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Abstract - Let G be a graph with p vertices and g edges. Let f: V(G) — {1, 2, ..., p + q} be a injective function. For a vertex labeling f, the

induced edge labeling f+(e = uv) is defined by f+(e) = [?{:;‘:’;((?) or ;{:;‘:’;((:))J Then f is called a Super harmonic mean labeling if
f(V(G))u{f(e) /e e E(G)} = {1, 2, ..., p + g}. A graph which admits Super harmonic mean labeling is called Super harmonic mean graphs.

In this paper, we investigate Super harmonic mean labeling of some graphs.
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|. INTRODUCTION

We begin with simple, finite, connected and undirected graph G(V, E) with p vertices and q edges. For a detailed survey of
graph labeling we refer to Gallian[1]. For all other standared terminology and notations we follow Harary[2]. S. Somasundram and
R. Ponraj introduced mean labeling of graphs in [3]. R. Ponraj and D. Ramya introduced Super mean labeling of graphs in [4].
S. Somasundram and S.S. Sandhya introduced the concept Harmonic mean labeling in [5] and studied their behavior in [6, 7, 8].
S. Sandhya and C. David Raj introduced Super harmonic labeling in [9]. In this paper, we investigate Super harmonic mean
labeling of some graphs. We now give the following definitions which are useful for the present investigation.

Definition 1.1. Let f: V(G) — {1, 2, ..., p + q} be a injective function. For a vertex labeling f, the induced edge labeling f*(e = uv) is

: (o) — |2 W)f (@) 2f (Wf @) - . L _
defined by f«(e) = [f(u)+ @ or lf(u)+ f(V)J. Then f is called a Super harmonic mean labeling if f(V(G))u{f(e) / e € E(G)} = {1, 2,

..., p + q}. A graph which admits Super harmonic mean labeling is called Super harmonic mean graphs.

Definition 1.2. The corona G;®G; of two graphs G; and G; is defined as the graph G obtained by taking one copy of G;(which has
p; vertices) and p, copies of G, and then joining the i'" vertex of G, to every vertices in the i" copy of G,.

Definition 1.3. The graph P,®OK; is called Comb.
Definition 1.4. The graph C,®OKj is called crown.

Definition 1.5. The prism D,, n > 3 is a trivalent graph which can be defined as the Cartesian product P, x C, of a path on two
vertices with a cycle on n vertices. We denote a graph obtained by attaching P, at each vertex of outer cycle of D, by (Dy; Py).

1. SUPER HARMONIC MEAN LABELING FOR CONNECTED GRAPHS

Theorem 2.1 nPy, is a Super harmonic mean graph.
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Proof. Let v; j, 1 <i<n, 1 <j<m be the vertices of nP,. Then its edge set is E = {u; Ui s/ 1 <i<n, 1 <j<m - 1}. Define a
function f: V(nP,) — {1, 2, ..., p+q} by

fvi)=@m-1)(i-1)+2j-1,1<i<n, 1<j<m
Then the induced edge labels are
fe(vi,Vijr) =(@m-1)(i-1) +2j,1<i<n, 1 <j<m-1,
Thus f provides a Super harmonic mean labeling for nPp,.

Example 2.2. A Super harmonic mean labeling of 4P; is shown in figure 2.1.
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Fig. 2.1 4P,

Theorem 2.3. nK 3 is a Super harmonic mean graph.

Proof. Let uj, Ui j, 1 <i<n, 1<j<3 be the vertices of nKj 3 in which u; is the central vertex of K; ;. Its edge set is
E={uu; j/1<i<n,1<j<3}. Definea function f: V(nKy 3) — {1, 2, ..., p+q} by

f(u) =7;f(u) =71-2;2<i<n;
f(up1) = 1; f(uy, 2) = 3; f(uy,5) = 5;
fui)=7(-1)+j,2<i<n, 1<j<2;
f(ui3) =7i,2<i<n.

Then the induced edge labels are
f(uyuy, 1) = 2; f(uguy, 2) = 4; f(uguy, 3) = 6;

f(uiui,j)=7i—5+j;2§i§n,1§j§2;
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fuui 3) =7i-1,2<i<n.

Thus both vertices and edges together get distinct labels from {1, 2, ..., p+q}. Hence nKy 3 is a Super harmonic mean
graph.

Example 2.4. A Super harmonic mean labeling of 4K ; is given in figure 2.2.

Us 19
18 25
Us.1 U, 3 Us, 16555 Us 3® 28
15 Us,2 ¢ 21 Us, 2853
16

Figure 2.2. 4K, 3

Theorem 2.5. (Dy,; P,) is a Super harmonic mean graph.

Proof. Let u; and v; be the vertices of inner and outer cycle of (D,; P,) respectively in which u; and v; are adjacent,
1 <i < n. Let wj be a vertex which is joined with v, 1< 1 < n. Its edge set is E = {ujUjg, UgUg, ViVieg, VoV /
1 <i<n-1}u{uvi, viw; / 1 <i <n}. Define a function f: V(Dy; P,) — {1,2, ...,p +q} by

f(uy) =7; f(up) = 14; f(u)) = 71— 2,3<i<n;

f(vy) = 3; f(vo) =11; f(v)) = 7i,3<i<n;

f(wy) = 1; f(w,) = 8; f(w;)) =7i—5,3<i<n.
Then the induced edge labels are

f+(usu,) = 10; f(upus) = 17; (Ujliey) =71 +1,3<i<n -1,

12ifn <6
F(Unt) = {131'];11 > 6’

f(uvy) = 5;

13ifn <6
f*(u2v2)= {12§‘n>6y

ISSN: 2231-5373 http://www.ijmttjournal.org Page 217




International Journal of Mathematics Trends and Technology — Volume 6 — February 2014

f(uiv)) =7i—1;3<i<n;
F(vivo) = 4; F(vovz) = 15; F(Vivi) = 71 + 3,3 <1 <n-—1; F(v,vy) = 6;
fr(viwy) = 2; F(vowy) = 9; F(viwy)) = 71— 3,3<i<n.

Thus the vertices and edges together get distinct labels from{1, 2, ..., p+q}. Thus f provides a Super harmonic mean
labeling for (Dp; P,).

Example 2.6. A Super harmonic mean labeling of (D7; P,) is shown in figure 2.3.

I1l. SUPER HARMONIC MEAN LABELING FOR DISCONNECTED GRAPHS

In this section, we prove C,,UP,, (PmOK)UC,, (CLOKUP,, (C,OK)UC, and (C,OK)U(P,OK;) are Super harmonic
mean graphs.

Theorem 3.1. C,,UP, is a Super harmonic mean graph.

Proof. Let uju,...unu; be the cycle C, and viv,... v, be the path P,. Then C,UPn has edge set E = {ujUiq, Unug /
1<i<m-1}u{vivi,y / 1 <i<m - 1}. Define a function f: V(CnhUP,) — {1, 2, ...,p+q} by
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f(uy) = 3; f(u) = 2(i + 1), 2<i<m;

f(v)) = 1; f(vi)) =2m +2i - 1,2 <i<n.

Then the induced edge labels are
f(usup) = 4; F(Uiliey) =21+ 3,2<i< m - 1; f(uuy) = 5;
f(vivo) = 2; F(ViVieg) =2mM +2i, 2<i< n-1.

Thus the vertices and edges together get distinct labels from {1, 2, ..., p+q}. Thus f provides a Super harmonic mean
labeling for Cr,UP,,.

Example 3.2. A Super harmonic mean labeling of CqUP; is shown in figure 3.1.
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Flg 3.1 CqUP,

Theorem 3.3. (Pn,OK,)UC, is a Super harmonic mean graph.
Proof. Let u;u,...uy be the path P,,. Add vertices v; such that v; is adjacent to u;, 1 <i < m. The resultant graph is P,®OKj. Let
wWiW,...wpwy be the cycle C,. Let G = (P,,\®OK;)UC, whose edge set is E = {ujui«/1 <i<m — 1IU{ wiwi,wowy/ 1 <i<n-1}U
{uivi/ 1 <i<m}. Define a function f: V(G) — {1,2, ...,q+ 1} by

flwy) =3;f(w;) =2(i+1),2<i<n;

flu)=2m+1)+4i+3,1<i<m;

flv)) =1;f(vi)) =2(m+2)+4i-2,2<i<m.
Then the edges are labeled with

F(wiwy) = 4; F(Wiwiyg) = 2i + 3,2 <i<n-1; f(w,wy) = 5;

f(ulisg) =2(M+2)+4i+3, 1<i<m-1;

f(uvy) = 2; F(uiv)) =2(m + 2) +4i, 2 <i<m.

Therefore, f is a Super harmonic mean labeling for G. Hence G is a Super harmonic mean graph.
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Example 3.4. A Super harmonic mean labeling of (Ps©K;)UCy is given in figure 3.2.
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Flg 3.2 (P6®K1)UCQ

Theorem 3.5. (C,,OK{)UP, is a Super harmonic mean graph.
Proof. Let uju,...uynuy be the cycle Cr,. Add vertices v; such that v; is adjacent to u;, 1 <i <m. The resultant graph is C,,®OKj. Let
WiW,... W, be the path P,. Let G = (C,,OK,)UP, whose edge set is E = {UjUj+1, UnUs / 1 <i<m— 1}U{wiwi, /1 <i<n - 13u{uvi/
1 <i<m-1}. Define a function f: V(G) — {1, 2, ...,p+q} by

f(uy)) =3;f(u;) =4i,2<i<m;

f(vy) =1;f(v2) = 6; f(v;)) =4i—-3,3<i<m;

f(w)=4m+2i-1,1<i<n.
Then the edges are labeled with

f(usly) = 4; F(Uilieg) =4i+ 2,2 <i<m-1; F(unuy) = 5;

f(upvy) = 2; F(ujvi)) =4i-1,2<i<m;

fr(Wiwis) =4m +2i, 1<i<n-1.

In the view of the above labeling pattern, f provides a Super harmonic mean labeling for G. Hence G is a Super harmonic
mean graph.

Example 3.6. A Super harmonic mean labeling of (Cs®K;)UPy is given in figure 3.3.
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21 Vig1

17 6

Theorem 3.7. (C,,OK)UC, is a Super harmonic mean graph.

Proof. Let u;u,...unu; be the cycle C,. Add vertices v; such that v; is adjacent to u;, 1 <i < m. The resultant graph is C,,©OK;. Let
wiW,...wyw; be the cycle C,. Let G = (C,,OKy)UC, whose edge set is E = {Ujlj+g, UnUy / 1 <1 <m — 1JU{WiWisq, Wawy /
1<i<n-1}u{uyvi/1<i<mj}.

A Super harmonic mean labeling of (C,,®OK;)UC, when m, n <4 are given in figures 3.4, 3.5, 3.6 and 3.7 respectively.
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9 Fig. 3.4 (C3OK)UC;
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Fig. 3.7 (C.OK)UCs

Assume that m, n > 4. Define a function f: V(G) — {1,2,...,p+q} by
f(u) =3;f(u) =4i+3,2<i<m;
f(va) =1; f(v,) = 9; f(v)) = 4i, 3<i<m;
f(wy) = 4; f(w;) =4m +2i,2<i<n.

Then the edges are labeled with
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F(uilp) = 5; f(uitliyg) =41 + 5,2 <i<m-1; f(Unuy) = 6;

f(upvy) = 2; P(uivi) = 4i+ 2, 2<i<m;
F(wiwy) = 7; F(Wiwie) =4m +2i+ 1,2 <i<n-1; f<(w,wy) =8.

In the view of the above labeling pattern, f provides a Super harmonic mean labeling for G. Hence G is a Super harmonic
mean graph.

Example 3.8. A Super harmonic mean labeling of (Cs©K;)UC; is given in figure 3.8.
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Figure 3.8. (C5® Kl)UC7

Theorem 3.9. (C,,OK)U(P,®OKy) is a Super harmonic mean graph.

Proof. Let u;u,...unu; be the cycle C, and let v; be the vertex which is joined to the vertex u;, 1 <i < m, of the cycle C. The
resultant graph is C,,OK;. Let s;S;...S, be the path P, and let t; be the vertex which is joined to the vertex s;, 1 <i <n, of the path P,
The resultant graph is P,OKj. Let G = (C,,OK)U(P,OK,). Define a function f: V(G) — {1, 2, ..., p+q} by

f(uy) = 3; f(u)) = 4i, 2 <i<m;
f(vy) = 1; f(vp) = 6; f(v)) =4i-3,3<i<m;
f(s) =4m+4i-1;1<i<n;
f(t) =4m + 1; f(t) =4(m-1) + 4i,2<i<n.
Then the edges are labeled with
f(usly) = 4; F(Uilieg) =4i+ 2,2 <i<m-1; F(unuy) = 5;
f(uvy) = 2; F(uvi)) =4i—-1,2<i<m;
F(SiSisy) =4m+4i+1, 1<i<n-1;
f(st)=dm+4i-2, 1<i< n.

Thus f provides a Super harmonic mean labeling for G. Hence G is a Super harmonic mean graph.
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Example 3.10. A Super harmonic mean labeling of (CsOK)U(P;OKy) is given in figure 3.9.
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Fig. 3.9 (CsOK)U(P,OK)
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