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Abstract 

            Fibonacci numbers are well known for some of its interesting properties [1]. Golden ratio is one of the 

amazing property. Fibonacci numbers and Golden ratio have applications in  physics, astrophysics, biology, 

chemistry and technology [2]. This article proves property of determinant of Fibonacci numbers , geometric 

consideration for Golden ratio and construction of Fibonacci subsequence from a Fibonacci sequence. The 

determinant of first n2  n >= 2 of a Fibonacci numbers is zero. The golden ratio is shown to be sequence of  

lines converging to a line with slope as golden ratio. Method of constructing a subsequence from a Fibonacci 

sequence is presented.   Examples presented in [2] is not exhaustive list of applications. One may find other 

applications in different domains of science. 
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I. INTRODUCTION 

The well known Fibonacci sequence is defined as   

f0 = 0,   f1 = 1 and 

fn  =  fn-1  +  fn-2    for n ≥  2         (i)                                                                        

The range of Fibonacci sequence is  

R (f) = { 0, 1, 1, 2, 3, 5, 8, 13, … }    

The generalized Fibonacci sequence is defined as : 

For some integers  k1 ≤ k2, 

f0 = k1    ,   f1 = k2  and  

fn  =  fn-2   +   fn-1      for n ≥  2                   (ii)                  

For example, if  k1 = 4  and  k2 = 7, using (ii) the range of Fibonacci sequence is  

R(f) = { 4, 7, 11, 18, 29, 47, … }. 

The following notations will be used in this article. 

II. NOTATIONS 

( a ) If A = [a i j],   i = 1 ... m and  j = 1 ... n , then determinant of A denoted by det(A) is written as  

 Det ( A ) = det ( a1 1, a1 2,.., a1n; a2 1, a2 2,... a2 n;...; am 1, am 2, ...,am n ) 

       Here rows are separated by ; and columns are separated by ,. 

( b ) Let  C j  denote j th column of the matrix A = [a i j],   i = 1 ... m and  j = 1 ... n and is written as 

        C j  = [  a 1 j   a 2 j    . . . a m j  ].  

Then matrix A can be written as  A = (C1  C2  C3  . . . C n) 
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Example 1:  For Fibonacci sequence  { 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ... }  

The determinant of first 9 terms is 

D1  =    0    1    1   

             2    3    5 

             8  13  21 

 

can be represented by D1 = det(0, 1, 1 ; 2, 3, 5  ;  8, 13, 21). Note that rows are separated by ; and  columns are 

separated by ,. 

With this notation D2 =  

det (3, 5, 8  ;  13 , 21 , 34  ;  55 , 89 , 144) means 

 D2 =          3      5       8  

                              13    21     34  

                 55   89   144 

 

III. DETERMINANT 

Proposition 1: Determinant of a real square matrix in which any row is a linear combination of other rows or 

columns is zero. 

Theorem 1: A  3x3  determinant of any 9 consecutive terms of Fibonacci sequence is zero. 

Proof: Let  fn, fn+1, fn+2,fn+3,fn+4,fn+5,fn+6,fn+7,fn+8,fn+9  be 10 consecutive terms of Fibonacci 

 sequence. For simplicity we define  a=fn, b=fn+1, c=fn+2, p=fn+3, q=fn+4, r=fn+5, x=fn+6, y=fn+7, z=fn+8  

Thus  a, b, c, p, q, r, x, y, z are 9 consecutive terms of Fibonacci sequence with  

c = a + b, p = b + c,   q = c + p, r = p + q, x = q + r, 

 y = r + x  and  z = x + y.                                    (1) 

We can express the terms  of Fibonacci sequence in terms of  first two terms i.e. a and b. 

Using   (1),  

             c = a + b, 

   p = b + c = b + (a + b) = a + 2 b 

 q = c + p = (a + b) + (a + 2 b) = 2 a + 3 b 

 r = p + q = (a + 2 b) + (2 a + 3 b) = 3 a + 5 b 

 x = q + r = (2 a + 3 b) +(3 a + 5 b) = 5 a + 8 b 

 y = r + x = (3 a + 5 b) + (5 a + 8 b) = 8 a + 13 b 

z = x + y = (5 a + 8 b) +( 8 a + 13 b) = 13 a + 21 b        (i)  

Now, Consider determinant D of order 3x3 defined by  
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D  = det( a, b, c;  p, q, r; x, y, z)  

We shall show that D = 0. 

Substituting the values of c, p, q,  r , x,  y,  z from equations (i), we obtain 

   a        b        a+b 

D =  a+2b   2a+3b      3a+5b   

 5a+8b   8a+13b   13a+21b         

Since third column is sum of first two columns by Proposition 1,  D = 0. 

Example 1: For Fibonacci sequence { 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ... } 

It can be verified that  

If  D1 =  det (0, 1, 1;  2, 3, 5;  8, 13, 21 )  then D1 = 0. 

If  D2 =  det (3, 5, 8;  13, 21, 34;  55, 89, 144 )  then D2 = 0. 

Theorem 2: A 2x2 determinant of any four consecutive terms of Fibonacci sequence is constant  upto sign. 

Proof: Let a, b, c, d, e  be any 5 consecutive terms of Fibonacci sequence so that  

c = a+b,  d=b+c = b+(a+b) = a+2b          and   

e = c + d = (a+b) + (a + 2b) = 2a + 3b 

Let  D be the determinant obtained from first 4 terms a, b, c, d. 

 D = det(a,b; c,d) = ad - bc = a(a + 2b) - b(a+b) 

    = a 2 + 2 ab -ab - b2 

   = a 2 + ab - b2 

Let  k  = a 2 + ab - b2 . Then D = k               (i)                                                         

Let D1 be the determinant obtained from next 4 consecutive terms b, c, d, e.  

D1 = det( b,c; d,e)  

     = be -cd = b(2a+3b) -(a+b) (a+2b)  

    =2ab + 3b2 -(a2 + 2ab + ab + 2b2) 

   = b2 - a2 - ab = - (a 2 + ab - b2 ) 

  = - k                                                                      (ii) 

Thus from (i) and (ii) we conclude that determinant of any 4 consecutive terms of Fibonacci sequence is either + 

k or 

 - k where   k = a 2 + ab - b2 .   

This completes the proof. 

The value of k can be determined from first 2 terms.  

Example 2:  If   0, 1, 1, 2, 3, 5, 8,13,21,34 are first 10 terms of Fibonacci sequence then 

a = 0, b = 1 and k = a 2 + ab - b2   =  -1    
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D1 is determinant of first 4 terms and j =1 . 

D1 = det(0,1; 1,2) =  -1 = (-1) j+1  k = k  where j =1 

D2 is determinant of next 4 terms starting from 2 nd term and j =2. 

D2 =  det(1,1; 2,3) = 1 = (-1) j+1  k = - k  where j =2 

D6 is determinant of next 4 terms starting from 6 th term and j =6. 

D6 = det(5,8; 13,21) = 1 = (-1) j+1 k = - k    where j = 6    

D7 is determinant of next 4 terms starting from 7 th term and  j = 7. 

D7 =  det(8,13; 21,34) = -1 = (-1) j+7  k  = k 

This illustrates that determinant of any four consecutive terms of Fibonacci sequence is either +k  or  -k. 

The following example illustrates that the result applied to any general Fibonacci sequence is true.   

Example 3:  If 3,7,10,17,27 ... is a general Fibonacci sequence then 

a=3, b=7 and k = a 2 + ab - b2  = - 19  

D1  is determinant of first 4 terms and j =1 . 

Let    D1 =   de(3,7; 10,17) =  -19 = (-1)j+1 k  = k    where j = 1 

D2 is determinant of 4 terms starting from 2 nd term and j =2 . 

D2 =  det(7,10; 17,27)  = 19 =  - k = (-1) j+1  k where j = 2 

Thus D1 = k =  - 19  and D2 = - k = 19 

 Example 4:  Let 3, 4, 7, 11, 18, ... be terms in Fibonacci sequence.  Then with a = 3 and b = 4,   

k = a 2 + ab - b2   = 5 

D1 = det( 3, 4;   7, 11) =   k = (-1)j+1 k     where j = 1 

D2 = det( 4, 7; 11, 18) =  -k = (-1)j+1 k     where j = 2 

IV. GOLDEN RATIO 

Theorem 2: Each term of Fibonacci sequence can be expressed as a linear combination of first two terms and 

each term can be represented by a point in 2 dimensional Euclidean plane. 

Proof: Let f1,  f2, f3,  ...  fn, fn+1,fn+2, fn+3, fn+4, ... be terms of Fibonacci sequence.  

Let  us denote  a f1 + b f2    by ordered pair (a,b) where a and b are non negative integers.  

f1  =  1.f1  + 0.f2 = (1,0) = (a1,b1) 

f2  =  0.f1  + 1.f2 = (0,1) = (a2,b2) 

f3  =  f1  +  f2   = 1.f1  +  1.f2  = (1,1) = (a3, b3) 

f4  =  f2 +  f3  = (0,1) +(1,1) = (1,2) = (a4, b4) 

     =  f1  +  2 f2    

f5  =  f3 +  f4  = (1,1)+(1,2) = (2,3) =  (a5, b5) 

       = 2 f1  +  3 f2  
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f6  =  f4 +  f5 = (1,2) +(2,3) = (3,5) = (a6, b6) 

     = 3 f1  +  5 f2   

f7  =  f5 +  f6 = (2,3)+(3,5) = (5,8) = (a7, b7)  

      = 5 f1  +  8 f2  

f8  =  f6 +  f7   = (3,5) + (5,8) = (8,13)= (a8, b8) 

and so on. 

Now, consider a sequences (an ) and (bn ) , n=1,2,...    

Range of sequence ( an )  = {1, 0, 1, 1, 2, 3, 5, 8,....} 

Range of sequence ( bn )  = {0, 1, 1, 2, 3, 5, 8,....}      

Sequence (an )  is  increasing sequence for n ≥ 2.  

Sequence ( bn )  is increasing sequence. 

Here ak = bk-1                for   k = 2, 3, 4,... 

and  bk = a k-1  + b k-1    for  k = 2, 3,.... 

Suppose fk = ak f1 + bk f2 =  (ak, bk)   

where   bk = a k-1 + bk-1  for k = 3, 4, 5,... 

Define L  = { L k : L k   is a straight line joining origin to the point (a k , b k ), k ≥ 3 } 

Define S = {S k :  S k is slope of the line Lk defined in L, k  ≥ 3 } 

Denote by L k  a straight line joining (0,0) to the point  (a k , b k ) .  

We shall represent this line  Lk   by  [a k , b k ] and its slope Sk   by  bk / ak   . 

Note that L  = { L3=[1,1], L4=[1,2], L5=[2,3],L6=[3,5],.., Lk=[ak, bk], .. . }  and 

 S = { S3=1, S4=2, S5=3/2, S6=5/3, S7=8/5, S8=13/8, ... ,  Sk= bk / ak   , ...      } 

Sequence S k is a decreasing sequence for k ≥ 4 and is bounded below by 1 and bounded above by 2. Hence it is 

convergent and converges to g. 

We know that a1 = 0 and b1 =1  in a Fibonacci sequence and  

           ak = bk-1                for  k = 2, 3, 4,... 

and      bk = a k-1  + b k-1    for  k=2, 3,.... 

 fk  =  (ak, bk)     

Now for k ≥ 3, consider  b k  / a k   =  (a k-1  + b k-1  ) / bk-1   

 =  ( a k-1   /  bk-1 )  + 1                   

 (1) 

For large k , we take  x = b k  / a k 

Equation (1) then becomes,  

x = 1/x  + 1.  
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Solving for x , we get x = (1 ± √5)/2  

Taking  positive value , x = 1.6180339874989 approximately. 

This x is called golden ratio 'g' for Fibonacci sequence. 

This means the set of lines defined in the set S converges to a line with slope equal to golden ratio. 

Note that golden ratio is irrational number. 

Corollory1: Sequence of  rational numbers constructed from terms of Fibonacci sequence converges to golden 

ratio.  

Proof : Construct sequences {an} and {bn} as defined in Theorem 2. 

Theorem 3:  Given f1 and f2 , the n th term of  Fibonacci sequence is given by  

 fn = (an,  bn)    where      an =  b n-1   ,  bn = a n-1 + bn-1    for n = 3,4,5,... 

Proof: By induction on n. 

Let fk be the statement that fk = ak f1 + bk f2  then  

fk+1 = a k+1 f1 + b k+1 f2      where a k  =  bk-1  and   bk  = a k-1 + bk-1   

 Let f1 and f2 be known  i.e. f1 = (1, 0) and f2 = (0, 1).   

Then,   

f3  =  f1  +  f2   = (1, 1) = (a1, b1)   where a1 = 1 and b1 = 1 

Result is true for k=3                                                               

 (1) 

f4  =  f2 +  f3   

      =  f2  + (f1  + f2)  

     = f1  +  2 f2    

     = (1,2) = (a2, b2)  

Here a2 = b1  and b2 = 1 + 1 = a1 + b1 

Result is true for k = 4 

f5  =  f3 +  f4   

     = ( f1  +  f2 ) + (f1  +  2 f2 ) 

     = 2 f1  +  3 f2   

     = (2,3) = (a3, b3) 

Result is true for k = 5 

Assume that fk is true for n < k. 

This means if  f1, f2, f3, ... , fk-1   are true then  we shall show that fk is true. 

Consider  

 fk = f k-2  + f k-1 
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                  = (a k-2 , b k-2 ) +( a k-1 , b k-1 ) 

                  = (b k-3 , a k-3 +  b k-3)  + ( b k-2 , a k-2 + b k-2 ) 

     = (b k-3 + b k-2 , a k-3 +  b k-3  + a k-2 + b k-2 ) 

     = (b k-3 + b k-2 , (a k-2 +  a k-3 ) + ( b k-3  + b k-2 ) ) 

                   = (b k-1 , a k-1 + b k-1 )   = (a k , b k ) 

                    = a k f1  +  b k  f2   

f k is true                 

Hence  

if   fk   is true for k < n then  fk   is true for k = n        (2)                                                

Hence by mathematical induction proof follows from  (1) and (2). 

Theorem 4:  Square root of difference of product of two consecutive terms of Fibonacci sequence is   a term of 

Fibonacci sequence and it forms new Fibonacci sequence starting from second term . 

Proof:  Let f1 , f2 , … fn, fn+1 , …be Fibonacci sequence of numbers. Assuming that the first two terms i.e. f1 , f2  

are known then other terms can be found by the recurrence relation  

f n+2 = f n  +  f n+1   , n = 1, 2, 3, … 

Define      g n = f n  *  f n+1    n=1, 2, 3, … 

Define  h n =  g n+1  -  g n    n=1, 2, 3, … 

Simplifying  h n ,    

h n  =  g n+1  -  g n 

       = (f n+1  *  f n+2) – (f n  *  f n+1 ) 

       = (f n+1  *  (f n  +  f n+1 ) ) – (f n  *  f n+1 ) 

       = f n+1 *  f n  +  f n+1 * f n+1 - f n  *  f n+1   = f n+1 * f n+1 

      = ( f n+1 ) 
2 

 

Thus   a sequence  ( Fn )    defined by   Fn  = √ℎ𝑛    ,  n = 1, 2, …    is Fibonacci sequence whose first term is  

given by   f n+1    

This proves the theorem. 

Note that Fibonacci sequence so obtained  i.e. Fn  = √ℎ𝑛   is a subsequence of Fibonacci sequence fn. 

Example 4: Consider a Fibonacci sequence {fn} = {0, 1, 1, 2, 3, 5, 8, 13, 21, ... } 

Define gn = fn * f n+1     n = 1,2,3,4, ... 

Therefore {gn} = {0.1,  1.1,  1.2,  2.3,  3.5,  5.8, ....} = {0, 1, 2, 6, 15, 40, ... } 

Define  h n  =  g n+1  -  g n   n=1,2,3,4, ... 

{ hn } = { 1-0, 2-1, 6-2, 15-6, 40-15, ... } = {1,1,4,9,25, ...} 

{√ hn } = { 1,1,2,3,5, ... } is a Fibonacci sequence f2, f3, ... 
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and   sequence ( √ hn )  is a subsequence of ( fn) 

V. CONCLUSION 

           Interesting properties may be found based on general definition of Fibonacci sequence and its application 

in different domains of science.  
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