Generation of Infinite Set of Commutative Matrix on a Non-Singular Matrix $(\mathbf{N} \times \mathrm{N})$

Biswanath Rath
Department of physics, North Orissa University, Takatpur, Baripada-757003, Odisha, INDIA

Following the recent work of B. Rath Int. Jour. of Math. Trends and Tech 59(3),171(2018) we show that for a given non-singular square matrix (A), it is possible to generate an infinite class of commutative matrix $B_{i} i . e .\left[A, B_{i}\right]=0(i=1,2,3 \ldots \ldots \infty)$
Mathematical Classification (2010):47A10;47B20
Key words - fractional matrix, spectral analysis.

I. INTRODUCTION

From the review of literature on matrix available in standard books, one can hardly find a commutative nature[1]. In fact it is true corresponding to different dimensions i.e. $A(N \times M), B(N \times M)$.

$$
\begin{equation*}
A B \neq B A \tag{1}
\end{equation*}
$$

However following the work of Rath[2] fractional matrix, it is possible to generate as many as commutative matrix corresponding to a non-singular matrix square matrix $A(N \times N)$. The procedure is as follows. In sec-II we suggest the method along with necessary proof. Sec-III deals with a suitable matrix $A(N \times N)(N=2,3)$. And sec-IV deals with the conclusion.

II. INFINITE GENERATION OF COMMUTATIVE MATRIX

Let A be a matrix and B is another matrix satisfying the relation

$$
\begin{equation*}
B=L+A \tag{2}
\end{equation*}
$$

then A commutes with B i.e.

$$
\begin{equation*}
[A, B]=0 \tag{3}
\end{equation*}
$$

Further we can have

$$
\begin{equation*}
\left[B, B^{-1}\right]=0 \tag{4}
\end{equation*}
$$

then it is easy to find the commutative relation between A and B^{-1} more explicitly

$$
\begin{equation*}
\left[A, B^{-1}\right]=0 \tag{5}
\end{equation*}
$$

Mathematically this can be written as

$$
\begin{equation*}
A B^{-1}=B^{-1} A \rightarrow A\left(\frac{1}{L+A}\right)=\left(\frac{1}{L+A}\right) A=F \tag{6}
\end{equation*}
$$

This fractional matrix was suggested recently by Rath [2] in calculating eigenvalues.

1. An alternate proof is an follows i.e. Let us consider the matrix relation

$$
\begin{equation*}
A B^{-1} A^{-1}=B^{-1} \tag{7}
\end{equation*}
$$

Multiplying both sides with A we get

$$
\begin{equation*}
A B^{-1} A^{-1} A=B^{-1} A=A B^{-1} \tag{8}
\end{equation*}
$$

2. Second alternate proof is an follows i.e. consider the eigenvalue relation as

$$
\begin{equation*}
A B^{-1}|\Psi>=\lambda| \Psi> \tag{9}
\end{equation*}
$$

Now multiply A^{-1} from left then one will have

$$
\begin{equation*}
B^{-1} \mid \Psi>=\lambda\left(A^{-1} \mid \Psi>\right)=\lambda B^{-1} A\left(A^{-1} \mid \Psi>\right) \tag{10}
\end{equation*}
$$

In other words we have

$$
\begin{equation*}
B^{-1} A=A B^{-1} \rightarrow \lambda \tag{11}
\end{equation*}
$$

In this approach one has to vary $L \neq 0$ to any arbitrary values. Below we consider a simple (2x2) matrix and generate as many as commutative matrices as follows.

IIIA. INFINITE GENERATION OF COMMUTATIVE MATRIX: CASE STUDY ($\mathbf{2} \times \mathbf{2}$)

Consider a simple (2x2) matrix A as

$$
A=\left[\begin{array}{ll}
2 & 1 \tag{12}\\
2 & 3
\end{array}\right]
$$

Now consider the matrix $B_{L}=L+A$ as

$$
B_{L}=\left[\begin{array}{cc}
2+L & 1 \tag{13}\\
2 & 3+L
\end{array}\right]
$$

Let us consider different values of L as follows $\mathbf{L}=\mathbf{1}$ in this case we get the known matrix[1] i.e.

$$
B_{1}=\left[\begin{array}{ll}
3 & 1 \tag{14}\\
2 & 4
\end{array}\right]
$$

and

$$
B_{1}^{-1}=\left[\begin{array}{cc}
0.4 & -0.1 \tag{15}\\
-0.2 & 0.3
\end{array}\right]
$$

Then it easy to show that

$$
A B_{1}^{-1}=B^{-1} A=\left[\begin{array}{ll}
0.6 & 0.1 \tag{16}\\
0.2 & 0.7
\end{array}\right]
$$

$\mathbf{L = 1 0}$ in this case we get the known matrix [1] i.e.

$$
B_{1}=\left[\begin{array}{cc}
12 & 1 \tag{17}\\
2 & 13
\end{array}\right]
$$

and

$$
B_{10}^{-1}=\left[\begin{array}{cc}
\frac{13}{154} & \frac{-1}{154} \tag{18}\\
\frac{-1}{77} & \frac{6}{77}
\end{array}\right]
$$

then it easy to show that

$$
A B_{10}^{-1}=B_{10}^{-1} A=\left[\begin{array}{ll}
\frac{12}{77} & \frac{5}{77} \tag{19}\\
\frac{10}{77} & \frac{17}{77}
\end{array}\right]
$$

$\mathbf{L}=\mathbf{1 0 0}$ in this case we get the known matrix [1] i.e.

$$
B_{100}=\left[\begin{array}{cc}
102 & 1 \tag{20}\\
2 & 103
\end{array}\right]
$$

and

$$
B_{100}^{-1}=\left[\begin{array}{cc}
\frac{103}{10504} & \frac{-1}{10504} \tag{21}\\
\frac{-1}{5252} & \frac{52}{5272}
\end{array}\right]
$$

Then it easy to show that

$$
A B_{100}^{-1}=B_{100}^{-1} A=\left[\begin{array}{cc}
\frac{51}{2626} & \frac{25}{2626} \tag{22}\\
\frac{25}{1313} & \frac{38}{1313}
\end{array}\right]
$$

IIIB. COMMUTATIVE MATRICES: CASE STUDY (3×3)

Here we just consider a simple example of (3×3) matrix and generate suitable commutative counter part as follows. The explicit expression for A is

$$
A=\left[\begin{array}{ccc}
-2 & 1 & 2 \tag{23}\\
3 & -2 & 1 \\
-1 & 3 & 3
\end{array}\right]
$$

Considering the value of $\mathbf{L}=\mathbf{1}$ we get B_{1} as

$$
\begin{align*}
& B_{1}=\left[\begin{array}{ccc}
-1 & 1 & 2 \\
3 & -1 & 1 \\
-1 & 3 & 4
\end{array}\right] \tag{24}\\
& B_{1}^{-1}=\left[\begin{array}{ccc}
\frac{-7}{10} & \frac{1}{5} & \frac{3}{10} \\
\frac{-13}{10} & \frac{-1}{5} & \frac{7}{10} \\
\frac{4}{5} & \frac{1}{5} & \frac{-1}{5}
\end{array}\right] \tag{25}\\
& A B_{1}^{-1}=B_{1}^{-1} A=\left[\begin{array}{ccc}
\frac{17}{10} & \frac{-1}{5} & \frac{-3}{10} \\
\frac{13}{10} & \frac{6}{5} & \frac{-7}{10} \\
\frac{-4}{5} & \frac{-1}{5} & \frac{6}{5}
\end{array}\right] \tag{26}
\end{align*}
$$

IV. CONCLUSION

In this paper we have suggested a method to generate infinite no of commutative matrices to a given square matrix $(N \times N)(N=2,3)$. One can consider any value of N. In other words this work will fill gap that exist in the literatures on matrix analysis. I hope very soon research in this area will motivate mathematical as well as other branches of physical science.

REFERENCE

[1] E. Kreyszig: Advanced Engineering mathematics, Wiley india Pvt. Ltd (New Delhi, India) 2011.
[2] B. Rath: Int. Nat. Jour, Math. Trend. Tech. 59(3), 171, (2018).

