A New Property Related to the Roots of an Equation

Tuhin Bose
Kalyani University Experimental High School
Class-XI,Rani Rashmoni Ghat Road,Bagmore,West Bengal, India

Abstract

If all roots of the n degree equation $a_{0} x^{n}+a_{1} x^{(n-1)}+a_{2} x^{(n-2)}+\cdots+a_{n}=0$ [Where $n \in \mathbb{N}$ and $a_{0}, a_{1}, \ldots, a_{n}$ are real numbers and $a_{0}>0$] are positive real numbers then,
$\frac{a_{i} a_{(n-i)}}{a_{n}} \geq\left[\binom{n}{i}\right]^{2} a_{0} \quad[$ For all $i \in \mathbb{N}$ and $1 \leq i \leq n]$
Keywords: Cauchy-Schwarz inequality,Roots,Equation

I. INTRODUCTION

Apart from some well known properties of equations, in this article I am proposing a new condition related to the roots of an n degree equation.

II. PROPOSAL

If all roots of the n degree equation $a_{0} x^{n}+a_{1} x^{(n-1)}+a_{2} x^{(n-2)}+\cdots+a_{n}=0$ [Where $n \in \mathbb{N}$ and $a_{0}, a_{1}, \ldots, a_{n}$ are real numbers and $\left.a_{0}>0\right]$ are positive real numbers then,
$\frac{a_{i} a_{(n-i)}}{a_{n}} \geq\left[\binom{n}{i}\right]^{2} a_{0} \quad[$ For all $i \in \mathbb{N}$ and $1 \leq i \leq n]$

III. EXAMPLE

When $n=2$
The given equation is $a_{0} x^{2}+a_{1} x+a_{2}=0\left[a_{0}, a_{1}, a_{2}\right.$ are real numbers and $\left.a_{0}>0\right]$
Let, roots of the quadratic equation are α, β

$$
\therefore \alpha \beta=\frac{a_{2}}{a_{0}}
$$

If α, β are positive real numbers then,

$$
\frac{a_{2}}{a_{0}}>0
$$

So, $a_{2}>0 \quad\left[\right.$ As $\left.a_{0}>0\right]$
So according to my proposal if $i=1$ we get,

$$
\begin{gathered}
\Rightarrow \frac{a_{1} a_{(2-1)}}{a_{2}} \geq\left[\binom{2}{1}\right]^{2} a_{0} \\
\Rightarrow \\
\Rightarrow \frac{a_{1}^{2}}{a_{2}} \geq 4 a_{0} \\
\Rightarrow a_{1}{ }^{2} \geq 4 a_{0} a_{2} \quad\left[a_{2}>0\right]
\end{gathered}
$$

When $i=2$ then according to my proposal we get,

$$
\left.\frac{a_{2} a_{(2-2)}}{a_{2}} \geq\left[\begin{array}{l}
2 \\
2
\end{array}\right)\right]^{2} a_{0}
$$

Which is also true as equality occurs.

III. PROOF

Let, roots of the n degree equation $a_{0} x^{n}+a_{1} x^{(n-1)}+a_{2} x^{(n-2)}+\cdots+a_{n}=0\left[\right.$ Where $n \in \mathbb{N}$ and $a_{0}, a_{1}, \ldots, a_{n}$ are real numbers and $a_{0}>0$] are $b_{1}, b_{2}, \ldots, b_{n}$

Let, p denote the sum of products of $b_{1}, b_{2}, \ldots, b_{n}$ taken i at a time.
Let, q denote the sum of products of $\frac{1}{b_{1}}, \frac{1}{b_{2}}, \ldots, \frac{1}{b_{n}}$ taken i at a time.
Let, r denote the sum of products of $b_{1}, b_{2}, \ldots, b_{n}$ taken $(n-i)$ at a time.
Clearly, $p=(-1)^{i} \frac{a_{i}}{a_{0}}$
And $\quad r=(-1)^{(n-i)}\left[\frac{a_{(n-i)}}{a_{0}}\right]$
And $\quad q=\frac{r}{b_{1} b_{2} \ldots b_{n}}=\frac{(-1)^{(n-i)}\left[\frac{a_{n-i)}}{a_{0}}\right]}{(-1)^{n} \frac{a_{n}}{a_{0}}}$

If all $b_{1}, b_{2}, \ldots, b_{n}$ are positive real numbers then,
$p \times q \geq\left[\sum_{k=1}^{\binom{n}{i}} 1\right]^{2} \quad$ [By using Cauchy-Schwarz inequality]

$$
\begin{aligned}
& \left.\Rightarrow(-1)^{i} \frac{a_{i}}{a_{0}} \times \frac{(-1)^{(n-i)}\left[\frac{a(n-i)}{a_{0}}\right]}{(-1)^{n} \frac{a_{n}}{a_{0}}} \geq\left[\begin{array}{c}
n \\
i
\end{array}\right)\right]^{2} \\
& \Rightarrow \frac{a_{i} a_{(n-i)}}{a_{0} a_{n}} \geq\left[\binom{n}{i}\right]^{2}
\end{aligned}
$$

$\Rightarrow \frac{a_{i} a_{(n-i)}}{a_{n}} \geq\left[\binom{n}{i}\right]^{2} a_{0} \quad\left[a_{0}>0\right]$

V. CONCLUSION

Thus apart from some well known properties of equations in this article I have proposed a new property related to the roots of an n degree equation.

VI. ACKNOWLEDGEMENTS

I would like to thank my teacher Dr. Khondokar Azad Rahman for encouraging me.

REFERENCES

[1] An Excursion In Mathematics
[2] Internet

