$$
\begin{aligned}
& f^{*}\left(u_{1} u_{2}\right)=4 ; f^{*}\left(u_{i} u_{i+1}\right)=4 i+2,2 \leq i \leq m-1 ; f^{*}\left(u_{m} u_{1}\right)=5 ; \\
& f^{*}\left(u_{1} v_{1}\right)=2 ; f^{*}\left(u_{i} v_{i}\right)=4 i-1,2 \leq i \leq m ; \\
& f^{*}\left(w_{i} W_{i+1}\right)=4 m+2 i, 1 \leq i \leq n-1 .
\end{aligned}
$$

In the view of the above labeling pattern, f provides a Super harmonic mean labeling for G. Hence G is a Super harmonic mean graph.

Example 3.6. A Super harmonic mean labeling of $\left(\mathrm{C}_{6} \odot \mathrm{~K}_{1}\right) \cup \mathrm{P}_{9}$ is given in figure 3.3.

Theorem 3.7. $\left(\mathrm{C}_{\mathrm{m}} \odot \mathrm{K}_{1}\right) \cup \mathrm{C}_{\mathrm{n}}$ is a Super harmonic mean graph.
Proof. Let $u_{1} u_{2} \ldots u_{m} u_{1}$ be the cycle C_{m}. Add vertices v_{i} such that v_{i} is adjacent to $u_{i}, 1 \leq i \leq m$. The resultant graph is $C_{m} \odot K_{1}$. Let $w_{1} W_{2} \ldots w_{n} w_{1}$ be the cycle C_{n}. Let $G=\left(C_{m} \odot K_{1}\right) \cup C_{n}$ whose edge set is $E=\left\{u_{i} u_{i+1}, u_{m} u_{1} / 1 \leq i \leq m-1\right\} \cup\left\{w_{i} w_{i+1}, w_{n} W_{1} /\right.$ $1 \leq \mathrm{i} \leq \mathrm{n}-1\} \cup\left\{\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}} / 1 \leq \mathrm{i} \leq \mathrm{m}\right\}$.

A Super harmonic mean labeling of $\left(C_{m} \odot K_{1}\right) \cup C_{n}$ when $m, n \leq 4$ are given in figures $3.4,3.5,3.6$ and 3.7 respectively.

International Journal of Mathematics Trends and Technology - Volume 6-February 2014

Fig. $3.5\left(\mathrm{C}_{3} \odot \mathrm{~K}_{1}\right) \cup \mathrm{C}_{4}$

Fig. $3.6\left(\mathrm{C}_{4} \odot \mathrm{~K}_{1}\right) \cup \mathrm{C}_{3}$

Fig. $3.7\left(\mathrm{C}_{4} \odot \mathrm{~K}_{1}\right) \cup \mathrm{C}_{4}$

Assume that $\mathrm{m}, \mathrm{n}>4$. Define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots, \mathrm{p}+\mathrm{q}\}$ by

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{u}_{1}\right)=3 ; \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=4 \mathrm{i}+3,2 \leq \mathrm{i} \leq \mathrm{m} ; \\
& \mathrm{f}\left(\mathrm{v}_{1}\right)=1 ; \mathrm{f}\left(\mathrm{v}_{2}\right)=9 ; \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=4 \mathrm{i}, 3 \leq \mathrm{i} \leq \mathrm{m} ; \\
& \mathrm{f}\left(\mathrm{w}_{1}\right)=4 ; \mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)=4 \mathrm{~m}+2 \mathrm{i}, 2 \leq \mathrm{i} \leq \mathrm{n} .
\end{aligned}
$$

Then the edges are labeled with

$$
\begin{aligned}
& \mathrm{f}^{*}\left(\mathrm{u}_{1} \mathrm{u}_{2}\right)=5 ; \mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)=4 \mathrm{i}+5,2 \leq \mathrm{i} \leq \mathrm{m}-1 ; \mathrm{f}^{*}\left(\mathrm{u}_{\mathrm{n}} \mathrm{u}_{1}\right)=6 ; \\
& \mathrm{f}^{*}\left(\mathrm{u}_{1} \mathrm{v}_{1}\right)=2 ; \mathrm{f}^{*}\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right)=4 \mathrm{i}+2,2 \leq \mathrm{i} \leq \mathrm{m} ; \\
& \mathrm{f}^{*}\left(\mathrm{w}_{1} \mathrm{w}_{2}\right)=7 ; \mathrm{f}^{*}\left(\mathrm{w}_{\mathrm{i}} \mathrm{w}_{\mathrm{i}+1}\right)=4 \mathrm{~m}+2 \mathrm{i}+1,2 \leq \mathrm{i} \leq \mathrm{n}-1 ; \mathrm{f}^{*}\left(\mathrm{w}_{\mathrm{n}} \mathrm{w}_{1}\right)=8 .
\end{aligned}
$$

In the view of the above labeling pattern, f provides a Super harmonic mean labeling for G. Hence G is a Super harmonic mean graph.

Example 3.8. A Super harmonic mean labeling of $\left(\mathrm{C}_{5} \odot \mathrm{~K}_{1}\right) \mathrm{UC}_{7}$ is given in figure 3.8.

Figure 3.8. $\left(\mathrm{C}_{5} \odot \mathrm{~K}_{1}\right) \cup \mathrm{C}_{7}$

Theorem 3.9. $\left(\mathrm{C}_{\mathrm{m}} \odot \mathrm{K}_{1}\right) \cup\left(\mathrm{P}_{\mathrm{n}} \odot \mathrm{K}_{1}\right)$ is a Super harmonic mean graph.
Proof. Let $u_{1} u_{2} \ldots u_{m} u_{1}$ be the cycle C_{m} and let v_{i} be the vertex which is joined to the vertex $u_{i}, 1 \leq i \leq m$, of the cycle C_{m}. The resultant graph is $C_{m} \odot K_{1}$. Let $s_{1} s_{2} \ldots s_{n}$ be the path P_{n} and let t_{i} be the vertex which is joined to the vertex $s_{i}, 1 \leq i \leq n$, of the path P_{n}. The resultant graph is $P_{n} \odot K_{1}$. Let $G=\left(C_{m} \odot K_{1}\right) \cup\left(P_{n} \odot K_{1}\right)$. Define a function $f: V(G) \rightarrow\{1,2, \ldots, p+q\}$ by

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{u}_{1}\right)=3 ; \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=4 \mathrm{i}, 2 \leq \mathrm{i} \leq \mathrm{m} \\
& \mathrm{f}\left(\mathrm{v}_{1}\right)=1 ; \mathrm{f}\left(\mathrm{v}_{2}\right)=6 ; \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=4 \mathrm{i}-3,3 \leq \mathrm{i} \leq \mathrm{m} \\
& \mathrm{f}\left(\mathrm{~s}_{\mathrm{i}}\right)=4 \mathrm{~m}+4 \mathrm{i}-1 ; 1 \leq \mathrm{i} \leq \mathrm{n} \\
& \mathrm{f}\left(\mathrm{t}_{1}\right)=4 \mathrm{~m}+1 ; \mathrm{f}\left(\mathrm{t}_{\mathrm{i}}\right)=4(\mathrm{~m}-1)+4 \mathrm{i}, 2 \leq \mathrm{i} \leq \mathrm{n}
\end{aligned}
$$

Then the edges are labeled with

$$
\begin{aligned}
& \mathrm{f}^{*}\left(\mathrm{u}_{1} \mathrm{u}_{2}\right)=4 ; \mathrm{f}^{*}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)=4 \mathrm{i}+2,2 \leq \mathrm{i} \leq \mathrm{m}-1 ; \mathrm{f}^{*}\left(\mathrm{u}_{\mathrm{m}} \mathrm{u}_{1}\right)=5 ; \\
& \mathrm{f}^{*}\left(\mathrm{u}_{1} \mathrm{v}_{1}\right)=2 ; \mathrm{f}^{*}\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right)=4 \mathrm{i}-1,2 \leq \mathrm{i} \leq \mathrm{m} ; \\
& \mathrm{f}^{*}\left(\mathrm{~s}_{\mathrm{i}} \mathrm{~s}_{\mathrm{i}+1}\right)=4 \mathrm{~m}+4 \mathrm{i}+1,1 \leq \mathrm{i} \leq \mathrm{n}-1 ; \\
& \mathrm{f}^{*}\left(\mathrm{~s}_{\mathrm{i}} \mathrm{t}_{\mathrm{i}}\right)=4 \mathrm{~m}+4 \mathrm{i}-2,1 \leq \mathrm{i} \leq \mathrm{n} .
\end{aligned}
$$

Thus f provides a Super harmonic mean labeling for G. Hence G is a Super harmonic mean graph.

Example 3.10. A Super harmonic mean labeling of $\left(\mathrm{C}_{6} \odot \mathrm{~K}_{1}\right) \cup\left(\mathrm{P}_{7} \odot \mathrm{~K}_{1}\right)$ is given in figure 3.9.

Fig. $3.9\left(\mathrm{C}_{6} \odot \mathrm{~K}_{1}\right) \cup\left(\mathrm{P}_{7} \odot \mathrm{~K}_{1}\right)$

REFERENCES

[1] J.A Gallian, A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinatorics DS6, 2012.
[2] F. Harary, 1998, Graph theory, Narasa Publishing House Reading, New Delhi.
[3] S. Somasundaram and R. Ponraj, Mean labeling of graphs, National Academy of Science letters Vol. 26(2003), 210 - 213.
[4] R. Ponraj and D. Ramya, Super mean labeling of graphs, Preprint.
[5] S. Somasundaram, S.S Sandhya and R. Ponraj, Harmonic mean labeling of graphs, communicated to Journal of Combinatorial Mathematics and Combinatorial Computing.
[6] S.S. Sandhya, S. Somasundaram and R. Ponraj, Some results on Harmonic mean graphs, International Journal of Contemporary Mathematical Sciences Vol. 7(2012), No. 4, 197 - 208.
[7] S.S. Sandhya, S. Somasundaram and R. Ponraj, Some more results on Harmonic mean graphs, Journal of Mathematics Research, Vol.4(2012), No. 1, 21-29.
[8] S.S. Sandhya, S. Somasundaram and R. Ponraj, Harmonic mean labeling of some Cycle Related Graphs, International Journal of Mathematical Analysis, Vol. 6(2012), No. 40, 1997 - 2005.
[9] S. Sandhya and C. David Raj, Super Harmonic mean labeling, proceedings of Kanyakumari Academy of Arts and Sciences, Vol. 3(2013), 12 - 20.

