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Abstract 

In this paper contains the properties of Intuitionistic fuzzy join semi L-Filter of Lattice homomorphism  

.Also we defined g-invariant and established a correspondence between the Intuitionistic fuzzy join semi L-

Filters of a lattice which are g-invariant and intuitionistic fuzzy join semi L-filter of its homomorphic image. 
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I. INTRODUCTION 

In 1965 Lofti A.Zadeh introduced the notion of fuzzy subset of a set as a method for representing 

uncertainty in real physical world .The concept of intuitionistic fuzzy set was introduced by Atanassov. KT, 

N.Ajmal [2] discuss the homomorphism of fuzzy subgroups and fuzzy quotient groups .   Kavitha . A and 

Chellappa.B  discuss the homomorphism on fuzzy meet semi L-Filter.In this paper we introduced intuitionistic 

fuzzy join semi L-Filter of lattice homomorphism. 

Definition: 

Let Lland L1
1be a Lattices . A mapping g:L1 →L1

1 is called a homomorphism if g(a∨b)= g(a) ∨ g(b) and g(a∧b)= 

g(a) ∧ g(b), for all a,b∈L. 

Definition: 

A mapping g:L1→L1
1 is called a isomorphism if g is an one – one and onto homomorphism. 

Definition: 

A homomorphism from L1→L1
1 is called endomorphism. Onto homomorphism from L1 → L1

1 is called 

endomorphism. 

Definition: 

A mapping g from L1𝑡𝑜 L1
1and A1be an Intuitionistic fuzzy set on L then the image of A1 is denoted by g(A1) 

and  is defined by 

g(A1) = {< z,g(𝜇) (z), g(𝛾)(z) > / z∈L1} 

Whereg(𝜇) (z) =  sup { 𝜇(𝜘)/𝜘 ∈g-1(z)} if g-1(z) is non–empty 

                             O if g-1(z) empty 

 

and g (𝛾)(z) =      inf { 𝛾(𝜘) / 𝜘 ∈g-1(z)} if g-1(z) is non - empty 

                            O if g-1(z) empty. 

If A1
1 is an Intuitionistic fuzzy set in L1

1 . Then inverse image of A1
1 is defined by 

g-1(A1
1)=  {< 𝜘, g-1(𝜇) (𝜘) , g-1(𝛾) (𝜘)>/ 𝜘 ∈L} 

where  g-1(𝜇) (𝜘)=  𝜇(g(𝜘)) 𝑎𝑛𝑑  g-1(𝛾) (𝜘) = 𝛾(g(𝜘)). 

 

Theorem :1 

If g: L1 →L1
1 is a lattice epimorphism and A1 is an IFJSLF of L1 then g(A1) is an IFJSLF of L1

1 [(ie) image of an 

IFJSLF is also an IFJSLF]. 

Proof : 

Let A1= { <𝜘1 𝜇(𝜘), 𝛾(𝜘)>/ 𝜘 ∈L} be an IFJSLF of L1 .Then image of A1 is defined by 

g(A1)  = { <y, g(𝜇) (y), g(𝛾) (y)>/ y∈ L1
1}. 

Let y1,z1∈ L1
1 . 

Then 
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g(𝜇) (y1∨z1)  = sup{ 𝜇(𝜘)/ 𝜘 ∈g-1 (y1∨z1)  } 

                     ≤ sup{ 𝜇 (u1∨ 𝑣1)  /u1∈g-1 (y1) , 𝑣1∈g-1 (z1)} 

                     ≤ sup{max 𝜇 (u1), 𝜇(𝑣 1)}u1∈g-1 (y1) 𝑣1∈g-1 (z1)} 

                     = max{sup 𝜇(u1)/ u1∈g-1 (y1)}, 

sup{𝜇 (𝑣 1)/ 𝑣1∈g-1 (z1)}= max{g(𝜇 (y1), g(𝜇 (z1)}
 

∴ g(𝜇 (y1∨z1)≤ 𝑚𝑎𝑥 {g(𝜇 (y1), g(𝜇 (z1)} 

Also 

g(𝛾)(𝑦1∨z1)  = inf⁡{ 𝛾(𝜘)/ 𝜘 ∈g-1(y1∨z1)  } 

                     ≥ inf{  𝛾(u1∨ 𝑣1)   /u1∈g-1 (y1) , 𝑣1∈g-1 (z1)} 

                     ≥ inf{ min⁡{𝛾(u1), 𝛾(𝑣1)}/u1∈g-1(y1),𝑣1∈g-1 (z1)} 

                     = min {inf {𝛾(u1)/ u1∈g-1 (y1) }, 

inf {𝛾(𝑣1)/ 𝑣1∈g-1 (z1)}}= min {g(𝛾)(y1), g(𝛾)(z1)} 

Hence 

g(𝛾) (y1∨z1) ≥ min {g(𝛾)(y1), g(𝛾)(z1)} 

Hence image of a IFJSLF is an IFJSLF. 

 

Theorem : 2 

If g: L1 →L1
1 is a lattice homomorphism and A1

1is an IFJSLF of L1
1 then inverse image of  A1

1 is an IFJSLF of 

L1. 

Proof : 

Let A1
1 = {<y, 𝜇 (y), 𝛾 (y)/ y∈ L1

1} be an IFJSLF of L1
1. 

To prove that inverse image of A1
1 is an IFJSLF of L1.For any 𝜘1,y1∈ L1, 

g-1(𝜇)( 𝜘1∨ y1) = 𝜇(g(𝜘1∨ y1)) 

                       = 𝜇(g(𝜘1)∨g (y1)) 

                      ≤ max{ 𝜇(g (𝜘1)), 𝜇(g (𝑦1)} 

                      = max{ g-1  (𝜇)(  𝜘),  g-1  (𝜇)( 𝑦)} 

Hence 

g-1 (𝜇)(𝜘1∨ y1) ≤ max { g-1  (𝜇)(  𝜘1),  g
-1  (𝜇)( 𝑦1)} 

Also, 

g-1  (𝜘)(𝜘1∨ y1) = 𝛾((g)(𝜘1∨ y1)) 

                         =   𝛾(g(𝜘1) ∨ g(𝑦1) ) 

                         ≥ 𝑚𝑖𝑛 {𝛾(g(𝜘1)) , 𝛾(g(𝑦1))} 

                         = min { g-1(𝛾)(𝜘1),  g
-1(𝛾)(y1)} 

Hence 

g-1(𝛾)( 𝜘1∨ 𝑦1)≥min { g-1(𝛾)(𝜘1),  g
-1(𝛾)(y1)} 

Hence inverse image of A1
1 is an IFJSLF of L1. 

Theorem :3 

If g: L1 →L1
1 is an onto mapping and A1and A1

1 are IFJSLFs of the lattices L1 &L1
1 respectively. Then  a)g(g-

1(A1
1)) = A1

1 , b) A1 is contained in    g-1(g(A1)).
 

Proof: For(a) 

Let y ∈ L1
1 . 

Then we have g(g-1(𝜇)(𝑦) = sup { g-1(𝜇)(𝑥1)/ 𝑥1 ∈ g-1(y)} 

                                          = sup { 𝜇(g(𝑥1)/ 𝑥1 ∈ L1, g(𝑥1)=y} 

                      g(g-1(𝜇))(y)  =  𝜇(y) 

Since g is an onto mapping for every y ∈ L1
1 

There exist  𝑥1 ∈ L1such that g (𝑥1) = y 

g(g-1(𝛾))(y)       =  inf { g-1(𝛾)(𝜘1)/ 𝑥1 ∈ g-1(y)} 

                         = inf { 𝛾(𝑔(𝜘1)) / g(𝜘1) = y } 

     g(g-1(𝛾))(y)  =  𝛾(y) 

Hence        g(g-1(A1
1)) =   A1

1 

For (b) : 

Let  𝑥1 ∈ L1. Then we have 

g-1 (g(𝜇)(𝜘1) =  g(𝜇)(g(𝜘1)) 
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                     = sup{ 𝜇(𝜘1)/ 𝑥1 ∈ g-1 (g(𝜘1))} 

g-1 (g(𝜇)(𝜘1)≥ 𝜇(𝜘1)   and 

g-1 (g(𝛾)(𝜘1) =  g(𝛾)(g(𝜘1)) 

                     = inf { 𝛾(𝜘1)/ 𝜘1∈ g-1 (g(𝜘1))} 

g-1 (g(𝛾)(𝜘1  ≤ 𝛾(𝜘1) 

Hence A1 is contained in g-1(g(A1)) 

Definition : 

If g:x → ybe any function from a set X to another set Y and A1 be an IFJSLF of X. Then A1  is said to be g- 

invariant if 𝜘1, 𝜘2∈X s.t g(𝜘1) = g(𝜘2)⇒ 𝜇 (𝜘1) = 𝜇 (𝜘2) and 𝛾 (𝜘1) = 𝛾 (𝜘2). 

 

Note :4 
If on IFJSLF A1  is g-invariant Then  g-1(g(A1))= A1. 

 

Theorem :5 

If g:x → yis any function from a set X onto  another set Y and A1,B1 are IFJSLFs of  X and A1
1
,B1

1 are IFJSLFs 

of Y. 

Then a) A1⊆ B1⇒g(A1)⊆ g(B1) and 

b) A1 
1⊆ B1

1⇒g-1(A1
1) ⊆ g-1(B1

1) 

Proof: 

 Let A1 and B1 be IFJSLFs of X. 

Then A1 is contained in B1⇒ 𝜇A1(x) ≤  𝜇B1(x) and 

𝛾A1(x) ≥  𝛾B1(x) 

Image of A1 and B1 is defined by 

g(A1) = {<y,g (𝜇A)(y), g(𝛾A)(y)>/y∈Y} and 

g(B1) = {<y,g (𝜇B)(y), g(𝛾B)(y)>/y∈Y} 

For all x ∈ X , we have 

g(𝜇A1) (x)  = sup { 𝜇A1 (z)  / z ∈ g-1(x)} 

                  ≤ sup { 𝜇B1 (z)  / z ∈ g-1(x)} 

= g(𝜇B1)(x). 

∴g(𝜇A1) (x)≤ 𝑔(𝜇B1)(x). 

Also , g(𝛾A1)(x)  = inf  { 𝛾A1(z)  / z ∈ g-1(x)} 

                            ≥ inf { 𝛾B1 (z)  / z ∈ g-1(x)} 

                             = g (𝛾B1) (x) 

Hence g(𝛾A1)(x)  ≥g(𝛾B1) (x) 

Hence  A1 contained in B1 which implies 

g(A1) contained in  g(B1) 

Also , Inverse image of A1 and B1 is defined by 

g-1(A1) = { <x, g-1 (𝜇A1) (x)  ,  g-1 (𝛾A1)(x) > /  𝑥 ∈ L1} 

g-1(B1) = { <x, g-1 (𝜇B1) (x)  ,  g-1 (𝛾B1)(x) > /  𝑥 ∈ L1} 

g-1 (𝜇A1) (x)  = 𝜇A1(g(x)) ≤ 𝜇B1(g(x)) = g-1 (𝜇B1) (x) 

Hence      g-1 (𝜇A1) (x)  ≤ g-1 (𝜇B1) (x) 

Also ,         g-1 (𝛾A1)(x) = 𝛾A1(g(x)) ≥ 𝛾B1(g(x)) 

                                     = g-1 (𝛾B1) (x) 

There fore  g-1 (𝛾A1)(x) ≥ g-1 (𝛾B1 )(x) 

Hence A1
1 contained in B1

1 which implies  g-1(A1
1) contained in  g-1(B1

1) 

 

Theorem :6 

If g: L1→L1
1 is a lattice homomorphism, Then there is one- one order preserving correspondence between the 

IFJSLFS of  L1
1 and those of  L1 which are g-invariant . 

Proof : 

Let J(L1
1) denote the set of all IFJSLFS of L1

1 andJ(L1) denote the set of all IFJSLFS of L1 which are g-invariant. 

 

Define f : J(L1) → J(L1
1) and h: J(L1

1) → J(L1) such that f(A1) = g(A1) and h(A1
1) = g-1(A1

1) 

By theorem 1 and 2 , f and h are well- defined 

Also by thorem 3 and note 4 , f and h inverse to each other which gives the one to one correspondence, 

Also by theorem 5, we have A1contained in B1 which implies g(A1) contained in g(B1) . Thus the 

correspondence is order preserving , 

Theorem :7 

If g: L1→L1
1 is a lattice epimorphism and A1 and  B1 areIFJSLFs of L then g(A1)⋃ g(B1) ⊆ g(A1⋃B1) 

Proof : 
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Since A1⊆ A1⋃B1 and B1⊆ A1⋃B1 

By theorem 10, g(A1) ⊆ g(A1⋃B1), g(B1) ⊆ g(A1⋃B1). 

g(A1⋃B1) = { <y, g(𝜇A1ᴜB1)(y), g(𝛾A1ᴜB1)(y)> / y ∈ L1
1} 

g(A) = {<y, g(𝜇A1)(y), g(𝛾A1)(y)> / y ∈ L1
1} 

Since g(A1) ⊆ g(A1⋃B1), we have 

g(𝜇A1)(y) ≤ g(𝜇A1ᴜB1)(y) and g(𝛾A1)(y) ≥ g(𝛾A1ᴜB1)(y) 

g(𝜇B1)(y) ≤ g(𝜇A1ᴜB1)(y) and g(𝛾B1)(y) ≥ g(𝛾A1ᴜB1)(y) 

Now g(𝜇A1ᴜB1)(y) ≤ max{ g(𝜇A1)(y) , g(𝜇B1)(y)} 

                             = (g(𝜇A1) ⋁ g(𝜇B1))(y) 

Also g(𝛾A1ᴜB1)(y) ≥ min  {g(𝛾A1)(y) , g(𝛾B1)(y)} 

                             = [g(𝛾A1) ⋁ g(𝛾B1)](y) 

Hence  g(A1)⋃g(B1) ⊆ g(A1⋃B1) 

 

CONCLUTION 

Correspondence between the Intuitionistic fuzzy join semi L-Filters of a lattice which are g-invariant 

and intuitionistic fuzzy join semi L-filter of its homomorphic image. 
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