Intuitionistic Fuzzy Join Semi L-Filter of Lattice Homomorphism

F. Benedict*Dr. B. Anandh

*Research Scholar,PG and Research Department of Mathematics Sudharsan College of Arts and Science,Pudukkottai. 622 104TamilNadu S.India Assistant Professor,PG and Research Department of Mathematics H.H. The Rajah's College (Autonomous),Pudukkottai. 622 001TamilNadu S.India

Abstract

In this paper contains the properties of Intuitionistic fuzzy join semi L-Filter of Lattice homomorphism Also we defined g-invariant and established a correspondence between the Intuitionistic fuzzy join semi L-Filters of a lattice which are g-invariant and intuitionistic fuzzy join semi L-filter of its homomorphic image.

Keywords: Intuitionistic fuzzy join semi L-Filter, Intuitionistic fuzzy join semi L-Filter of lattice homomorphism.

I. INTRODUCTION

In 1965 Lofti A.Zadeh introduced the notion of fuzzy subset of a set as a method for representing uncertainty in real physical world .The concept of intuitionistic fuzzy set was introduced by Atanassov. KT, N.Ajmal [2] discuss the homomorphism of fuzzy subgroups and fuzzy quotient groups . Kavitha . A and Chellappa.B discuss the homomorphism on fuzzy meet semi L-Filter.In this paper we introduced intuitionistic fuzzy join semi L-Filter of lattice homomorphism.

Definition:

Let L_1 and L_1^{-1} be a Lattices. A mapping $g:L_1 \rightarrow L_1^{-1}$ is called a homomorphism if $g(a \lor b) = g(a) \lor g(b)$ and $g(a \land b) = g(a) \land g(b)$, for all $a \models \in L$.

Definition:

A mapping $g:L_1 \rightarrow L_1^{-1}$ is called a isomorphism if g is an one – one and onto homomorphism.

Definition:

A homomorphism from $L_1 \rightarrow L_1^{-1}$ is called endomorphism. Onto homomorphism from $L_1 \rightarrow L_1^{-1}$ is called endomorphism.

Definition:

A mapping g from $L_1 to L_1^{1}$ and A_1 be an Intuitionistic fuzzy set on L then the image of A_1 is denoted by $g(A_1)$ and is defined by

 $g(A_1) = \{ \langle z, g(\mu) (z), g(\gamma)(z) \rangle / z \in L^1 \}$

Where
$$g(\mu)(z) = \begin{cases} \sup \{ \mu(\varkappa)/\varkappa \in g^{-1}(z) \} \text{ if } g^{-1}(z) \text{ is non-empty} \\ O \text{ if } g^{-1}(z) \text{ empty} \end{cases}$$

and g $(\gamma)(z) = \begin{cases} \inf \{ \gamma(\varkappa) / \varkappa \in g^{-1}(z) \} \text{ if } g^{-1}(z) \text{ is non - empty} \\ O \text{ if } g^{-1}(z) \text{ empty.} \end{cases}$ If A_1^{-1} is an Intuitionistic fuzzy set in L_1^{-1} . Then inverse image of A_1^{-1} is defined by $g^{-1}(A_1^{-1}) = \{ < \varkappa, g^{-1}(\mu) \ (\varkappa), g^{-1}(\gamma) \ (\varkappa) > / \varkappa \in L \}$ where $g^{-1}(\mu) \ (\varkappa) = \mu(g(\varkappa))$ and $g^{-1}(\gamma) \ (\varkappa) = \gamma(g(\varkappa)).$

Theorem :1

If g: $L_1 \rightarrow L_1^{-1}$ is a lattice epimorphism and A_1 is an IFJSLF of L_1 then g(A₁) is an IFJSLF of L_1^{-1} [(ie) image of an IFJSLF is also an IFJSLF].

Proof :

Let $A_1 = \{ \langle \varkappa_1 \mu(\varkappa), \gamma(\varkappa) \rangle / \varkappa \in L \}$ be an IFJSLF of L_1 . Then image of A_1 is defined by $g(A_1) = \{ \langle y, g(\mu) (y), g(\gamma) (y) \rangle / y \in L_1^1 \}.$

Let $y_1, z_1 \in L_1^{-1}$.

Then

 $g(\mu) (y_1 \forall z_1) = \sup\{ \mu(\varkappa) / \varkappa \in g^{-1} (y_1 \forall z_1) \}$

 $\leq \sup\{ \mu(u_1 \lor v_1) / u_1 \in g^{-1}(y_1), v_1 \in g^{-1}(z_1) \}$

 $\leq \sup\{\max \mu(u_1), \mu(v_1)\}u_1 \in g^{-1}(y_1) v_1 \in g^{-1}(z_1)\}$

 $= \max\{\sup \mu(u_1)/u_1 \in g^{-1}(y_1)\},\$ $\sup\{\mu(v_1)/v_1 \in g^{-1}(z_1)\} = \max\{g(\mu(y_1), g(\mu(z_1))\},\$ $\therefore g(\mu(y_1 \vee z_1) \le \max\{g(\mu(y_1), g(\mu(z_1))\},\$

Also

 $g(\gamma)(y_{1}\vee z_{1}) = \inf\{ \forall \gamma(\varkappa) / \varkappa \in g^{-1}(y_{1}\vee z_{1}) \} \\ \geq \inf\{ \gamma(u_{1}\vee v_{1}) / u_{1}\in g^{-1}(y_{1}), v_{1}\in g^{-1}(z_{1}) \} \\ \geq \inf\{ \min\{ \forall \gamma(u_{1}), \gamma(v_{1}) \} / u_{1}\in g^{-1}(y_{1}), v_{1}\in g^{-1}(z_{1}) \} \\ = \min\{ \inf\{ \gamma(u_{1}) / u_{1}\in g^{-1}(y_{1}) \}, \\ \inf\{ \gamma(v_{1}) / v_{1}\in g^{-1}(z_{1}) \} = \min\{ g(\gamma)(y_{1}), g(\gamma)(z_{1}) \} \\ \text{Hence} \\ g(\gamma) (y_{1}\vee z_{1}) \geq \min\{ g(\gamma)(y_{1}), g(\gamma)(z_{1}) \} \\ \text{Hence image of a IFJSLF is an IFJSLF.}$

Theorem: 2

If g: $L_1 \rightarrow L_1^{-1}$ is a lattice homomorphism and A_1^{-1} is an IFJSLF of L_1^{-1} then inverse image of A_1^{-1} is an IFJSLF of L_1 .

Proof :

Let $A_1^{1} = \{\langle y, \mu(y), \gamma(y) / y \in L_1^{1}\}$ be an IFJSLF of $L_1^{1.}$ To prove that inverse image of A_1^{-1} is an IFJSLF of L_1 . For any $\varkappa_1, y_1 \in L_1$, $g^{-1}(\mu)(\varkappa_1 \vee y_1) = \mu(g(\varkappa_1 \vee y_1))$ $= \mu(g(\varkappa_1) \vee g(y_1))$ $\leq \max\{ \mu(g(\varkappa_1)), \mu(g(y_1)\} \}$ $= \max\{ g^{-1}(\mu)(\varkappa), g^{-1}(\mu)(y)\}$ Hence $g^{-1}(\mu)(\varkappa_1 \vee y_1) \leq \max\{ g^{-1}(\mu)(\varkappa_1), g^{-1}(\mu)(y_1)\}$ Also, $g^{-1}(\varkappa)(\varkappa_1 \vee y_1) = \gamma((g)(\varkappa_1 \vee y_1))$ $= \gamma(g(\varkappa_1) \vee g(y_1))$ $\equiv \min\{ \gamma(g(\varkappa_1)), \gamma(g(y_1))\} \}$ Hence $g^{-1}(\gamma)(\varkappa_1 \vee y_1) \geq \min\{ g^{-1}(\gamma)(\varkappa_1), g^{-1}(\gamma)(y_1)\}$

Hence inverse image of A_1^{11} is an IFJSLF of L_1 .

Theorem :3

If g: $L_1 \rightarrow L_1^{-1}$ is an onto mapping and A_1 and A_1^{-1} are IFJSLF_s of the lattices $L_1 \& L_1^{-1}$ respectively. Then $a)g(g^{-1}(A_1^{-1})) = A_1^{-1}$, b) A_1 is contained in $g^{-1}(g(A_1))$. **Proof: For(a)** Let $y \in L_1^{-1}$.

Then we have $g(g^{-1}(\mu)(y) = \sup \{ g^{-1}(\mu)(x_1) / x_1 \in g^{-1}(y) \}$ = $\sup \{ \mu(g(x_1) / x_1 \in L_1, g(x_1) = y \}$ $g(g^{-1}(\mu))(y) = \mu(y)$

Since g is an onto mapping for every $y \in L_1^{-1}$

There exist $x_1 \in L_1$ such that $g(x_1) = y$

 $g(g^{-1}(\gamma))(y) = \inf \{ g^{-1}(\gamma)(\varkappa_1) / \chi_1 \in g^{-1}(y) \} \\ = \inf \{ \gamma(g(\varkappa_1)) / g(\varkappa_1) = y \} \\ g(g^{-1}(\gamma))(y) = \gamma(y) \\ \text{Hence} \quad g(g^{-1}(A_1^{-1})) = A_1^{-1} \\ \underline{For}(b): \\ \text{Let } \chi_1 \in L_1. \text{ Then we have} \\ g^{-1}(g(\mu)(\varkappa_1) = g(\mu)(g(\varkappa_1)) \end{cases}$

ISSN: 2231-5373

 $= \sup\{ \mu(\varkappa_1)/\chi_1 \in g^{-1}(g(\varkappa_1)) \}$ $g^{-1}(g(\mu)(\varkappa_1) \ge \mu(\varkappa_1) \text{ and}$ $g^{-1}(g(\gamma)(\varkappa_1) = g(\gamma)(g(\varkappa_1))$ $= \inf\{ \gamma(\varkappa_1)/\varkappa_1 \in g^{-1}(g(\varkappa_1)) \}$ $g^{-1}(g(\gamma)(\varkappa_1 \le \gamma(\varkappa_1))$ Hence A₁ is contained in g^{-1}(g(A_1))

Definition :

If g:x \rightarrow ybe any function from a set X to another set Y and A₁ be an IFJSLF of X. Then A₁ is said to be ginvariant if $\varkappa_1, \varkappa_2 \in X$ s.t g(\varkappa_1) = g(\varkappa_2) $\Rightarrow \mu$ (\varkappa_1) = μ (\varkappa_2) and γ (\varkappa_1) = γ (\varkappa_2).

Note :4

If on IFJSLF A_1 is g-invariant Then $g^{-1}(g(A_1)) = A_1$.

Theorem :5

If g:x \rightarrow yis any function from a set X onto another set Y and A₁,B₁ are IFJSLF_s of X and A₁,B₁¹ are IFJSLFs of Y.

Then a) $A_1 \subseteq B_1 \Rightarrow g(A_1) \subseteq g(B_1)$ and b) $A_1^{-1} \subseteq B_1^{-1} \Rightarrow g^{-1}(A_1^{-1}) \subseteq g^{-1}(B_1^{-1})$ **Proof:**

Let A_1 and B_1 be IFJSLF_s of X. Then A₁ is contained in B₁ \Rightarrow $\mu_{A1}(x) \leq \mu_{B1}(x)$ and $\gamma_{A1}(x) \geq \gamma_{B1}(x)$ Image of A₁ and B₁ is defined by $g(A_1) = \{\langle y, g(\mu_A)(y), g(\gamma_A)(y) \rangle / y \in Y\}$ and $g(B_1) = \{ \langle y, g(\mu_B)(y), g(\gamma_B)(y) \rangle / y \in Y \}$ For all $x \in X$, we have $g(\mu_{A1})(x) = \sup \{ \mu_{A1}(z) / z \in g^{-1}(x) \}$ $\leq \sup \{ \mu_{B1}(z) / z \in g^{-1}(x) \}$ $= g(\mu_{B1})(x).$ $\therefore g(\mu_{\mathrm{A1}}) (\mathbf{x}) \leq g(\mu_{\mathrm{B1}})(\mathbf{x}).$ Also, $g(\gamma_{A1})(x) = \inf \{ \gamma_{A1}(z) / z \in g^{-1}(x) \}$ $\geq \inf \{ \gamma_{B1}(z) / z \in g^{-1}(x) \}$ $= g (\gamma_{B1}) (x)$ Hence $g(\gamma_{A1})(x) \ge g(\gamma_{B1})(x)$ Hence A_1 contained in B_1 which implies $g(A_1)$ contained in $g(B_1)$ Also, Inverse image of A1 and B1 is defined by $\begin{array}{l} g^{-1}(A_1) = \{ \ <\!\! x, \, g^{-1}(\mu_{A1}) \ (x) \ , \ g^{-1}(\gamma_{A1})(x) > / \ x \in L_1 \} \\ g^{-1}(B_1) = \{ \ <\!\! x, \, g^{-1}(\mu_{B1}) \ (x) \ , \ g^{-1}(\gamma_{B1})(x) > / \ x \in L_1 \} \end{array}$

Theorem :6

If g: $L_1 \rightarrow L_1^{-1}$ is a lattice homomorphism, Then there is one- one order preserving correspondence between the IFJSLFs of L_1^{-1} and those of L_1 which are g-invariant.

Proof :

Let $J(L_1^{-1})$ denote the set of all IFJSLF_S of L_1^{-1} and $J(L_1)$ denote the set of all IFJSLF_S of L_1 which are g-invariant.

Define $f: J(L_1) \rightarrow J(L_1^{-1})$ and $h: J(L_1^{-1}) \rightarrow J(L_1)$ such that $f(A_1) = g(A_1)$ and $h(A_1^{-1}) = g^{-1}(A_1^{-1})$ By theorem 1 and 2, f and h are well- defined

Also by thorem 3 and note 4, f and h inverse to each other which gives the one to one correspondence,

Also by theorem 5, we have $A_1 \text{contained}$ in B_1 which implies $g(A_1)$ contained in $g(B_1)$. Thus the correspondence is order preserving ,

If g: $L_1 \rightarrow L_1^{-1}$ is a lattice epimorphism and A_1 and B_1 are IFJSLFs of L then $g(A_1) \cup g(B_1) \subseteq g(A_1 \cup B_1)$ **Proof**: Since $A_1 \subseteq A_1 \cup B_1$ and $B_1 \subseteq A_1 \cup B_1$ By theorem 10, $g(A_1) \subseteq g(A_1 \cup B_1)$, $g(B_1) \subseteq g(A_1 \cup B_1)$. $g(A_1 \cup B_1) = \{ \langle y, g(\mu_{A1 \cup B1})(y), g(\gamma_{A1 \cup B1})(y) \rangle / y \in L_1^{-1} \}$ $g(A) = \{ \langle y, g(\mu_{A1})(y), g(\gamma_{A1})(y) \rangle / y \in L_1^{-1} \}$ Since $g(A_1) \subseteq g(A_1 \cup B_1)$, we have $g(\mu_{A1})(y) \leq g(\mu_{A1 \cup B1})(y)$ and $g(\gamma_{A1})(y) \geq g(\gamma_{A1 \cup B1})(y)$ $g(\mu_{B1})(y) \leq g(\mu_{A1 \cup B1})(y)$ and $g(\gamma_{B1})(y) \geq g(\gamma_{A1 \cup B1})(y)$ Now $g(\mu_{A1 \cup B1})(y) \leq \max\{ g(\mu_{A1})(y), g(\mu_{B1})(y) \}$ $= (g(\mu_{A1}) \vee g(\mu_{B1}))(y)$ Also $g(\gamma_{A1 \cup B1})(y) \geq \min\{ g(\gamma_{A1})(y), g(\gamma_{B1})(y) \}$ $= [g(\gamma_{A1}) \vee g(\gamma_{B1})](y)$ Hence $g(A_1) \cup g(B_1) \subseteq g(A_1 \cup B_1)$

CONCLUTION

Correspondence between the Intuitionistic fuzzy join semi L-Filters of a lattice which are g-invariant and intuitionistic fuzzy join semi L-filter of its homomorphic image.

REFERENCES

- [1] N.Ajmal and K.V.Thomas , Fuzzy Lattice I Journal of Fuzzy Mathematics, vol-10, No.2, (2002) PP:255-274.
- [2] N.Ajmal, Homomorphism of fuzzy subgroups, correspondents theorem and fuzzy quotient group, Fuzzy sets and systems 61(1994), 329-339.
- [3] K.T.Akanassov, Intuitionistic Fuzzy sets, Fuzzy sets and systems, 20(1) 1986, 87-96
- [4] L.A.Zadeh, Fuzzy sets, Information and control, 8(1965) 338-353.
- [5] A.Kavitha and B.Chellappa, "Homomorphism of Fuzzy meet semi L-Filter International Journal of Applied Mathematics and Applications , 4(2) , December (2012), PP:109-113. Global Research Publications.
- [6] Chellappa.B and Anandh.B, "Homomorphism on fuzzy join semi L-ideal", International Journal of Mathematics Research, vol-3, No.6(2011), PP.593-597.