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Abstract   

            We introduce and study new a type of hyperconnectedness namely, minimal hyperconnectedness(m- 

hyperconnectednes). Several characterizations of minimal hyperconnected spaces and conditions under which 

m - hyperconnectedness is preserved are provided.  
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I.   INTRODUCTION AND PRELIMINARIES 

 

        Popa and Noiri[1] introduce the notion of minimal space . Noiri [2, 3] studied hyperconnected spaces. Ekici 

[4] introduced and studied hyperconnectedness in generalized topological spaces which is also studied in [5]. 

The purpose of the present paper 

is to introduce and study the notion of m - hyperconnectedness in minimal spaces.         

     Characterizations and properties of m- hyperconnectedness are investigated. Some preservation theorems are 

given. 

 

Definition 1.1.   [1] Let X be a nonempty set. A subset )( XPM  is called minimal structure if MX , . 

The pair (X, M) is called minimal space (m- space). The members of M are called m-open sets and the 

complement of m - open set is m - closed set. The collection of all m- closed sets will be denoted by
c

M . 

 

Definition 1.2.   Let (X,) be a topological space and A be a subset of X. The closure and the interior of A will 

be denoted by cl(A) and int(A). A set A is called  - open[6] (resp.   preopen[7], semi- open[8], b- open[9],  -

open[10]) if A  int(cl(int(A)) (resp. A  int(cl(A)), A   cl(int(A)), A  int(cl(A))  cl(int(A)), A   

cl(int(cl(A))). The complement of the each set are called it respective closed set. 

The family of all  - open (resp. pre- open, semi-open, b- open,  -open) sets are denoted by )( X , PO(X), 

SO(X), BO(X) and  O(X) respectively, P(X) is the power set of X, for a nonempty set X.                       

Remark 1.3.  The collections ,  O(X), PO(X), SO(X), BO(X) and  O(X) are minimal structure.                

 

Definition 1.4 [1].   Let (X, M ) be an m- space and A is a subset of X, then the m-interior 

 and m-closure of A are defined respectively as follows, 

 (1)  )(int A
m

= }:{ AUMU  . 

 (2)  )( Acl
m

 = }:{ FAMF
c

  . 

 

Theorem 1.5 [11]   Let (X, M ) be a m-space and XA  , then 

(1) AA
m

)(int . 

(2) AA
m

)(int  if A M . 

(3) )(int)(int BABA
mm

 . 

(4) )( AclA
m

 . 

(5) If  )()( BclAclBA
mm

  

(6) )( Acl
m

 =A if A is  m- closed. 

(7) x  )( Acl
m

if and only if every m- open set Ux containing x,  .AU
x
   

(8) 
cmcm

AAcl ))((int)(   and 
cmcm

AclA ))(()(int  . 
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    Now, we give the following definition. 

 Definitition 1.6.   A subset A of a - space (X, M ) is said to be 

(1) 
 

open
m
  if A

m
int (

m
cl  (

m
int (A))). 

(2) openpre
m
  (briefly openp

m
 )  if A  

m
int  (

m
cl  (A)). 

(3) opensemi
m


 
(briefly opens

m
 ) if A

 

m
cl  (

m
int

 
 (A)). 

(4) openb
m
 if A

 

m
cl  (

m
int  (A)) 

 

m
int

 
(

m
cl  (A)). 

(5) open
m


 
if A

 

m
cl  (

m
int

 
(

m
cl  (A))). 

(6) openr
m
  if A= 

 

m
int  (

m
cl  (A)). 

     The set of all open
m
  (resp. openp

m


 
 , opens

m
  , openb

m


 
 , open

m


 
, openr

m


 
) sets 

is denoted by )( XOm  (resp. )( XmPO , )( XmSO ,  )( XmBO , )( XOm  ), )( XmRO ). 

The complement of each of the above sets is its respective closed set.  

 

     

    From Definition 1.6 we can prove that, 
 

Proposition 1.7.              

       
m – open     

open
m


 


  
opens

m


  
 openb

m


   
 open

m


   
and 

open
m


 
 openp

m


  


 
openb

m


 
 open

m


  
   

    

II.  M- HYPERCONNECTED SPACES  

 

     In this section we introduce the notion of m - Hyperconnectedness. Some properties and characterizations 

are investigated. 

 

Definition 2.1.   A subset A of a m- space (X, M ) is said to be   

(1) densem   if 
m

cl (A)= X. 

(2) nowherem   dense if  
m

int  (
m

cl  (A))=
 
 . 

Definition 2.2.   An m- space (X, M ) is said to be  

  (i) Hyperconnected
 
 ( equivalently X is m- hyperconnected)  if A is densem   for every subset A    of X. 

 (ii)  Connected (equivalently X is m- connected)  if X cannot be written as a union of nonempty and disjoint m- 

open sets.   

 
Remark  2.3.   From Definitions 2.2 we have the following relation.                          

                             m- hyperconnectedness   m - connectedness  

                               

 The converse of this implication is not true in general as shown by the following example, 

Example 2.4.    X= {a, b, c}, 
 
 M = {X, , {c}, {b}, {c, b}}. Then (X, M ) is   m- connected but not m- 

hyperconnected. 

 

Notation 2.5.   We say that (X, M ) satisfies property ( ) if M  is closed under arbitrary union. 

 

Theorem 2.6.   Let (X, M ) be an m - space with property ( ) and A be a subset of X. Then the following are 

equivalent.        

(1) (X, M ) is  hyperconnected. 

(2) A is densem   or nowherem   dense, for every subset A of X. 

(3) A B   , for every nonempty m - open subset A and B of X. 
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Proof. (1)  (2):  Let (X, M ) be a hyperconnected and A be a subset of X. Suppose that A is not 

nowherem   dense. Then
  

m
cl  (X\ 

m
cl  (A)) = X\ 

m
int (

 

m
cl (A))  X. Since          

m
int (

m
cl  (A))   , 

so by (1), 
m

cl (
m

int (
m

cl  (A))) = X. Since 
m

cl (
m

int (
m

cl (A))) = X
m

cl (A). Then 
m

cl (A) = X. Hence A 

is
 

densem  . 

        (2)  (3):   Suppose that A B=  for some nonempty openm   subsets A and B of X.      

        Then 
 
 

m
cl  (A)  B= and A is not densem 

 
. Since A is m - open, so   A 

m
int  (

 

m
cl  (A)). Hence 

A is not nowherem   dense. This is a contradiction.  

 (3)  (1):  Let A B    for every nonempty 
 

openm 
 
 subsets A and B of X. Suppose that (X, M ) is 

not hyperconnected. Then there is a nonempty openm 
 
 subset U of X such that U is not densem   in X, 

thus
 

m
cl  (U)  X. Hence X \

m
cl  (U) and U are disjoint  nonempty 

 
openm 

 
 subsets of X. This is a 

contradiction. Hence (X, M ) is hyperconnect.  

 

Definition 2.7.  The m  - semi- closure (resp. m  - pre- closure, m
 
-  -closure) of a subset A of a minimal 

space (X, M ), denoted by  
s

m
c (A) ( resp. 

p

m
c (A), 



m
c (A)) is the intersection of all 

 
closeds

m
  ( resp.  

closedp
m
 , closed

m
 ) sets of X containing A. 

          The following Lemma is easy to prove. 

 

         Theorem 2.8.   If (X, M ) is a minimal space with property ( ), then the following are equivalent. 

(1) (X, M ) is hyperconnected. 

(2) A is 
 

densem   for every open
m

  subset   A X.  

(3) A is densem 
  

for every openb
m
  subset   A X. 

(4) A is 
 

densem   for every openp
m

  subset   A X. 

(5) 
s

m
c (A)= X for every openp

m
  subset   A X. 

(6) 
p

m
c (A)= X for every opens

m
  subset   A X. 

Proof.    (1)  (2):  Suppose that A is a nonempty open
m

   subset of X. Hence 
                                 

  m
int  (

m
cl

 
(A)))   . Then 

 m
cl  (A) = 

m
cl (

m
int (

m
cl (A)))= X. 

(2)  (3):  Since every openb
m

  is open
m

  
 
, we have (3).  

(3)  (4):  Since every openp
m

  is openb
m


 
, we have (4). 

                 (4)  (5):  Suppose that A    is a openp
m

  set such that 
s

m
c (A)  X. Then there is a  

                nonempty
 

opens
m
  set U such that U  A=  . Hence

 m
int (U)  A=  . Then, by (4),                                         

    

 =
 m
int  (U) 

m
cl (A) = 

 m
int (U) which is a contradiction.    

         (5)  (6): Suppose that there is a nonempty
 

opens
m


 
set A such that

 

p

m
c (A)  X. Hence there is a 

 

openp
m


 
set U    such that U A=  . So U 

 m
int (A)= . Hence, by (5), 

m
int (A)= 

 

s

m
c (U)

 

m
int  (A) 

 m
cl U

 m
int (A)= . This is a  contradiction.  

    (6)  (1):  Let A be a nonempty
 

openm   subset of X. So A is opens
m
 . Hence by (6), 

p

m
c (A)= X.       

   Since
 

p

m
c (A) 

m
cl (A). Then 

m
cl (A)= X. So (X, M ) is hyperconnected. 

 

     Corollary 2.9.  Let (X, M ) be an m- space with property ( ). Then the following are equivalent. 
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(1)  (X, M ) is hyperconnected. 

(2)  A  B    for every nonempty 
 

opens
m


 
set A and nonempty openp

m


 
set

 
B. 

(3)  A  B   for every nonempty
 

opens
m
  sets A and B. 

Proof. (1)  (2):  Assume that X is hyperconnected. Let A be a nonempty
 

opens
m
  set and B be a 

nonempty 
 

openp
m

  set such that A  B= . Then by Theorem 2.8(6), 
s

m
c (B)= X. But X=

 

s

m
c (B) 

 
s

m
c (X- A) = X- A. Hence A=  , this is a contradiction. 

(2)  (1):   Suppose that A and B are any two nonempty openm 
 
subsets of X. Hence, by (2), A  B   , 

by Theorem 2.6, X is hyperconnected. 

Similarly we can prove that (1) is equivalent to (3). 

 

III.    PRESERVATION THEOREMS 

 

    In this section, we introduce some types of functions under which m- hyperconnectedness  is preserved and 

some related properties are given. 

Definition 3.1.  The m - semi- interior of a subset A of an m- space X denoted by 
s

m
i (A) is the union of 

all opens
m
  sets of X contained in A. 

 

Definition 3.2.  Let (X,
1

M ) and (Y,
2

M ) be two m- spaces. A function  ),(),(:
21

MYMXf   is called 

rs -continuous if for each nonempty openr
m


2

 set V of Y, 


)(
1

Vf   implies  


))((
1

1

Vfi
s

m
. 

 

Definition 3.3.  A function  ),(),(:
21

MYMXf   is called m -semi-continuous function if )(
1

Vf
 is 

opens
m


1

 in X for each 
2

m - open set V of  Y. 

 

Theorem 3.4.  Let ),(),(:
21

MYMXf 
 
be an m - semi-continuous function and 

2
M

   
satisfies property 

( ), then f is rs  -continuous function. 

 

Proof. Suppose that V is an 
 

openr
m


2

 subset of Y such that 


)(
1

Vf . Since every
 

openr
m


2

 set is 

2
m -open and f is m - semi-continuous continuous. So )(

1
Vf

  is a nonempty
 

opens
m


1

 in X. Hence 

)(
1

Vf
 =

 
))((

1

1

Vfi
s

m

 and 


))((
1

1

Vfi
s

m
 
.Thus ),(),(:

21
MYMXf 

 
is rs -continuous. 

 

Theorem 3.5.   If ),(),(:
21

MYMXf  is an rs-continuous surjection and (X,
1

M ) is hyperconnected with 

property ( ), then (Y,
2

M )   is hyperconnected. 

Proof. Assume that (Y,
2

M ) is not hyperconnected. Then there are disjoint 
2

m -open sets A and B. Put 

))((int
22

AclU
mm

  and ))((int
22

BclV
mm

 . Hence ))((int
22

UclU
mm

  and 

))((int
22

VclV
mm

 .Thus U and V are disjoint nonempty openr
m


2

 sets. Hence 
  

))((
1

1

Ufi
s

m

  ))((
1

1

Vfi
s

m


  )(

1
Uf


 )(

1
Vf


=  . Since ),(),(:

21
MYMXf 

 
is an rs -

continuous surjection, then ))((
1

1

Ufi
s

m


  and ))((

1

1

Vfi
m


 . Hence, by Corollary 2.9, thus (X,

1
M ) 

is not a hyperconnected. This is a contradiction. 

 

    Combining Theorem 3.4 and Theorem 3.5, we get the following result. 

Corollary 3.6.  If ),(),(:
21

MYMXf 
 
is m - semi-continuous surjection and (X,

1
M ) is 

hyperconnected with property ( ), then (Y,
2

M ) is hyperconnected. 
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Definition 3.7.  A function ),(),(:
21

MYMXf  is called m -continuous function if )(
1

Vf


1
M  for 

every V
2

M . 

 

Remark 3.8.  It is clear that every m - continuous function is m - semi-continuous but not conversely as 

shown by the following example. 

 

Example 3.9. Let X=Y= {a,b,c,d} and   
1

M = 
2

M  = {X,  ,{b},{d},{b, d}}. Define 

),(),(:
21

MYMXf  as follows, f(a)= a, f(b)= d, f(c)= d, f(d)= b. Then f is m - semi-continuous but not 

m -continuous. 

 

   From Theorem 3.4 and Remark 3.8 we have the following implications. 

Remark  3.10.    m -continuous  m - semi-continuous   rs-continuous. 

 

   From Theorem 3.5 and Remark 3.10 we obtained the following result.  

Corollary 3.11.   If ),(),(:
21

MYMXf  is m continuous surjection and (X,
1

M ) is hyperconnected 

with property ( ), then (Y,
2

M ) is hyperconnected. 

 

V. CONCLUSIONS 

 

    Hyperconnectedness is an important property depends on the classes of open and dense sets. In this work we 

study hyperconnectedness in minimal topological spaces. Several characterizations of minimal 

hyperconnectedness are provided, preservation theorems are given. This work help researchers to study 

hypercnenectedness in many types of  topological spaces. 
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