Ideals and Separation Axioms in LSTBCH-Algebras

V. Thiruveni* and M. Jansi**

* Saiva Bhanu Kshatriya College, Aruppukottai-626101, Tamilnadu India. ** M.S.University Constituent Model College, Magalapuram, Vilathikulam (tk)-628904 Tamilnadu India.

Abstract

There has been some recent interest in applying topological notions to non-mainstream algebras [3, 4]. In our paper [12], we define the notion of topological BCH-algebras, give some examples and prove some important theorems. In this paper we discuss some algebraic properties such as ideals and topological properties such as T_0 , $T_1 \& T_2 - axioms$ in LS topological BCH-algebra.

Keywords: Positive implicative TBCH-algebra, LST₀ BCH, LST₁BCH, LST₂BCH-algebras.

I. INTRODUCTION

Y.Imai and K.Iseki introduced two classes of abstract algebras: BCK-algebras and BCI-algebras [8, 9, 10, 11]. In [5,6] Q. P. Hu and X. Li introduced a wider class of abstract algebras: BCH-algebras. In [2], the authors studied topological BL-algebras and proved some theorems that determine the relationship between them. There has been some recent interest in applying topological notions to non-mainstream algebras [3,4]. In [1], Ahn and Kwon addresses the issue of attaching topologies to BCC-algebras in a natural manner.

In our paper [12], we define the notion of topological BCH-algebras, give some examples and prove some important theorems. Also we introduce the notion of topological BCH-algebras in the set of all left maps. In this paper we discuss ideals and separation axioms in LS-topological BCH-algebras.

II. PRELIMINARIES

In this section, we recall some basic definitions and results that are required for our work.

Definition 2.1:[6] A BCH-algebra which is not a BCI-algebra, then it is called a proper BCH-algebra.

Definition 2.2:[10] Let (X, *) be a BCH-algebra and a non empty subset I of X is called an ideal of X, if it satisfies the following conditions:

2. $(x * y) \in I \& y \in I \implies x \in I$.

Definition 2.3:[12] Let (X, *) be a BCH-algebra and ι a topology on X. Then $X = (X, *, \tau)$ is called a topological BCH-algebra, if the operation '*' is continuous, or equivalently, for any x, y $\in X$ and for any open set W of x*y there exist two open sets U and V respectively such that U*V is a subset of W.

Definition 2.4:[12] Let X be a TBCH-algebra. If X satisfies the condition,

(x*y)*z = (x*y)*(y*z), for all x, y, z in X Then X is called positive implicative TBCH-algebra.

Definition 2.5: [12] Let $(X, *, \tau)$ be a TBCH-algebra, and a $\in X$. Define a left map $L_a : X \to X$ by, $L_a(x) = a*x$, for all $x \in X$.

Definition 2.6: [12] Let $(X, *, \tau)$ be a TBCH-algebra. The set of all left maps on X is defined as, L(X).

Definition 2.7:[12] Let X be a positive implicative BCH-algebra and A be any nonempty subset of $\mathbb{L}(X)$, then $L_A = \{L_a \in \mathbb{L}(X), a \in A\}$

Definition 2.8: [12] Let $(X, *, \tau)$ be a positive implicative TBCH-algebra and the collection of subsets of $\mathbb{L}(X)$, $\tau' = \{\Phi(G) \subseteq \mathbb{L}(X) \setminus G \in \tau\}$ is called a LS-topology on the set $\mathbb{L}(X)$. Where $\Phi(G) = \{L_x \setminus x \in G\}$ and the collection $(\mathbb{L}(X), \circledast, \tau')$ is called the LS- topological BCH-algebra or LSTBCH-algebra.

III. IDEALS AND SEPARATION AXIOMS IN LSTBCH-ALGEBRAS

In this section we discuss about the ideals and separation axioms on a TBCH-algebra. Also we define ideals and separation axioms in LSTBCH-algebra. Finally, we discuss some properties on LSTBCH-algebra. **Definition 3.1:** Let X be a positive implicative TBCH-algebra. A nonempty subset I of $\mathbb{L}(X)$ is called an ideal in $\mathbb{L}(X)$ if it satisfies the following condition :

- 1. L₀ ε I
- 2. $L_a \circledast L_b \in I \& L_b \in I \Longrightarrow L_a \in I.$

Example 3.2: Consider a positive implicative TBCH-algebra $(X = \{0,1,2\}, *, \tau)$ with the following cayley table,

*	0	1	2
0	0	0	0
1	1	0	0
2	2	2	0

And the topology $\tau = \{\phi, X, \{0,1\}, \{2\}\}$. The ideals of $\mathbb{L}(X)$ are $\mathbb{L}(X), \{L_0\} \& \{L_0, L_1\}$.

Theorem 3.3: Let X be a positive implicative BCH-algebra, A subset $I \subseteq X$ is an ideal in X if and only if L_I is an ideal in $\mathbb{L}(X)$.

Proof: Let I be an ideal in X. Clearly, $0 \in X \implies L_0 \in L_I$. For $x, y \in X$, Let x * y and $y \in I$. Since I is an ideal in X, and $x * y, y \in I \implies x \in I$. Then $L_{x*y}, L_y \in L_I \implies L_x \in L_I$. That is, $L_x \circledast L_y, L_y \in L_I \implies L_x \in L_I \implies L_I$ is an ideal in $\mathbb{L}(X)$. Conversely, assume that L_I is an ideal in $\mathbb{L}(X)$. Then $L_0 \in \mathbb{L}(X)$, showing that $0 \in X$. Assume that If $x * y \in I$ and $y \in I$. Then $L_{x*y} \in L_I$ and $L_y \in L_I \implies L_x \circledast L_y \in L_I \& L_y \in L_I$. Since L_I is an ideal in $\mathbb{L}(X)$, $L_x \in L_I \implies x \in I \implies I$ is an ideal in X.

Definition 3.4: Let $(X, *, \tau)$ be a positive implicative TBCH-algebra and A be any subset of X. Then $x \in A$ is called an interior point of A if there is an open set $U \in \tau$ such that, $U \subseteq A$.

Example 3.5: Consider the positive implicative TBCH-algebra ($X = \{0, 1, 2\}, *, \tau$) with the following cayley table,

*	0	1	2
0	0	0	0
1	1	0	0
2	2	1	0

And the topology $\tau = \{\phi, X\}$.

If $A = \{0,1\}$, no point of A is an interior point. If $A = \{0,1,2\}$, every point of A is an interior point of A.

Theorem 3.6: Let $(X, *, \tau)$ be a positive implicative TBCH-algebra and A be any ideal of X. If 0 is an interior point of A then L_A is open in LSTBCH- algebra.

Proof:

For every $x \in A$, $L_x \otimes L_x = L_0$. Since 0 is an interior point of A then there exist an open set $U \in \tau$ such that $U \subseteq A$.

Then $\Phi(U) \subseteq \Phi(A)$.

Since $\mathbb{L}(X)$ is a LSTBCH-algebra, there exist a neighbourhood $\Phi(V)$ of L_x such that $\Phi(V * V) \subseteq \Phi(U) \subseteq L_A$. Now we claim that $V \subseteq A$.

If not, there is an element $a \in V \& a \notin A \Rightarrow y * a \in V * V \subseteq A \Rightarrow a \in A$, which is contradicts to our assumption. Therefore, $V \subseteq A$.

Definition 3.7: Let $\mathbb{L}(X)$ be a LSTBCH-algebra. Then it is called a $LST_0 BCH$ -algebra, if for every $x, y \in X \& x \neq y$, there exist at least one open neighbourhood U that contains one point of the pair (either x or y) excluding the point.

Definition 3.8: Let $\mathbb{L}(X)$ be a LSTBCH-algebra. Then it is called a LST_1BCH -algebra, if for every $x, y \in X \& x \neq y$, there exist open neighbourhoods $U_1 \& U_2$ such that U_1 contains x but not y and U_2 contains y but not x.

Definition 3.9: Let $\mathbb{L}(X)$ be a LSTBCH-algebra. Then it is called a LST_2BCH -algebra, if for every $x, y \in X \& x \neq y$, both have disjoint open neighbourhoods U & V such that $x \in U \& y \in V$.

Example 3.10: Consider the positive implicative LSTBCH-algebra ($X = \{0, 1, 2\}, *, \tau$) with the following cayley table,

*	0	1	2
0	0	0	0
1	1	0	0
2	2	2	0

And the topology $\tau = \{\phi, X, \{0,1\}, \{2\}, \{2,0\}, \{0\}\}, \& \tau_1 = \{\phi, \mathbb{L}(X), \{L_0, L_1\}, \{L_2\}, \{L_2, L_0\}, \{L_0\}\}$ and $\tau_2 = \{\phi, \mathbb{L}(X), \{L_0, L_1\}, \{L_2\}, \{L_2, L_0\}, \{L_0\}, \{L_1\}, \{L_1, L_2\}\}.$ Then $(\mathbb{L}(X), \circledast, \tau_1)$ is called LST_0BCH -algebra and $(\mathbb{L}(X), \circledast, \tau_2)$ is called a LST_1BCH -algebra and LST_2BCH -

Then $(\mathbb{L}(X), \circledast, \tau_1)$ is called $LST_0 BCH$ -algebra and $(\mathbb{L}(X), \circledast, \tau_2)$ is called a $LST_1 BCH$ -algebra and $LST_2 BCH$ -algebra.

Theorem 3.11: Let X be a positive implicative TBCH-algebra. If $\{0\}$ is closed in X if and only if $(\mathbb{L}(X), \circledast, \tau')$ is a *LST*₂*BCH*-algebra.

Proof: Let $x, y \in X \& x \neq y$. Then we have $L_x \circledast L_y \neq L_0$ or $L_y \circledast L_x \neq L_0$. Assume that, $L_x \circledast L_y \neq L_0$, that is $L_{x*y} \neq L_0$. Then there exist some neighbourhood $\Phi(U) \& \Phi(V)$ of $L_x \& L_y$ respectively such that, $\Phi(U * V) \subseteq \mathbb{L}(X) \setminus \Phi(\{0\})$. Clearly, $\Phi(U) \cap \Phi(V) = \phi$. Hence, $\mathbb{L}(X)$ is LST_2BCH . Conversely, we claim that, $X \setminus \{0\}$ is open in X. Let $x \in X \setminus \{0\}$,

Then there exist some neighbourhood $\Phi(U) \& \Phi(V)$ of $L_x \& L_0$ respectively such that, $\Phi(U) \cap \Phi(V) = \phi$. $\Rightarrow 0 \notin U \Rightarrow U \subseteq X \setminus \{0\} \Rightarrow X \setminus \{0\}$ is open. Thus $\{0\}$ is closed in X.

Theorem 3.12: Let X be a proper positive implicative TBCH-algebra, then the following are equivalent

- 1. LST₀ BCH –algebra
- 2. LST₁BCH algebra
- 3. LST₂BCH algebra.

Proof: From theorem 3.11, $LST_0BCH \Leftrightarrow LST_1BCH$. We need only show (1) \Rightarrow (2). Suppose that $L_x \neq L_y, L_{x*y} = L_0$ (or) $L_{y*x} = L_0$.

We may assume that $L_{x*y} \neq L_0$. If there exist an open set $\Phi(U)$ such that $L_{x*y} \in \Phi(U) \& L_0 \notin \Phi(U)$, then we can find open neighbourhoods $\Phi(V) \text{ of } L_x \& \Phi(W) \text{ of } L_y$ such that $\Phi(V * W) \subseteq \Phi(U)$. Then $L_x \notin \Phi(W) \& L_y \notin \Phi(V)$.

On the other hand, if there exist an open set $\Phi(U)$ such that $L_{x*y} \notin \Phi(U) \& L_0 \in \Phi(U)$, then we can find open neighbourhoods $\Phi(V)$ of $L_x \& \Phi(W)$ of L_y such that $\Phi(V * W) \subseteq \Phi(U)$. Then $L_x \notin \Phi(W) \& L_y \notin \Phi(V)$.

REFERENCES

- [1] Ahn S.S and Kwon S.S, Topological properties in BCC-algebras, Communication Korean Math. Society, 23(2008),169-178.
- [2] Borzooei R.A, Rezaei G.R and Kouhestani N, On (Semi)Topological BL-algerbas, Iranian J. of Math., Sci. and Inf., Vol. 6(2011),56-77.
- [3] Choe T.H and Greechie R.J, Profinite, Orthomodular lattices, Proc. American Math. Society, 118(1993), 1053-1060.
- [4] Choe T.H, Greechie R.J and Chae Y, Representations of locally compact orthomodular lattices, Topology Appl. 56(1994) 165-173.
- [5] Hu Q.P and Li X, On Proper BCH-algebras, Math. Japan, 30(1985), 659-669.
- [6] Hu Q.P and Li X, On BCH-algebras, Math. Seminar Notes 11(1983), 313-320.
- [7] Imai .Y and Iseki. K: On axiom systems of propositional calculi XIV, Proc. Japan Acad. Ser A, Math. Sci., 42(1996), 19-22.
- [8] Iseki. K: An algebra related with a propositional calculus, Proc. Japan Acad. Ser A, Math. Sci., 42(1996), 26-29.
- [9] Iseki .K and Tanaka .S: An introduction to theory of BCK-algebras, Math. Japo. 23(1978), 26-29.
- [10] Iseki .K: On BCI-algebras, Math. Seminar notes. 11(1980), 313-320.
- [11] K. Iseki: On BCI-algebras, Math. Seminar notes. 8(1980), 125-130.
- [12] Jansi .M and Thiruveni .V: Topological structrues on BCH-algebras, IJIRSET vol 6, 2017 22592-22600.
- [13] Karamat Hussain Dar and Muhammad Akram: On Endomorphisms of BCH-algebras, Annals OF University of Craiova Math. Comp. Sci. Ser. Vol. 33 (2006) 234-237.

IV. CONCLUSSION

In this paper, we worked on some algebric properties such as ideals and topological properties such as $T_0, T_1 \& T_2 - axioms$ in LS topological BCH-algebra. If our BCH- algebra is associative, the same properties are true in RS- topological BCH-algebra, that is set of all right mapping in TBCH-algebras with binary operation (3). Also we extend this paper by using other separation axioms like us T_2, T_4 & normal spaces.