Some Properties of Fibonacci Numbers

Shriram B. Patil Nirmala Memorial Foundation College of Commerce and Science, Kandivali East, Mumbai 400 101, India

Abstract

Fibonacci numbers are well known for some of its interesting properties [1]. Golden ratio is one of the amazing property. Fibonacci numbers and Golden ratio have applications in physics, astrophysics, biology, chemistry and technology [2]. This article proves property of determinant of Fibonacci numbers, geometric consideration for Golden ratio and construction of Fibonacci subsequence from a Fibonacci sequence. The determinant of first n^2 $n \ge 2$ of a Fibonacci numbers is zero. The golden ratio is shown to be sequence of lines converging to a line with slope as golden ratio. Method of constructing a subsequence from a Fibonacci sequence is presented. Examples presented in [2] is not exhaustive list of applications. One may find other applications in different domains of science.

Keywords

Fibonacci, Generalized Fibonacci sequence, Golden ratio, Set of lines, rational sequence, irrational number, sequence, subsequence, convergence

I. INTRODUCTION

The well known Fibonacci sequence is defined as

$$f_0 = 0$$
, $f_1 = 1$ and

 $f_n = f_{n-1} + f_{n-2} \quad \text{for } n \geq 2$

The range of Fibonacci sequence is

 $R(f) = \{0, 1, 1, 2, 3, 5, 8, 13, \dots\}$

The generalized Fibonacci sequence is defined as :

For some integers $k_1 \leq k_2$,

$$f_0 = k_1 \quad , \quad f_1 = k_2 \quad and \quad$$

 $f_n \ = \ f_{n\text{-}2} \ + \ f_{n\text{-}1} \qquad for \ n \ge \ 2$

For example, if $k_1 = 4$ and $k_2 = 7$, using (ii) the range of Fibonacci sequence is

 $R(f) = \{ 4, 7, 11, 18, 29, 47, \dots \}.$

The following notations will be used in this article.

II. NOTATIONS

(a) If $A = [a_{ij}]$, $i = 1 \dots m$ and $j = 1 \dots n$, then determinant of A denoted by det(A) is written as

Det (A) = det ($a_{1 1}, a_{1 2}, ..., a_{1 n}; a_{2 1}, a_{2 2}, ..., a_{2 n}; ...; a_{m 1}, a_{m 2}, ..., a_{m n}$)

Here rows are separated by ; and columns are separated by ,.

(b) Let C_i denote j th column of the matrix $A = [a_{ij}], i = 1 \dots m$ and $j = 1 \dots n$ and is written as

 $C_{j} = [a_{1j} \ a_{2j} \ \dots \ a_{mj}].$

Then matrix A can be written as $A = (C_1 \ C_2 \ C_3 \ \dots \ C_n)$

(i)

(ii)

Example 1: For Fibonacci sequence { 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ... }

The determinant of first 9 terms is

 $D1 = \begin{bmatrix} 0 & 1 & 1 \\ 2 & 3 & 5 \\ 8 & 13 & 21 \end{bmatrix}$

can be represented by D1 = det(0, 1, 1; 2, 3, 5; 8, 13, 21). Note that rows are separated by ; and columns are separated by ,.

With this notation D2 =

det (3, 5, 8; 13, 21, 34; 55, 89, 144) means

$$D2 = \begin{vmatrix} 3 & 5 & 8 \\ 13 & 21 & 34 \\ 55 & 89 & 144 \end{vmatrix}$$

III. DETERMINANT

Proposition 1: Determinant of a real square matrix in which any row is a linear combination of other rows or columns is zero.

Theorem 1: A 3x3 determinant of any 9 consecutive terms of Fibonacci sequence is zero.

Proof: Let f_n , f_{n+1} , f_{n+2} , f_{n+3} , f_{n+4} , f_{n+5} , f_{n+6} , f_{n+7} , f_{n+8} , f_{n+9} be 10 consecutive terms of Fibonacci

sequence. For simplicity we define $a=f_n$, $b=f_{n+1}$, $c=f_{n+2}$, $p=f_{n+3}$, $q=f_{n+4}$, $r=f_{n+5}$, $x=f_{n+6}$, $y=f_{n+7}$, $z=f_{n+8}$

Thus a, b, c, p, q, r, x, y, z are 9 consecutive terms of Fibonacci sequence with

$$c = a + b, p = b + c, q = c + p, r = p + q, x = q + r,$$

$$y = r + x$$
 and $z = x + y$.

We can express the terms of Fibonacci sequence in terms of first two terms i.e. a and b.

Using (1),

$$c = a + b,$$

$$p = b + c = b + (a + b) = a + 2 b$$

$$q = c + p = (a + b) + (a + 2 b) = 2 a + 3 b$$

$$r = p + q = (a + 2 b) + (2 a + 3 b) = 3 a + 5 b$$

$$x = q + r = (2 a + 3 b) + (3 a + 5 b) = 5 a + 8 b$$

$$y = r + x = (3 a + 5 b) + (5 a + 8 b) = 8 a + 13 b$$

$$z = x + y = (5 a + 8 b) + (8 a + 13 b) = 13 a + 21 b$$

Now, Consider determinant D of order 3x3 defined by

(1)

D = det(a, b, c; p, q, r; x, y, z)

We shall show that D = 0.

Substituting the values of c, p, q, r, x, y, z from equations (i), we obtain

 $D = \begin{bmatrix} a & b & a+b \\ a+2b & 2a+3b & 3a+5b \\ 5a+8b & 8a+13b & 13a+21b \end{bmatrix}$

Since third column is sum of first two columns by Proposition 1, D = 0.

Example 1: For Fibonacci sequence { 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ... }

It can be verified that

If D1 = det(0, 1, 1; 2, 3, 5; 8, 13, 21) then D1 = 0.

If D2 = det(3, 5, 8; 13, 21, 34; 55, 89, 144) then D2 = 0.

Theorem 2: A 2x2 determinant of any four consecutive terms of Fibonacci sequence is constant upto sign.

Proof: Let a, b, c, d, e be any 5 consecutive terms of Fibonacci sequence so that

c = a+b, d=b+c = b+(a+b) = a+2b and

e = c + d = (a+b) + (a + 2b) = 2a + 3b

Let D be the determinant obtained from first 4 terms a, b, c, d.

 $= a^{2} + ab - b^{2}$

D = det(a,b; c,d) = ad - bc = a(a + 2b) - b(a+b) = $a^2 + 2 ab - ab - b^2$

Let
$$k = a^2 + ab - b^2$$
. Then $D = k$

Let D1 be the determinant obtained from next 4 consecutive terms b, c, d, e.

$$D1 = det(b,c; d,e)$$

= be -cd = b(2a+3b) -(a+b) (a+2b)
= 2ab + 3b² -(a² + 2ab + ab + 2b²)
= b² - a² - ab = - (a² + ab - b²)
= - k

Thus from (i) and (ii) we conclude that determinant of any 4 consecutive terms of Fibonacci sequence is either + k or

- k where $k = a^2 + ab - b^2$.

This completes the proof.

The value of k can be determined from first 2 terms.

Example 2: If 0, 1, 1, 2, 3, 5, 8, 13, 21, 34 are first 10 terms of Fibonacci sequence then

a = 0, b = 1 and $k = a^2 + ab - b^2 = -1$

(i)

(ii)

D1 is determinant of first 4 terms and j = 1.

D1 = det(0,1; 1,2) =
$$-1 = (-1)^{j+1} k = k$$
 where j =1

D2 is determinant of next 4 terms starting from 2 nd term and j = 2.

$$D2 = det(1,1;2,3) = 1 = (-1)^{j+1} k = -k$$
 where $j = 2$

D6 is determinant of next 4 terms starting from 6 th term and j = 6.

$$D6 = det(5,8; 13,21) = 1 = (-1)^{j+1} k = -k$$
 where $j = 6$

D7 is determinant of next 4 terms starting from 7 th term and j = 7.

D7 = det(8,13; 21,34) = $-1 = (-1)^{j+7} k = k$

This illustrates that determinant of any four consecutive terms of Fibonacci sequence is either +k or -k.

The following example illustrates that the result applied to any general Fibonacci sequence is true.

Example 3: If 3,7,10,17,27 ... is a general Fibonacci sequence then

a=3, b=7 and $k = a^2 + ab - b^2 = -19$

D1 is determinant of first 4 terms and j = 1.

Let D1 = de(3,7; 10,17) = $-19 = (-1)^{j+1} k = k$ where j = 1

D2 is determinant of 4 terms starting from 2 nd term and j = 2.

D2 = det(7,10; 17,27) = $19 = -k = (-1)^{j+1}$ k where j = 2

Thus D1 = k = -19 and D2 = -k = 19

Example 4: Let 3, 4, 7, 11, 18, ... be terms in Fibonacci sequence. Then with a = 3 and b = 4,

$$\begin{split} &k = a^2 + ab - b^2 = 5 \\ &D1 = det(3,4;\ 7,11) = \ k = (-1)^{j+1} \, k \quad \text{where } j = 1 \\ &D2 = det(4,7;11,18) = \ -k = (-1)^{j+1} \, k \quad \text{where } j = 2 \end{split}$$

IV. GOLDEN RATIO

Theorem 2: Each term of Fibonacci sequence can be expressed as a linear combination of first two terms and each term can be represented by a point in 2 dimensional Euclidean plane.

Proof: Let f_1 , f_2 , f_3 , ... f_n , f_{n+1} , f_{n+2} , f_{n+3} , f_{n+4} , ... be terms of Fibonacci sequence.

Let us denote a $f_1 + b f_2$ by ordered pair (a,b) where a and b are non negative integers.

$$f_{1} = 1.f_{1} + 0.f_{2} = (1,0) = (a_{1},b_{1})$$

$$f_{2} = 0.f_{1} + 1.f_{2} = (0,1) = (a_{2},b_{2})$$

$$f_{3} = f_{1} + f_{2} = 1.f_{1} + 1.f_{2} = (1,1) = (a_{3}, b_{3})$$

$$f_{4} = f_{2} + f_{3} = (0,1) + (1,1) = (1,2) = (a_{4}, b_{4})$$

$$= f_{1} + 2 f_{2}$$

$$f_{5} = f_{3} + f_{4} = (1,1) + (1,2) = (2,3) = (a_{5}, b_{5})$$

$$= 2 f_{1} + 3 f_{2}$$

$$f_6 = f_4 + f_5 = (1,2) + (2,3) = (3,5) = (a_6, b_6)$$

= 3 f₁ + 5 f₂
$$f_7 = f_5 + f_6 = (2,3) + (3,5) = (5,8) = (a_7, b_7)$$

= 5 f₁ + 8 f₂

 $f_8 = f_6 + f_7 = (3,5) + (5,8) = (8,13) = (a_8, b_8)$

and so on.

Now, consider a sequences (a_n) and (b_n) , n=1,2,...

Range of sequence $(a_n) = \{1, 0, 1, 1, 2, 3, 5, 8,\}$

Range of sequence $(b_n) = \{0, 1, 1, 2, 3, 5, 8,\}$

Sequence (a_n) is increasing sequence for $n \ge 2$.

Sequence (b_n) is increasing sequence.

Here $a_k = b_{k-1}$ for k = 2, 3, 4,...

and $b_k = a_{k-1} + b_{k-1}$ for k = 2, 3,...

Suppose $f_k = a_k f_1 + b_k f_2 = (a_k, b_k)$

where $b_k = a_{k-1} + b_{k-1}$ for k = 3, 4, 5,...

Define L = { L_k : L_k is a straight line joining origin to the point $(a_k, b_k), k \ge 3$ }

Define $S = \{S_k : S_k \text{ is slope of the line } L_k \text{ defined in } L, k \ge 3 \}$

Denote by L_k a straight line joining (0,0) to the point (a_k, b_k) .

We shall represent this line L_k by $[a_k, b_k]$ and its slope S_k by b_k/a_k .

Note that $L = \{ L_3=[1,1], L_4=[1,2], L_5=[2,3], L_6=[3,5], ..., L_k=[a_k, b_k], ... \}$ and

 $S = \{ S_3=1, S_4=2, S_5=3/2, S_6=5/3, S_7=8/5, S_8=13/8, ..., S_k=b_k / a_k , ... \}$

Sequence S $_k$ is a decreasing sequence for $k \ge 4$ and is bounded below by 1 and bounded above by 2. Hence it is convergent and converges to g.

We know that $a_1 = 0$ and $b_1 = 1$ in a Fibonacci sequence and

$$a_k = b_{k-1}$$
 for $k = 2, 3, 4, ...$

and $b_k = a_{k-1} + b_{k-1}$ for k=2, 3,....

$$\mathbf{f}_k = (\mathbf{a}_k, \mathbf{b}_k)$$

Now for $k \ge 3$, consider $b_k / a_k = (a_{k-1} + b_{k-1}) / b_{k-1}$

$$= (a_{k-1} / b_{k-1}) + 1$$
(1)

For large k , we take $x = b_k / a_k$

Equation (1) then becomes,

x = 1/x + 1.

Solving for x , we get $x = (1 \pm \sqrt{5})/2$

Taking positive value, x = 1.6180339874989 approximately.

This x is called golden ratio 'g' for Fibonacci sequence.

This means the set of lines defined in the set S converges to a line with slope equal to golden ratio.

Note that golden ratio is irrational number.

Corollory1: Sequence of rational numbers constructed from terms of Fibonacci sequence converges to golden ratio.

Proof : Construct sequences $\{a_n\}$ and $\{b_n\}$ as defined in Theorem 2.

Theorem 3: Given f_1 and f_2 , the n th term of Fibonacci sequence is given by

 $f_n = (a_n, b_n)$ where $a_n = b_{n-1}$, $b_n = a_{n-1} + b_{n-1}$ for n = 3, 4, 5, ...

Proof: By induction on n.

Let f_k be the statement that $f_k = a_k f1 + b_k f2$ then

 $f_{k+1} = a_{k+1} f_1 + b_{k+1} f_2$ where $a_k = b_{k-1}$ and $b_k = a_{k-1} + b_{k-1}$

Let f_1 and f_2 be known i.e. $f_1 = (1, 0)$ and $f_2 = (0, 1)$.

Then,

 $f_3 = f_1 + f_2 = (1, 1) = (a_1, b_1)$ where $a_1 = 1$ and $b_1 = 1$

Result is true for k=3 (1)

 $\mathbf{f}_4 = \mathbf{f}_2 + \mathbf{f}_3$

$$= f_2 + (f_1 + f_2)$$

$$= f_1 \ + \ 2 \ f_2$$

$$=(1,2)=(a_2, b_2)$$

Here $a_2 = b_1$ and $b_2 = 1 + 1 = a_1 + b_1$

Result is true for k = 4

$$f_5 \;=\; f_3 + \; f_4$$

$$= (f_1 + f_2) + (f_1 + 2 f_2)$$
$$= 2 f_1 + 3 f_2$$
$$= (2,3) = (a_3, b_3)$$

Result is true for k = 5

Assume that f_k is true for n < k.

This means if $f_1, f_2, f_3, ..., f_{k-1}$ are true then we shall show that f_k is true.

Consider

$$f_k = f_{k-2} + f_{k-1}$$

$$= (a_{k-2}, b_{k-2}) + (a_{k-1}, b_{k-1})$$

$$= (b_{k-3}, a_{k-3} + b_{k-3}) + (b_{k-2}, a_{k-2} + b_{k-2})$$

$$= (b_{k-3} + b_{k-2}, a_{k-3} + b_{k-3} + a_{k-2} + b_{k-2})$$

$$= (b_{k-3} + b_{k-2}, (a_{k-2} + a_{k-3}) + (b_{k-3} + b_{k-2}))$$

$$= (b_{k-1}, a_{k-1} + b_{k-1}) = (a_k, b_k)$$

$$= a_k f_1 + b_k f_2$$

f k is true

Hence

if f_k is true for k < n then f_k is true for k = n (2)

Hence by mathematical induction proof follows from (1) and (2).

Theorem 4: Square root of difference of product of two consecutive terms of Fibonacci sequence is a term of Fibonacci sequence and it forms new Fibonacci sequence starting from second term .

Proof: Let f_1 , f_2 , ..., f_n , f_{n+1} , ... be Fibonacci sequence of numbers. Assuming that the first two terms i.e. f_1 , f_2 are known then other terms can be found by the recurrence relation

 $f_{n+2} = f_n + f_{n+1}$, n = 1, 2, 3, ...

Define $g_n = f_n * f_{n+1}$ n=1, 2, 3, ...

Define $h_n = g_{n+1} - g_n$ n=1, 2, 3, ...

Simplifying h_n ,

$$h_{n} = g_{n+1} - g_{n}$$

$$= (f_{n+1} * f_{n+2}) - (f_{n} * f_{n+1})$$

$$= (f_{n+1} * (f_{n} + f_{n+1})) - (f_{n} * f_{n+1})$$

$$= f_{n+1} * f_{n} + f_{n+1} * f_{n+1} - f_{n} * f_{n+1} = f_{n+1} * f_{n+1}$$

$$= (f_{n+1})^{2}$$

Thus a sequence (F_n) defined by $F_n = \sqrt{h_n}$, n = 1, 2, ... is Fibonacci sequence whose first term is given by f_{n+1}

This proves the theorem.

Note that Fibonacci sequence so obtained i.e. $F_n = \sqrt{h_n}$ is a subsequence of Fibonacci sequence f_n .

Example 4: Consider a Fibonacci sequence $\{f_n\} = \{0, 1, 1, 2, 3, 5, 8, 13, 21, ... \}$

Define $g_n = f_n * f_{n+1}$ n = 1,2,3,4, ...

Therefore $\{g_n\} = \{0.1, 1.1, 1.2, 2.3, 3.5, 5.8,\} = \{0, 1, 2, 6, 15, 40,\}$

Define $h_n = g_{n+1} - g_n$ n=1,2,3,4, ...

 $\{ h_n \} = \{ 1-0, 2-1, 6-2, 15-6, 40-15, ... \} = \{1,1,4,9,25, ... \}$

 $\{ \sqrt{h_n} \ \} = \{ \ 1,1,2,3,5, \ \ldots \ \}$ is a Fibonacci sequence $f_2, \ f_3, \ \ldots$

and sequence $(\sqrt{h_n})$ is a subsequence of (f_n)

V. CONCLUSION

Interesting properties may be found based on general definition of Fibonacci sequence and its application in different domains of science.

ACKNOWLEDGEMENT

Author wishes to thank the management of Nirmala Memorial Foundation Trust for their support and encouragement.

REFERENCES

- [1] Magdalena Jastrzebska , Adam Grabowski. "Some Properties of Fibonacci Numbers", Formalised Mathematics, Volume 12, Number 3, 2004
- [2] Vladimir Pletser, Fibonacci Numbers and the Golden Ratio in Biology, Physics, Astrophysics, Chemistry and Technology: A NonExhaustive ReviewTechnology and Engineering Center for Space Utilization, Chinese Academy of Sciences, Beijing, China; Vladimir.Pletser@csu.ac.cn
- [3] R.R.Goldberg, Methods of real analysis, Oxford & IBH