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Abstract - Let G be a graph with p vertices and q edges. Let f: V(G) → {1, 2, …, p + q} be a injective function. For a vertex labeling f, the 
induced edge labeling f∗(e = uv) is defined by f∗(e) = ퟐ풇(풖)풇(풗)

풇(풖) 	풇(풗)
	or ퟐ풇(풖)풇(풗)

풇(풖) 	풇(풗)
. Then f is called a Super harmonic mean labeling if 

f(V(G))∪{f(e) / e ϵ E(G)} = {1, 2, …, p + q}. A graph which admits Super harmonic mean labeling is called Super harmonic mean graphs. 
In this paper, we investigate Super harmonic mean labeling of some graphs. 
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I. INTRODUCTION 

 We begin with simple, finite, connected and undirected graph G(V, E) with p vertices and q edges. For a detailed survey of 
graph labeling we refer to  Gallian[1]. For all other standared terminology and notations we follow Harary[2].  S. Somasundram and 
R. Ponraj introduced mean labeling of graphs in [3]. R. Ponraj and D. Ramya introduced Super mean labeling of graphs in [4]. 
S. Somasundram and S.S. Sandhya introduced the concept Harmonic mean labeling in [5] and studied their behavior in [6, 7, 8]. 
S. Sandhya and C. David Raj introduced  Super harmonic labeling in [9]. In this paper, we investigate Super harmonic mean 
labeling of some graphs. We now give the following definitions which are useful for the present investigation. 

Definition 1.1. Let f: V(G) → {1, 2, …, p + q} be a injective function. For a vertex labeling f, the induced edge labeling f∗(e = uv) is 
defined by f∗(e) = ( ) ( )

( ) 	 ( )
	or ( ) ( )

( ) 	 ( )
. Then f is called a Super harmonic mean labeling if f(V(G))∪{f(e) / e ϵ E(G)} = {1, 2, 

…, p + q}. A graph which admits Super harmonic mean labeling is called Super harmonic mean graphs.  

Definition 1.2. The corona G1⨀G2 of two graphs G1 and G2 is defined as the graph G obtained by taking one copy of G1(which has 
p1 vertices) and p1 copies of G2 and then joining the ith vertex of G1 to every vertices in the ith copy of G2. 

Definition 1.3. The graph Pn⨀K1 is called Comb. 

Definition 1.4. The graph Cn⨀K1 is called crown. 

Definition 1.5. The prism Dn, n ≥ 3 is a trivalent graph which can be defined as the Cartesian product P2 × Cn of a path on two 
vertices with a cycle on n vertices. We denote a graph obtained by attaching P2 at each vertex of outer cycle of Dn by (Dn; P2). 

II.  SUPER HARMONIC MEAN LABELING FOR CONNECTED GRAPHS 

Theorem 2.1 nPm is a Super harmonic mean graph. 
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Proof. Let vi, j, 1 ≤ i ≤ n, 1 ≤ j ≤ m be the vertices of nPm. Then its edge set is E = {ui, jui, j+1 / 1 ≤ i ≤ n, 1 ≤ j ≤ m – 1}. Define a 
function f: V(nPm) → {1, 2, …, p+q} by 

f(vi, j) = (2m – 1)(i – 1) + 2j – 1, 1 ≤ i ≤ n, 1 ≤ j ≤ m 

Then the induced edge labels are 

 f∗(vi, jvi, j+1) = (2m – 1)(i – 1) +2j, 1 ≤ i ≤ n, 1 ≤ j ≤ m – 1; 

Thus f provides a Super harmonic mean labeling for  nPm. 

Example 2.2. A Super harmonic mean labeling of 4P7 is shown in figure 2.1. 

 

 

 

 

 

 

       

   

 

 

          

      Fig. 2.1 4P7 

 

Theorem 2.3. nK1, 3 is a Super harmonic mean graph. 

Proof. Let ui, ui, j, 1 ≤ i ≤ n, 1 ≤ j ≤ 3 be the vertices of  nK1, 3 in which ui is the central vertex of K1, 3. Its edge set is 
 E = {uiui,  j / 1 ≤ i ≤ n, 1 ≤ j ≤ 3}. Define a function f: V(nK1, 3) → {1, 2, …, p+q} by 

f(u1) = 7; f(ui) = 7i – 2; 2 ≤ i ≤ n; 

f(u1,1) = 1; f(u1, 2) = 3; f(u1, 3) = 5; 

f(ui, j) = 7(i – 1) + j, 2 ≤ i ≤ n, 1 ≤ j ≤ 2; 

f(ui, 3) = 7i, 2 ≤ i ≤ n. 

Then the induced edge labels are  

f(u1u1, 1) = 2; f(u1u1, 2) = 4; f(u1u1, 3) = 6;  

f(uiui, j) = 7i – 5 + j; 2 ≤ i ≤ n, 1 ≤ j ≤ 2; 
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f(uiui, 3) = 7i – 1, 2 ≤ i ≤ n. 

Thus both vertices and edges together get distinct labels from {1, 2, …, p+q}. Hence nK1, 3 is a Super harmonic mean 
graph. 

Example 2.4. A Super harmonic mean labeling of  4K1, 3 is given in figure 2.2. 

 

 

 

 

 

               

 

 

 

 

 

       Figure 2.2. 4K1, 3 

 

Theorem 2.5. (Dn; P2) is a Super harmonic mean graph. 

Proof. Let ui and vi be the vertices of inner and outer cycle of (Dn; P2) respectively in which ui and vi are adjacent, 
1 ≤ i ≤ n. Let wi be a vertex which is joined with vi, 1≤  i ≤ n. Its edge set is E = {uiui+1, unu1, vivi+1, vnv1 /  
1 ≤ i ≤ n – 1}∪{uivi, viwi / 1 ≤ i ≤ n}. Define a function f: V(Dn; P2) → {1, 2, …, p + q} by 

f(u1) = 7; f(u2) = 14; f(ui) = 7i – 2, 3 ≤ i ≤ n; 

f(v1) = 3; f(v2) = 11; f(vi) = 7i, 3 ≤ i ≤ n; 

f(w1) = 1; f(w2) = 8; f(wi) = 7i – 5, 3 ≤ i ≤ n. 
Then the induced edge labels are 

f∗(u1u2) = 10; f∗(u2u3) = 17; f∗(uiui+1) = 7i + 1, 3 ≤ i ≤ n – 1; 

f∗(unu1) = 	 12	푖푓	푛	 ≤ 6
13	푖푓	푛 > 6 ; 

f∗(u1v1) = 5; 

f∗(u2v2) = 	 13	푖푓	푛	 ≤ 6
12	푖푓	푛 > 6 ; 
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f∗(uivi) = 7i – 1; 3 ≤ i ≤ n; 

f∗(v1v2) = 4; f∗(v2v3) = 15; f∗(vivi+1) = 7i + 3, 3 ≤ i ≤ n – 1; f∗(vnv1) = 6; 

f∗(v1w1) = 2; f∗(v2w2) = 9; f∗(viwi) = 7i – 3, 3 ≤ i ≤ n.   

 Thus the vertices and edges together get distinct labels from{1, 2, …, p+q}. Thus f provides a Super harmonic mean 
labeling for (Dn; P2). 

 

Example 2.6. A Super harmonic mean labeling of (D7; P2) is shown in figure 2.3. 

 

 

 

 

 

 

 

      

 

 

 

      

     

 

 

Fig. 2.3 (D7; P2) 

III. SUPER HARMONIC MEAN LABELING FOR DISCONNECTED GRAPHS 

In this section, we prove Cm∪Pn, (Pm⨀K1)∪Cn, (Cm⨀K1)∪Pn, (Cm⨀K1)∪Cn and  (Cm⨀K1)∪(Pn⨀K1) are Super harmonic 
mean graphs. 

 

Theorem 3.1. Cm∪Pn is a Super harmonic mean graph. 

Proof. Let u1u2…umu1 be the cycle Cm and v1v2… vn be  the path Pn. Then Cm∪Pn has edge set E = {uiui+1, unu1 / 
1 ≤ i ≤ m – 1}∪{vivi+1 / 1 ≤ i ≤ m – 1}. Define a function  f: V(Cm∪Pn) → {1, 2, …, p + q} by 
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f(u1) = 3; f(ui) = 2(i + 1), 2 ≤ i ≤ m;  

f(v1) = 1; f(vi) = 2m +2i – 1, 2 ≤ i ≤ n.  

Then the induced edge labels are 

f∗(u1u2) = 4; f∗(uiui+1) = 2i + 3, 2 ≤ i ≤  m – 1; f∗(u1um) = 5; 

f∗(v1v2) = 2; f∗(vivi+1) = 2m +2i, 2 ≤ i ≤  n – 1.  

 Thus the vertices and edges together get distinct labels from {1, 2, …, p+q}. Thus f provides a Super harmonic mean 
labeling for Cm∪Pn. 

Example 3.2. A Super harmonic mean labeling of C9∪P7 is shown in figure 3.1. 

 

 

 

 

 

       

       

 

           Fig. 3.1 C9∪P7 

 

Theorem 3.3. (Pm⨀K1)∪Cn is a Super harmonic mean graph. 

Proof. Let u1u2…um be the path Pm. Add vertices vi such that vi is adjacent to ui,  1 ≤ i ≤ m. The resultant graph is Pm⨀K1. Let 
w1w2…wnw1 be the cycle Cn. Let G = (Pm⨀K1)∪Cn whose edge set is E = {uiui+1/1 ≤ i ≤ m – 1}∪{ wiwi+1,wnw1/ 1 ≤ i ≤ n – 1}∪ 
{uivi / 1 ≤ i ≤ m}. Define a function f: V(G) → {1, 2, …, q + 1} by 

f(w1)  = 3; f(wi)  = 2(i + 1), 2 ≤ i ≤ n; 

f(ui) = 2(m + 1) + 4i + 3, 1 ≤ i ≤ m; 

f(v1)  = 1; f(vi)  = 2(m + 2) + 4i – 2, 2 ≤ i ≤ m. 

Then the edges are labeled with  

f∗(w1w2) = 4; f∗(wiwi+1) = 2i + 3, 2 ≤ i ≤ n – 1; f∗(wnw1) = 5; 

 f∗(uiui+1) = 2(m + 2) + 4i + 3,  1 ≤ i ≤ m – 1; 

f∗(u1v1) = 2; f∗(uivi) = 2(m + 2) +4i, 2 ≤ i ≤ m. 

Therefore, f is a Super harmonic mean labeling for G. Hence G is a Super harmonic mean graph.  
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Example 3.4. A Super harmonic mean labeling of (P6⨀K1)∪C9 is given in figure 3.2. 

 

 

      

        

 

 

 

     

    

 

     

Fig. 3.2 (P6⨀K1)∪C9 

 

Theorem 3.5. (Cm⨀K1)∪Pn is a Super harmonic mean graph. 

Proof.  Let u1u2…umu1 be the cycle Cm. Add vertices vi such that vi is adjacent to ui, 1 ≤ i ≤ m. The resultant graph is Cm⨀K1. Let 
w1w2…wn be the path Pn. Let G = (Cm⨀K1)∪Pn whose edge set is E = {uiui+1, umu1 / 1 ≤ i ≤ m –  1}∪{wiwi+1 /1 ≤ i ≤ n – 1}∪{uivi/ 
1 ≤ i ≤ m – 1}. Define a function f: V(G) → {1, 2, …, p + q} by  

f(u1)  = 3; f(ui)  = 4i, 2 ≤ i ≤ m; 

f(v1)  = 1; f(v2) = 6; f(vi) = 4i – 3, 3 ≤ i ≤ m; 

f(wi) = 4m + 2i – 1 , 1 ≤ i ≤ n. 

Then the edges are labeled with  

f∗(u1u2) = 4; f∗(uiui+1) = 4i + 2, 2 ≤ i ≤ m – 1; f∗(umu1) = 5; 

f∗(u1v1) = 2; f∗(uivi) = 4i – 1, 2 ≤ i ≤ m; 

 f∗(wiwi+1) = 4m + 2i , 1 ≤ i ≤ n – 1. 

In the view of the above labeling pattern, f provides a Super harmonic mean labeling for G. Hence G is a Super harmonic 
mean graph.  

Example 3.6. A Super harmonic mean labeling of  (C6⨀K1)∪P9 is given in figure 3.3. 
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    Fig. 3.3 (C6⨀K1)∪P9 

 

 

 

 

Theorem 3.7. (Cm⨀K1)∪Cn is a Super harmonic mean graph. 

Proof. Let u1u2…umu1 be the cycle Cm. Add vertices vi such that vi is adjacent to ui, 1 ≤ i ≤ m. The resultant graph is Cm⨀K1. Let 
w1w2…wnw1 be the cycle Cn. Let G = (Cm⨀K1)∪Cn whose edge set is E = {uiui+1, umu1 / 1 ≤ i ≤ m – 1}∪{wiwi+1, wnw1 / 
1 ≤ i ≤ n – 1}∪{uivi / 1 ≤ i ≤ m}.  

A Super harmonic mean labeling of (Cm⨀K1)∪Cn when m, n ≤ 4 are given in figures 3.4, 3.5, 3.6 and 3.7 respectively. 

 

 

 

 

     

 

Fig. 3.4 (C3⨀K1)∪C3 
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Fig. 3.5 (C3⨀K1)∪C4 

 

 

 

 

 

     

     

              Fig. 3.6 (C4⨀K1)∪C3 

 

     

 

    

 

 

        Fig. 3.7 (C4⨀K1)∪C4 

 

Assume that m, n > 4. Define a function f: V(G) → {1, 2, …, p + q} by  

f(u1)  = 3; f(ui)  = 4i + 3, 2 ≤ i ≤ m; 

f(v1)  = 1; f(v2) = 9; f(vi) = 4i, 3 ≤ i ≤ m; 

f(w1) = 4; f(wi) = 4m + 2i , 2 ≤ i ≤ n. 

Then the edges are labeled with  
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f∗(u1u2) = 5; f(uiui+1) = 4i + 5, 2 ≤ i ≤ m – 1; f∗(unu1) = 6; 

f∗(u1v1) = 2; f∗(uivi) = 4i + 2, 2 ≤ i ≤ m; 

 f∗(w1w2) = 7; f∗(wiwi+1) = 4m + 2i + 1 , 2 ≤ i ≤ n – 1; f∗(wnw1) = 8. 

In the view of the above labeling pattern, f provides a Super harmonic mean labeling for G. Hence G is a Super harmonic 
 mean graph.  

Example 3.8. A Super harmonic mean labeling of  (C5⨀K1)∪C7 is given in figure 3.8. 

 

 

 

 

 

    

 

     Figure 3.8. (C5⨀K1)∪C7 

 

Theorem 3.9. (Cm⨀K1)∪(Pn⨀K1) is a Super harmonic mean graph. 

Proof. Let u1u2…umu1 be the cycle Cm and let vi be the vertex which is joined to the vertex ui, 1 ≤ i ≤ m, of the cycle Cm. The 
resultant graph is Cm⨀K1.  Let s1s2…sn be the path Pn and let ti be the vertex which is joined to the vertex si, 1 ≤ i ≤ n, of the path Pn. 
The resultant graph is Pn⨀K1. Let G = (Cm⨀K1)∪(Pn⨀K1). Define a function f: V(G) → {1, 2, …, p + q} by 

f(u1) = 3; f(ui) = 4i, 2 ≤ i ≤ m; 

f(v1) = 1; f(v2) = 6; f(vi) = 4i – 3 , 3 ≤ i ≤ m; 

f(si) = 4m + 4i – 1; 1 ≤ i ≤ n; 

f(t1) = 4m + 1; f(ti) = 4(m – 1) + 4i, 2 ≤ i ≤ n. 

Then the edges are labeled with 

 f∗(u1u2) = 4; f∗(uiui+1) = 4i + 2, 2 ≤ i ≤ m – 1; f∗(umu1) = 5; 

 f∗(u1v1) = 2; f∗(uivi) = 4i – 1, 2 ≤ i ≤ m; 

 f∗(sisi+1) = 4m + 4i + 1,  1 ≤ i ≤  n – 1; 

 f∗(siti) = 4m + 4i – 2,  1 ≤ i ≤  n. 

Thus f provides a Super harmonic mean labeling for G. Hence G is a Super harmonic mean graph. 
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Example 3.10. A Super harmonic mean labeling of (C6⨀K1)∪(P7⨀K1) is given in figure 3.9. 

 

 

 

 

 

 

 

     

       

        

 

 

 

 

     

     Fig. 3.9 (C6⨀K1)∪(P7⨀K1) 
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