Some Properties of Fibonacci Numbers

Shriram B. Patil
Nirmala Memorial Foundation College of
Commerce and Science,
Kandivali East, Mumbai 400 101, India

Abstract

Fibonacci numbers are well known for some of its interesting properties [1]. Golden ratio is one of the amazing property. Fibonacci numbers and Golden ratio have applications in physics, astrophysics, biology, chemistry and technology [2]. This article proves property of determinant of Fibonacci numbers, geometric consideration for Golden ratio and construction of Fibonacci subsequence from a Fibonacci sequence. The determinant of first $n^{2} n>=2$ of a Fibonacci numbers is zero. The golden ratio is shown to be sequence of lines converging to a line with slope as golden ratio. Method of constructing a subsequence from a Fibonacci sequence is presented. Examples presented in [2] is not exhaustive list of applications. One may find other applications in different domains of science.

Keywords

Fibonacci, Generalized Fibonacci sequence, Golden ratio, Set of lines, rational sequence, irrational number, sequence, subsequence, convergence

I. INTRODUCTION

The well known Fibonacci sequence is defined as
$\mathrm{f}_{0}=0, \mathrm{f}_{1}=1$ and
$f_{n}=f_{n-1}+f_{n-2}$ for $n \geq 2$
The range of Fibonacci sequence is
$R(f)=\{0,1,1,2,3,5,8,13, \ldots\}$
The generalized Fibonacci sequence is defined as:
For some integers $\mathrm{k}_{1} \leq \mathrm{k}_{2}$,
$\mathrm{f}_{0}=\mathrm{k}_{1}, \mathrm{f}_{1}=\mathrm{k}_{2}$ and
$f_{n}=f_{n-2}+f_{n-1} \quad$ for $n \geq 2$
For example, if $\mathrm{k}_{1}=4$ and $\mathrm{k}_{2}=7$, using (ii) the range of Fibonacci sequence is
$R(f)=\{4,7,11,18,29,47, \ldots\}$.
The following notations will be used in this article.

II. NOTATIONS

(a) If $\mathrm{A}=\left[\mathrm{a}_{\mathrm{i}}\right], \mathrm{i}=1 \ldots \mathrm{~m}$ and $\mathrm{j}=1 \ldots \mathrm{n}$, then determinant of $\mathrm{A} \operatorname{denoted}$ by $\operatorname{det}(\mathrm{A})$ is written as
$\operatorname{Det}(A)=\operatorname{det}\left(a_{11}, a_{12}, . ., a_{1 n} ; a_{21}, a_{22}, \ldots a_{2 n} ; \ldots ; a_{m 1}, a_{m 2}, \ldots, a_{m n}\right)$
Here rows are separated by ; and columns are separated by ,.
(b) Let C_{j} denote j th column of the matrix $A=\left[a_{i j}\right], \quad i=1 \ldots m$ and $j=1 \ldots n$ and is written as

$$
C_{j}=\left[\begin{array}{llll}
a_{1 \mathrm{j}} & a_{2 \mathrm{j}} & \ldots a_{m \mathrm{j}}
\end{array}\right] .
$$

Then matrix A can be written as $A=\left(\begin{array}{llll}C_{1} & C_{2} & C_{3} & \ldots C_{n}\end{array}\right)$

Example 1: For Fibonacci sequence $\{0,1,1,2,3,5,8,13,21,34,55,89,144, \ldots\}$
The determinant of first 9 terms is

$\mathrm{D} 1=|$| 0 | 1 | 1 |
| :---: | :---: | :---: |
| 2 | 3 | 5 |
| 8 | 13 | 21 |

can be represented by $\mathrm{D} 1=\operatorname{det}(0,1,1 ; 2,3,5 ; 8,13,21)$. Note that rows are separated by ; and columns are separated by ,.

With this notation D2 =
$\operatorname{det}(3,5,8 ; 13,21,34 ; 55,89,144)$ means
$\mathrm{D} 2=\left|\begin{array}{rrr}3 & 5 & 8 \\ 13 & 21 & 34 \\ 55 & 89 & 144\end{array}\right|$

III. DETERMINANT

Proposition 1: Determinant of a real square matrix in which any row is a linear combination of other rows or columns is zero.

Theorem 1: A 3×3 determinant of any 9 consecutive terms of Fibonacci sequence is zero.
Proof: Let $f_{n}, f_{n+1}, f_{n+2}, f_{n+3}, f_{n+4}, f_{n+5}, f_{n+6}, f_{n+7}, f_{n+8}, f_{n+9}$ be 10 consecutive terms of Fibonacci
sequence. For simplicity we define $a=f_{n}, b=f_{n+1}, c=f_{n+2}, p=f_{n+3}, q=f_{n+4}, r=f_{n+5}, x=f_{n+6}, y=f_{n+7}, z=f_{n+8}$
Thus a, b, c, p, q, r, x, y, z are 9 consecutive terms of Fibonacci sequence with
$\mathrm{c}=\mathrm{a}+\mathrm{b}, \mathrm{p}=\mathrm{b}+\mathrm{c}, \quad \mathrm{q}=\mathrm{c}+\mathrm{p}, \mathrm{r}=\mathrm{p}+\mathrm{q}, \mathrm{x}=\mathrm{q}+\mathrm{r}$,
$y=r+x$ and $z=x+y$.
We can express the terms of Fibonacci sequence in terms of first two terms i.e. a and b.
Using (1),

$$
\begin{gather*}
c=a+b, \\
p=b+c=b+(a+b)=a+2 b \\
q=c+p=(a+b)+(a+2 b)=2 a+3 b \\
r=p+q=(a+2 b)+(2 a+3 b)=3 a+5 b \\
x=q+r=(2 a+3 b)+(3 a+5 b)=5 a+8 b \\
y=r+x=(3 a+5 b)+(5 a+8 b)=8 a+13 b \\
z=x+y=(5 a+8 b)+(8 a+13 b)=13 a+21 b \tag{i}
\end{gather*}
$$

Now, Consider determinant D of order 3×3 defined by
$\mathrm{D}=\operatorname{det}(\mathrm{a}, \mathrm{b}, \mathrm{c} ; \mathrm{p}, \mathrm{q}, \mathrm{r} ; \mathrm{x}, \mathrm{y}, \mathrm{z})$
We shall show that $\mathrm{D}=0$.
Substituting the values of $\mathrm{c}, \mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{x}, \mathrm{y}, \mathrm{z}$ from equations (i), we obtain
$D=\left|\begin{array}{ccc}a & b & a+b \\ a+2 b & 2 a+3 b & 3 a+5 b \\ 5 a+8 b & 8 a+13 b & 13 a+21 b\end{array}\right|$

Since third column is sum of first two columns by Proposition $1, \mathrm{D}=0$.
Example 1: For Fibonacci sequence $\{0,1,1,2,3,5,8,13,21,34,55,89,144, \ldots\}$
It can be verified that
If $\mathrm{D} 1=\operatorname{det}(0,1,1 ; 2,3,5 ; 8,13,21)$ then $\mathrm{D} 1=0$.
If $\mathrm{D} 2=\operatorname{det}(3,5,8 ; 13,21,34 ; 55,89,144)$ then $\mathrm{D} 2=0$.
Theorem 2: A 2×2 determinant of any four consecutive terms of Fibonacci sequence is constant upto sign.
Proof: Let a, b, c, d, e be any 5 consecutive terms of Fibonacci sequence so that
$\mathrm{c}=\mathrm{a}+\mathrm{b}, \mathrm{d}=\mathrm{b}+\mathrm{c}=\mathrm{b}+(\mathrm{a}+\mathrm{b})=\mathrm{a}+2 \mathrm{~b} \quad$ and
$\mathrm{e}=\mathrm{c}+\mathrm{d}=(\mathrm{a}+\mathrm{b})+(\mathrm{a}+2 \mathrm{~b})=2 \mathrm{a}+3 \mathrm{~b}$
Let D be the determinant obtained from first 4 terms a, b, c, d.
$\mathrm{D}=\operatorname{det}(\mathrm{a}, \mathrm{b} ; \mathrm{c}, \mathrm{d})=\mathrm{ad}-\mathrm{bc}=\mathrm{a}(\mathrm{a}+2 \mathrm{~b})-\mathrm{b}(\mathrm{a}+\mathrm{b})$

$$
\begin{align*}
& =a^{2}+2 a b-a b-b^{2} \\
& =a^{2}+a b-b^{2} \tag{i}
\end{align*}
$$

Let $k=a^{2}+a b-b^{2}$. Then $D=k$
Let D1 be the determinant obtained from next 4 consecutive terms b, c, d, e.

$$
\begin{align*}
\text { D1 } & =\operatorname{det}(b, c ; d, e) \\
& =b e-c d=b(2 a+3 b)-(a+b)(a+2 b) \\
& =2 a b+3 b^{2}-\left(a^{2}+2 a b+a b+2 b^{2}\right) \\
= & b^{2}-a^{2}-a b=-\left(a^{2}+a b-b^{2}\right) \\
= & -k \tag{ii}
\end{align*}
$$

Thus from (i) and (ii) we conclude that determinant of any 4 consecutive terms of Fibonacci sequence is either + k or

- k where $\mathrm{k}=\mathrm{a}^{2}+\mathrm{ab}-\mathrm{b}^{2}$.

This completes the proof.
The value of k can be determined from first 2 terms.
Example 2: If $0,1,1,2,3,5,8,13,21,34$ are first 10 terms of Fibonacci sequence then
$\mathrm{a}=0, \mathrm{~b}=1$ and $\mathrm{k}=\mathrm{a}^{2}+\mathrm{ab}-\mathrm{b}^{2}=-1$

D1 is determinant of first 4 terms and $\mathrm{j}=1$.
D1 $=\operatorname{det}(0,1 ; 1,2)=-1=(-1)^{\mathrm{j}+1} \mathrm{k}=\mathrm{k}$ where $\mathrm{j}=1$
D2 is determinant of next 4 terms starting from 2 nd term and $j=2$.
$\mathrm{D} 2=\operatorname{det}(1,1 ; 2,3)=1=(-1)^{\mathrm{j}+1} \mathrm{k}=-\mathrm{k}$ where $\mathrm{j}=2$
D6 is determinant of next 4 terms starting from 6 th term and $\mathrm{j}=6$.
D6 $=\operatorname{det}(5,8 ; 13,21)=1=(-1)^{\mathrm{j}+1} \mathrm{k}=-\mathrm{k} \quad$ where $\mathrm{j}=6$
D7 is determinant of next 4 terms starting from 7 th term and $j=7$.
D7 $=\operatorname{det}(8,13 ; 21,34)=-1=(-1)^{\mathrm{j}+7} \mathrm{k}=\mathrm{k}$
This illustrates that determinant of any four consecutive terms of Fibonacci sequence is either +k or -k .
The following example illustrates that the result applied to any general Fibonacci sequence is true.
Example 3: If $3,7,10,17,27 \ldots$ is a general Fibonacci sequence then
$\mathrm{a}=3, \mathrm{~b}=7$ and $\mathrm{k}=\mathrm{a}^{2}+\mathrm{ab}-\mathrm{b}^{2}=-19$
D1 is determinant of first 4 terms and $\mathrm{j}=1$.
Let $\quad \mathrm{D} 1=\operatorname{de}(3,7 ; 10,17)=-19=(-1)^{\mathrm{j}+1} \mathrm{k}=\mathrm{k} \quad$ where $\mathrm{j}=1$
D 2 is determinant of 4 terms starting from 2 nd term and $\mathrm{j}=2$.
$\mathrm{D} 2=\operatorname{det}(7,10 ; 17,27)=19=-\mathrm{k}=(-1)^{\mathrm{j}+1} \mathrm{k}$ where $\mathrm{j}=2$
Thus D1 $=\mathrm{k}=-19$ and D2 $=-\mathrm{k}=19$
Example 4: Let 3, 4, 7, 11, 18, \ldots be terms in Fibonacci sequence. Then with $\mathrm{a}=3$ and $\mathrm{b}=4$,
$\mathrm{k}=\mathrm{a}^{2}+\mathrm{ab}-\mathrm{b}^{2}=5$
$\mathrm{D} 1=\operatorname{det}(3,4 ; 7,11)=\mathrm{k}=(-1)^{\mathrm{j}+1} \mathrm{k} \quad$ where $\mathrm{j}=1$
$\mathrm{D} 2=\operatorname{det}(4,7,11,18)=-\mathrm{k}=(-1)^{\mathrm{j}+1} \mathrm{k} \quad$ where $\mathrm{j}=2$

IV. GOLDEN RATIO

Theorem 2: Each term of Fibonacci sequence can be expressed as a linear combination of first two terms and each term can be represented by a point in 2 dimensional Euclidean plane.

Proof: Let $f_{1}, f_{2}, f_{3}, \ldots f_{n}, f_{n+1}, f_{n+2}, f_{n+3}, f_{n+4}, \ldots$ be terms of Fibonacci sequence.
Let us denote $a f_{1}+b f_{2}$ by ordered pair (a, b) where a and b are non negative integers.
$\mathrm{f}_{1}=1 . \mathrm{f}_{1}+0 . \mathrm{f}_{2}=(1,0)=\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right)$
$\mathrm{f}_{2}=0 . \mathrm{f}_{1}+1 . \mathrm{f}_{2}=(0,1)=\left(\mathrm{a}_{2}, \mathrm{~b}_{2}\right)$
$\mathrm{f}_{3}=\mathrm{f}_{1}+\mathrm{f}_{2}=1 . \mathrm{f}_{1}+1 . \mathrm{f}_{2}=(1,1)=\left(\mathrm{a}_{3}, \mathrm{~b}_{3}\right)$
$\mathrm{f}_{4}=\mathrm{f}_{2}+\mathrm{f}_{3}=(0,1)+(1,1)=(1,2)=\left(\mathrm{a}_{4}, \mathrm{~b}_{4}\right)$
$=\mathrm{f}_{1}+2 \mathrm{f}_{2}$
$\mathrm{f}_{5}=\mathrm{f}_{3}+\mathrm{f}_{4}=(1,1)+(1,2)=(2,3)=\left(a_{5}, b_{5}\right)$

$$
=2 \mathrm{f}_{1}+3 \mathrm{f}_{2}
$$

$$
\begin{aligned}
\mathrm{f}_{6} & =\mathrm{f}_{4}+\mathrm{f}_{5}=(1,2)+(2,3)=(3,5)=\left(\mathrm{a}_{6}, \mathrm{~b}_{6}\right) \\
& =3 \mathrm{f}_{1}+5 \mathrm{f}_{2} \\
\mathrm{f}_{7} & =\mathrm{f}_{5}+\mathrm{f}_{6}=(2,3)+(3,5)=(5,8)=\left(\mathrm{a}_{7}, \mathrm{~b}_{7}\right) \\
& =5 \mathrm{f}_{1}+8 \mathrm{f}_{2} \\
\mathrm{f}_{8} & =\mathrm{f}_{6}+\mathrm{f}_{7}=(3,5)+(5,8)=(8,13)=\left(\mathrm{a}_{8}, \mathrm{~b}_{8}\right)
\end{aligned}
$$

and so on.
Now, consider a sequences $\left(\mathrm{a}_{\mathrm{n}}\right)$ and $\left(\mathrm{b}_{\mathrm{n}}\right), \mathrm{n}=1,2, \ldots$
Range of sequence $\left(\mathrm{a}_{\mathrm{n}}\right)=\{1,0,1,1,2,3,5,8, \ldots$.
Range of sequence $\left(b_{n}\right)=\{0,1,1,2,3,5,8, \ldots$.
Sequence (a_{n}) is increasing sequence for $n \geq 2$.
Sequence (b_{n}) is increasing sequence.
Here $a_{k}=b_{k-1} \quad$ for $k=2,3,4, \ldots$
and $b_{k}=a_{k-1}+b_{k-1}$ for $k=2,3, \ldots$.
Suppose $\mathrm{f}_{\mathrm{k}}=\mathrm{a}_{\mathrm{k}} \mathrm{f}_{1}+\mathrm{b}_{\mathrm{k}} \mathrm{f}_{2}=\left(\mathrm{a}_{\mathrm{k}}, \mathrm{b}_{\mathrm{k}}\right)$
where $b_{k}=a_{k-1}+b_{k-1}$ for $k=3,4,5, \ldots$
Define $L=\left\{L_{k}: L_{k}\right.$ is a straight line joining origin to the point $\left.\left(a_{k}, b_{k}\right), k \geq 3\right\}$
Define $S=\left\{S_{k}: S_{k}\right.$ is slope of the line L_{k} defined in $\left.L, k \geq 3\right\}$
Denote by L_{k} a straight line joining $(0,0)$ to the point $\left(a_{k}, b_{k}\right)$.
We shall represent this line L_{k} by $\left[a_{k}, b_{k}\right]$ and its slope S_{k} by b_{k} / a_{k}.
Note that $\mathrm{L}=\left\{\mathrm{L}_{3}=[1,1], \mathrm{L}_{4}=[1,2], \mathrm{L}_{5}=[2,3], \mathrm{L}_{6}=[3,5], \ldots, \mathrm{L}_{\mathrm{k}}=\left[\mathrm{a}_{\mathrm{k}}, \mathrm{b}_{\mathrm{k}}\right], \ldots\right\}$ and

$$
S=\left\{S_{3}=1, S_{4}=2, S_{5}=3 / 2, S_{6}=5 / 3, S_{7}=8 / 5, S_{8}=13 / 8, \ldots, S_{k}=b_{k} / a_{k}, \ldots\right.
$$

Sequence S_{k} is a decreasing sequence for $k \geq 4$ and is bounded below by 1 and bounded above by 2 . Hence it is convergent and converges to g.

We know that $a_{1}=0$ and $b_{1}=1$ in a Fibonacci sequence and

$$
\begin{aligned}
& \quad a_{k}=b_{k-1} \quad \text { for } k=2,3,4, \ldots \\
& \text { and } b_{k}=a_{k-1}+b_{k-1} \quad \text { for } k=2,3, \ldots \\
& f_{k}=\left(a_{k}, b_{k}\right)
\end{aligned}
$$

Now for $\mathrm{k} \geq 3$, consider $\mathrm{b}_{\mathrm{k}} / \mathrm{a}_{\mathrm{k}}=\left(\mathrm{a}_{\mathrm{k}-1}+\mathrm{b}_{\mathrm{k}-1}\right) / \mathrm{b}_{\mathrm{k}-1}$

$$
\begin{equation*}
=\left(a_{k-1} / b_{k-1}\right)+1 \tag{1}
\end{equation*}
$$

For large k , we take $\mathrm{x}=\mathrm{b}_{\mathrm{k}} / \mathrm{a}_{\mathrm{k}}$
Equation (1) then becomes,
$x=1 / x+1$.

Solving for x, we get $x=(1 \pm \sqrt{5}) / 2$
Taking positive value, $\mathrm{x}=1.6180339874989$ approximately.
This x is called golden ratio ' g ' for Fibonacci sequence.
This means the set of lines defined in the set S converges to a line with slope equal to golden ratio.

Note that golden ratio is irrational number.

Corollory1: Sequence of rational numbers constructed from terms of Fibonacci sequence converges to golden ratio.

Proof : Construct sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ as defined in Theorem 2.
Theorem 3: Given f_{1} and f_{2}, the n th term of Fibonacci sequence is given by
$f_{n}=\left(a_{n}, b_{n}\right)$ where $a_{n}=b_{n-1}, b_{n}=a_{n-1}+b_{n-1} \quad$ for $n=3,4,5, \ldots$
Proof: By induction on n.
Let f_{k} be the statement that $f_{k}=a_{k} f 1+b_{k} f 2$ then
$f_{k+1}=a_{k+1} f_{1}+b_{k+1} f_{2} \quad$ where $a_{k}=b_{k-1}$ and $b_{k}=a_{k-1}+b_{k-1}$
Let f_{1} and f_{2} be known i.e. $f_{1}=(1,0)$ and $f_{2}=(0,1)$.
Then,
$f_{3}=f_{1}+f_{2}=(1,1)=\left(a_{1}, b_{1}\right) \quad$ where $a_{1}=1$ and $b_{1}=1$
Result is true for $\mathrm{k}=3$
(1)
$\mathrm{f}_{4}=\mathrm{f}_{2}+\mathrm{f}_{3}$

$$
=\mathrm{f}_{2}+\left(\mathrm{f}_{1}+\mathrm{f}_{2}\right)
$$

$$
=\mathrm{f}_{1}+2 \mathrm{f}_{2}
$$

$$
=(1,2)=\left(a_{2}, b_{2}\right)
$$

Here $\mathrm{a}_{2}=\mathrm{b}_{1}$ and $\mathrm{b}_{2}=1+1=\mathrm{a}_{1}+\mathrm{b}_{1}$
Result is true for $\mathrm{k}=4$

$$
\begin{aligned}
f_{5} & =f_{3}+f_{4} \\
& =\left(f_{1}+f_{2}\right)+\left(f_{1}+2 f_{2}\right) \\
& =2 f_{1}+3 f_{2} \\
& =(2,3)=\left(a_{3}, b_{3}\right)
\end{aligned}
$$

Result is true for $\mathrm{k}=5$
Assume that f_{k} is true for $\mathrm{n}<\mathrm{k}$.
This means if $f_{1}, f_{2}, f_{3}, \ldots, f_{k-1}$ are true then we shall show that f_{k} is true.
Consider

$$
\mathrm{f}_{\mathrm{k}}=\mathrm{f}_{\mathrm{k}-2}+\mathrm{f}_{\mathrm{k}-1}
$$

$$
\begin{aligned}
& =\left(a_{k-2}, b_{k-2}\right)+\left(a_{k-1}, b_{k-1}\right) \\
& =\left(b_{k-3}, a_{k-3}+b_{k-3}\right)+\left(b_{k-2}, a_{k-2}+b_{k-2}\right) \\
& =\left(b_{k-3}+b_{k-2}, a_{k-3}+b_{k-3}+a_{k-2}+b_{k-2}\right) \\
& =\left(b_{k-3}+b_{k-2},\left(a_{k-2}+a_{k-3}\right)+\left(b_{k-3}+b_{k-2}\right)\right) \\
& =\left(b_{k-1}, a_{k-1}+b_{k-1}\right)=\left(a_{k}, b_{k}\right) \\
& =a_{k} f_{1}+b_{k} f_{2}
\end{aligned}
$$

f_{k} is true
Hence
if f_{k} is true for $k<n$ then f_{k} is true for $k=n$
Hence by mathematical induction proof follows from (1) and (2).
Theorem 4: Square root of difference of product of two consecutive terms of Fibonacci sequence is a term of Fibonacci sequence and it forms new Fibonacci sequence starting from second term .

Proof: Let $f_{1}, f_{2}, \ldots f_{n}, f_{n+1}, \ldots$ be Fibonacci sequence of numbers. Assuming that the first two terms i.e. f_{1}, f_{2} are known then other terms can be found by the recurrence relation
$\mathrm{f}_{\mathrm{n}+2}=\mathrm{f}_{\mathrm{n}}+\mathrm{f}_{\mathrm{n}+1}, \mathrm{n}=1,2,3, \ldots$
Define $\quad g_{n}=f_{n} * f_{n+1} \quad n=1,2,3, \ldots$
Define $\mathrm{h}_{\mathrm{n}}=\mathrm{g}_{\mathrm{n}+1}-\mathrm{g}_{\mathrm{n}} \mathrm{n}=1,2,3, \ldots$
Simplifying h_{n},
$\mathrm{h}_{\mathrm{n}}=\mathrm{g}_{\mathrm{n}+1}-\mathrm{g}_{\mathrm{n}}$

$$
\begin{aligned}
& =\left(f_{n+1} * f_{n+2}\right)-\left(f_{n} * f_{n+1}\right) \\
& =\left(f_{n+1} *\left(f_{n}+f_{n+1}\right)\right)-\left(f_{n} * f_{n+1}\right) \\
& =f_{n+1} * f_{n}+f_{n+1} * f_{n+1}-f_{n} * f_{n+1}=f_{n+1} * f_{n+1} \\
& =\left(f_{n+1}\right)^{2}
\end{aligned}
$$

Thus a sequence $\left(\mathrm{F}_{\mathrm{n}}\right)$ defined by $\mathrm{F}_{\mathrm{n}}=\sqrt{ } h_{n}, \mathrm{n}=1,2, \ldots$ is Fibonacci sequence whose first term is given by $\mathrm{f}_{\mathrm{n}+1}$

This proves the theorem.
Note that Fibonacci sequence so obtained i.e. $F_{n}=\sqrt{h}$ is a subsequence of Fibonacci sequence f_{n}.
Example 4: Consider a Fibonacci sequence $\left\{\mathrm{f}_{\mathrm{n}}\right\}=\{0,1,1,2,3,5,8,13,21, \ldots\}$
Define $g_{n}=f_{n} * f_{n+1} \quad n=1,2,3,4, \ldots$
Therefore $\left\{\mathrm{g}_{\mathrm{n}}\right\}=\{0.1,1.1,1.2,2.3,3.5,5.8, \ldots\}=.\{0,1,2,6,15,40, \ldots\}$
Define $\mathrm{h}_{\mathrm{n}}=\mathrm{g}_{\mathrm{n}+1}-\mathrm{g}_{\mathrm{n}} \mathrm{n}=1,2,3,4, \ldots$
$\left\{\mathrm{h}_{\mathrm{n}}\right\}=\{1-0,2-1,6-2,15-6,40-15, \ldots\}=\{1,1,4,9,25, \ldots\}$
$\left\{\sqrt{ } h_{n}\right\}=\{1,1,2,3,5, \ldots\}$ is a Fibonacci sequence f_{2}, f_{3}, \ldots
and sequence $\left(\sqrt{ } h_{n}\right)$ is a subsequence of $\left(f_{n}\right)$

V. CONCLUSION

Interesting properties may be found based on general definition of Fibonacci sequence and its application in different domains of science.

ACKNOWLEDGEMENT

Author wishes to thank the management of Nirmala Memorial Foundation Trust for their support and encouragement.

REFERENCES

[1] Magdalena Jastrzebska , Adam Grabowski. "Some Properties of Fibonacci Numbers ", Formalised Mathematics, Volume 12, Number 3, 2004
[2] Vladimir Pletser, Fibonacci Numbers and the Golden Ratio in Biology, Physics, Astrophysics, Chemistry and Technology: A NonExhaustive ReviewTechnology and Engineering Center for Space Utilization, Chinese Academy of Sciences, Beijing, China; Vladimir.Pletser@csu.ac.cn
[3] R.R.Goldberg, Methods of real analysis, Oxford \& IBH

