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Abstract 

           The attribute weights calculated from completely unknown information using the Maximal Entropy OWA 

weights. The neutrosophic fuzzy ordered weighted averaging (NFOWA) operator is utilized to aggregate all 

individual neutrosophic fuzzy decision matrices provided by the decision-makers into the collective neutrosophic 

fuzzy decision matrix, and then we use the obtained attribute weights and the neutrosophic fuzzy hybrid averaging 

(NFHA) operator to fuse the neutrosophic fuzzy information in the collective neutrosophic fuzzy decision matrix to 

get the overall neutrosophic fuzzy values of alternatives, and then rank the alternatives, and select the most 

desirable alternative.  

 

Keywords:MAGDM; Ordered Weighted Averaging; Hybrid Averaging Operator; Correlation of neutrosophic fuzzy 

sets; Entropy weights.  

 

I. INTRODUCTION 

 

Atanassov [1986, 1989] introduced the concept of intuitionistic fuzzy set (IFS), which is a generalization of the 

concept of fuzzy set. He also [1994] discussed decision making operators in interval valued intuitionistic fuzzy sets. 

Yager [1988] developed the ordered weighted averaging (OWA) operator and applied problems with alternatives and 

attributes in fuzzy decision making problems. Herrera et al., [1999] developed an aggregation process for combining 

calculating for interval valued and linguistic information, and then proposed different extensions of this process to 

deal with contexts in which can appear other type of information such as IFSs or multi-granular linguistic 

information.  

Szmidt&Kacprzyk [2002] proposed few solution for a problem with operators and variables in terms of 

intuitionistic (individual and social) fuzzy preference relations in group decision making.  They [2003]analyzed the 

consensus-reaching process in group decision making based on individual intuitionistic fuzzy preference relations. 

Xu &Yager [2006] developed some geometric aggregation operators, such as the intuitionistic fuzzy weighted 

geometric (IFWG) operator, the intuitionistic fuzzy hybrid geometric (IFHG) operator and gave anusage for the 

IFHG operator to multiple attribute group decision making with intuitionistic fuzzy information.   

Xu [2007] and Xu & Chen [2007] also developed some arithmetic aggregation operators, like as the 

intuitionistic fuzzy weighted averaging (IFWA) operator, the intuitionistic fuzzy ordered weighted averaging 

(IFOWA) operator, and the intuitionistic fuzzy hybrid averaging (IFHA) operator. The interval-valued intuitionistic 

fuzzy sets (IVIFSs), introduced by Atanassovand Gargov [1989], which is characterized by a membership function 

and a non-membership function whose values are intervals rather than exact numbers, are a very useful means to 

describe the decision information in the process of decision making.  

Wei and Wang [2007], respectively, developed few geometric aggregation operators, such as the interval-

valued intuitionistic fuzzy ordered weighted geometric (IIFOWG) operator and interval-valued intuitionistic fuzzy 

hybrid geometric (IIFHG) operator and applied them to MAGDM with interval-valued intuitionistic fuzzy 

information. However, they used the IIFWG operator, the IIFOWG operator and the IIFHG operator in the situation 

where the information about attribute weights is completely known.  

Based on the theory of ordered weighted averaging (OWA) operators suggested by O’Hagan [1988], a 

special class of OWA operators having maximal entropy of the OWA weights for a given level of orness is utilized.  

Using the method of Lagrange multipliers, Fuller &Majlender [2001] solved the constrained optimization problem 

of OWA operators having maximal entropy analytically and derived a polynomial equation which is then solved to 

determine the optimal weighting vector. They also investigated MAGDM problems in which all the information 

provided by the decision-makers is presented as interval valued intuitionistic fuzzy decision matrices where each of 
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its elements is characterized by interval valued intuitionistic fuzzy number (IVIFN).  

Park et al. [2009] proposed an ordered weighted geometric (OWG) model to aggregate all individual 

interval valued intuitionistic fuzzy decision matrices provided by the decision makers into the collective interval 

valued intuitionistic fuzzy decision matrix. In the proposed model, from the maximal entropy attribute weight 

information, an optimization model is established to determine the unknown weights. Then the obtained attribute 

weights and the interval valued intuitionistic fuzzy ordered weighted averaging (IIFOWA) operators are used to fuse 

the interval valued intuitionistic fuzzy information in the collective interval valued intuitionistic fuzzy decision 

matrix to get the overall interval valued intuitionistic fuzzy values of the alternatives. Correlation coefficient is used 

as a tool to rank alternatives since it preserves the linear relationship between the variables.  

Robinson &Amirtharaj, (2011a; 2011b; 2012a; 2012b; 2013) defined correlation coefficient for interval 

vague sets and triangular and trapezoidal intuitionistic fuzzy sets and proposed different MAGDM algorithms. 

Solairajuet. al. [2013, 2014] have worked on the decision making problems with vague sets. Wei et al. [2011] and 

Park et al. [2009] have also adopted correlation coefficient as a ranking tool for deciding the best alternatives. In this 

paper, the correlation coefficient proposed by Park et al. [2009] for IVIFSs is utilized for ranking the alternatives.  

Amirtharaj& Robinson [2013] proposed MAGDM models for IVIFSs with a novel method of attributes 

weight determination especially when the weights are completely unknown. Correlation coefficient of the overall 

Interval Valued Intuitionistic Fuzzy values and the ideal interval valued intuitionistic fuzzy numbers (IVIFN) value 

is calculated and the ranking of the most desirable alternatives is done based on the obtained correlation coefficients. 

A MAGDM model based on the maximal entropy weights [Fuller &Majlender, 2001] is presented for computing the 

attributes weights, and a numerical illustration is given. 

 
II. CORRELATION COEFFICIENT OF NEUTROSOPHIC FUZZY SETS 

 

Definition 2.1: A neutrosophic fuzzy set A on the universe of discourse X characterized by a truth membership 

function TA(x), an indeterminacy function IA(x) and a falsity membership function FA(x) is defined as A = { < x, 

TA(x), IA(x), FA(x) > : x X }, where TA , IA ,FA : X [0. 1] and  0 TA(x)  1; 0 IA(x)  1;  0 FA(x)  1, for all x 

 X.  

For each IFS Ain X ,A(x) = 3 - TA(x) - IA(x) -FA(x) is called as the neutrosophic index of x in A. It is otherwise 

called as the hesitation degree of x to A. It is obvious that 0 A(x)  1 for each x in X.  For neutrosophic fuzzy sets 

A, B, define A  B if TA(x)  TB(x); IA(x)  IB(x); FA(x)  FB(x) for all x in X.  

Let X = {x1, x2,…,xn} be a finite universal set and A, B in NFS(X). Now, the method of calculating the 

covariance and the correlation coefficient between two NFSs is utilized proposed by us. For each A in NFS (X), the 

informational neutrosophic energy of A is defined as follows: 

ENFS (A) =  
𝑇𝐴

2 𝑥  +  𝐼𝐴
2 𝑥   +  𝐹𝐴

2 𝑥 

3

𝑛
𝑖=1 . 

The function E satisfies the following conditions: 

(1). ENFS (A) = ENFS (A
c) for any A in NFS(X). (2). ENFS (A)  n for any A in NFS(X).  

The covariance of A and B is defined by the formula: 

CNFS (A, B) =  
1

3
 [ 𝑇𝐴 𝑥 𝑇𝐵 𝑥 + 𝑛

𝑖=1 𝑇𝐴 𝑥 𝑇𝐵 𝑥 + 𝑇𝐴 𝑥 𝑇𝐵 𝑥 ]. 

Furthermore, the correlation coefficient of A and B is defined by the formula: 

RNFS (A, B) = 
C𝑁𝐹𝑆 (A,   B)

 E𝑁𝐹𝑆 (A,).E𝑁𝐹𝑆 ( B)
 

Theorem 1: For each A,B in NFS (X), the correlation coefficient satisfies: 

(a). RNFS (A, B) = RNFS (B, A); (b).0   RNFS (A, B)  1. (c). A = B iff RNFS (A, B) = 1.  

III. MAXIMAL ENTROPY OWA OPERATOR WEIGHTS 

Yager, (1988) introduced two characterizing measures associated with the weighting vector W of an OWA 

operator. The first one, the measure of orness of the aggregation, is given as  orness(W) = 1/(n-1)  (𝑛 − 𝑖)𝑤𝑖
𝑛
𝑖=1  and 

it characterizes the degree to which the aggregation is like an or operation. It is clear that orness(W) [0 ,1]  holds 

for any weighting vector. The second one, the measure of dispersion of the aggregation, is defined as:dis p(W) = (-

) 𝑤𝑖  𝐼𝑛 𝑤𝑖
𝑛
𝑖=1 , and it measures the degree to which W takes into account all information in the aggregation. 

 Another approach, suggested by O’Hagan, (1988) determines a special class of OWA operators having 

maximal entropy of the OWA weights for the given level of orness. This approach is based on the solution of the 

following mathematical programming problem:Maximize (-) 𝑤𝑖  𝐼𝑛 𝑤𝑖
𝑛
𝑖=1  subject to 1/(n-1)  (𝑛 − 𝑖)𝑤𝑖

𝑛
𝑖=1  = , 0 
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 1, and   𝑤𝑖
𝑛
𝑖=1  = 1,   0 wi 1 for i varies from 1 to n… (1). 

 Using the method of Langrangemultipliers Fuller &Majlender(2001) transferred problem (1) to a 

polynomial equation which is then solved to determine the optimal weighting vector. 

First it can be noted that disp(W) is meaningful if wi> 0,  and by letting wi In (wi) to zero if wi = 0 problem 

(1) turns into  disp(W)  max;  subject to {orness (W) = c1w1 + c2w2 + … + cnwn : 0  ci 1 for all i }. 

If n = 2, then from orness{w1 , w2} = c gives that w1 = c and w2 = 1 – c.  Furthermore, if c =0 or c = 1, then 

the associated weighting vectors are uniquely defined as (0, 0, …, 1)T respectively, with value of dispersion zero.  

Suppose now that n 3, and 0  c  1. ThenL (W, 1, 2) = (-)  𝑤𝑖  (𝐼𝑛 𝑤𝑖)
𝑛
𝑖=1  + 1  

𝑛−𝑖

𝑛−1

𝑛
𝑖=1 𝑤𝑖 − 𝛼  + 

2  𝑤𝑖
𝑛
𝑖=1 − 1 denote the Lagrange function of constrained optimization problem (4), where 

1
  and 

2
 are real 

numbers. Then the partial derivatives of  L are computed as 
𝜕𝐿

𝜕𝑤𝑗
 = (-) In wj – 1 + 1 + [(n - j) / (n - 1) ]2 = 0 for all j.;  

𝜕𝐿

𝜕1
 =  𝑤𝑖

𝑛
𝑖=1  – 1 = 0    …(2);   

𝜕𝐿

𝜕2
 =  

𝑛−𝑖

𝑛−1

𝑛
𝑖=1 𝑤𝑖- α = 0. 

For j=n, the equation (2) turns into:(-) Inwn – 1 + 1 = 0iff In wn + 1 = 1 

and for j=1, (2) implies that (-) In w1 – 1 + 1 + 2 = 0  

implies2 =  In w1 + 1 - 1=  In w1 + 1- In w2 -1 = In w1 - In w2 

For 1 < j < n, it finds that In wj = [(j-1) / (n-1)] in wn + (n-j) / (n-1)] In w1gives that implies that  wi = 

 𝑤1
(𝑛−𝑗 )𝑤𝑛

(𝑗−1)
(𝑛−1)

  …(3). 

If w1 = wn, then (3) gives w1 = w2 = … =  wn = (1/ n) gives that disp (W) = In (n) which is the optimal 

solution to (1) for α = 0.5 (actually, this is the global optimal value for the dispersion of all OWA operators of 

dimension n). Suppose now that w1 ≠ wn.  

Letu1= 𝑤1
1/ (𝑛−1);  un = 𝑤𝑛

1/ (𝑛−1);  Then it may rewrite (3) as wj = 𝑢1
(𝑛−𝑗 )𝑢𝑛

(𝑗−1) for all j with 1 ≤ j ≤ n. From the 

first condition, orness(W) = α,  

find 
𝑛−𝑖

𝑛−1

𝑛
𝑖=1 𝑤𝑖  = α iff   (𝑛 − 𝑖)𝑛

𝑖=1 𝑢1
(𝑛−𝑗 )𝑢𝑛

(𝑗−1) = (n-1)α. 

And from  (𝑛 − 𝑖)𝑛
𝑖=1 𝑢1

(𝑛−𝑗 )𝑢𝑛
(𝑗−1)  = 

1

𝑢1−𝑢𝑛
  𝑛 − 1 𝑢1

𝑛
−  𝑢1

𝑖𝑢𝑛
𝑛−𝑖𝑛−1

𝑖=1   

                                                                = 
1

𝑢1−𝑢𝑛
  𝑛 − 1 𝑢1

𝑛
− 𝑢1𝑢𝑛

𝑢1
𝑛−1−𝑢𝑛

𝑛−1

𝑢1−𝑢1
  

Then (n-1) u1
n+1 – nu1

nun + u1un
n = (n-1) α (u1 – un)

2 ; 

          nu1
n – u1 = (n-1) α (u1 – un).  

Therefore un = [1/(n-1)α)] [ ((n-1)α + 1)u1 – nu1
n];   un / u1 = [ (n-1)α + 1 – nw1) / (n-1)α] …(4). 

From the second condition,   

 𝑢1
(𝑛−𝑗 )𝑢𝑛

(𝑗−1)𝑛
𝑗=1  = 1 iff 

𝑢1
𝑛−𝑢𝑛

𝑛

𝑢1−𝑢1
 = 1 iff  u1

n – un
n = u1 – uniff  u1

n-1 – un
n/u1 = 1 – un / u1 ...(5).  

Comparing equations (4) and (5),  it finds thatw1 = [ (n-1)α + 1 – nw1) / (n-1)α] wn= [(nw1 -1) / (n-1)α];  wn = [ ((n-

1)α – n)w1 + 1) / ((n-1)α +1-nw1)]                    …(6). 

 

Let us rewrite equation (5) as 

u1
n – un

n = u1 – un ;   u1 (w1-1) = un (wn-1); w1 (w1-1)n-1 = wn (wn-1)n-1. 

w1 (w1-1)n-1 =  
  𝑛−1 𝛼−𝑛 𝑤1+1

 𝑛−1 𝛼+1−𝑛𝑤1
  

  𝑛−1 𝛼 (𝑤1−1)

 𝑛−1 𝛼+1−𝑛𝑤1
 
𝑛−1

 

w1[(n-1)α + 1 – nw1] = [(n-1)α]n-1 [ ((n-1)-n)w1 + 1]   ….(7) 

 So the optimal value of  w1should satisfy equation (7). Once w1 is computed then wncan be determined 

from equation (9) and the other weights are obtained from equation (6). 

 

Remark:If n=3 and (6), then w2 =  𝑤1𝑤3independently of the value of α, which means that the optimal value of 

w2is always the geometric mean of w1 and w3 

 

IV. COMPUTING THE OPTIMAL WEIGHTS 

 

    Suppose the functions, f(w1) = w1 [(n-1)α + 1 – nw1]
n

;  g(w1) = [(n-1)α]n-1[((n-1)α-n)w1 + 1] 

Then to find the optimal value for the first weight we have to solve the following equation:  

f(w1) = g(w1), where,g is a line and f is a polynomial of w1 of dimension (n+1).By solving the equationf(w1) = w1 
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[(n-1)α + 1 – nw1]
n

  -  n
2w1 [(n-1)α +1 - nw1 ]

n - 1 = 0.  We find that its unique solution isw1 = [(n-1)α + 1]  / n (n +1) < 

1/n and its second derivative fn(w1) is negative, which means that w1 is the only maximizing point of fon the 

segment [0, 1/n]. Then g can intersect f only once in the open interval (0, 1/n). It will guarantee the uniqueness of the 

optimal solution of problem (4).  

 

From the equation f ‘’ (w1) = (-)2n2 [(n-1)α + 1 – nw1]
n-1+ n2(n-1)w1[(n-1)α+1– nw1]

n-2= 0, we find that its 

unique solution is w1 = (2)[(n-1)α + 1]  / n (n +1) <2w1< 1/n(since α < 0.5) with the meaning that f  is strictly 

concave on (0, w1)has an inflexion point at w1, and f is strictly convex on (w1, 1/n). Therefore the graph of g should 

lie below the graph of g if w1< w1< 1/n and g can cross f only once in the interval (0, w1). 

 

Example: Let us suppose that n = 5 and α = 0.6.  Then from the equation  

                        w1 [4(0.6) + 1 -5w1] = (4 (0.6))4 [1 – (5 - 4(0.6)) w1]  

w1* = 0.2884;  w5* = [4(0.6)-5) w1* + 1] / [ 4 (0.6) + 1 -5w1*] = 0.1278;   

w2* = =  (𝑤1
∗)3𝑤5

∗4
 = 0.2353; w3* =  (𝑤1

∗)2(𝑤1
∗)24

 = 0.1920; w4* = =  (𝑤5
∗)3𝑤1

∗4
 = 0.1566;  

Thus disp (W*) = 1.5692.  

V.  MAGDM PROBLEM WITH MAXIMAL ENTROPY OWA WEIGHTS 

Let R(k) =  𝑟𝑖𝑗
(𝑘) 

𝑚  ×𝑛
 be a neutrosophic fuzzy decision matrix, whererij

(k) = (Tij
(k), Iij

(k), Fij
(k)) is a 

neutrosophic fuzzy matrices provided by the decision-maker dk D  for an alternative Oj with respect to the attribute 

ui U. Here  Tij
(k) and  Iij

(k)indicate the degrees of truth, and indeterminacy to the alternative Oj O  satisfy or 

partially satisfy  respectively the attribute ui, expressed by the decision-maker dk , while Fij
(k)  indicates the degree 

that the alternative Oj in O does not satisfy the attribute ui , expressed by the decision-maker dk , and Tij
(k) [0, 1],  

Iij
(k) [0, 1], and  Fij

(k) [0, 1], i = 1 to m, and j = 1 to n,. To make a final decision in the process of group decision 

making, we need to fuse all individual decision opinion into group opinion. To do this, we use the IIFHA operator to 

aggregate all individual interval-valued intuitionistic fuzzy decision matrices R(k) =  𝑟𝑖𝑗
(𝑘) 

𝑚  ×𝑛
 ( k = 1, 2, 3,4)  into 

the collective interval-valued intuitionistic fuzzy decision matrix R=(rij)m x n . 

 

Definition: Neutrosophic fuzzy ordered weighted average operator: rij = NFOWA(rij
(1),rij

(2),…,rij
(s) 

=  𝑟𝑖𝑗
(1) 

𝛼1
 𝑟𝑖𝑗

(2) 
𝛼2
… 𝑟𝑖𝑗

(𝑠) 
𝛼𝑠

 =  (1-   1 − 𝑇𝑖𝑗
((𝑘) 

𝑎𝑘𝑛
𝑘=1 , 1-   1 − 𝐼𝑖𝑗

((𝑘) 
𝑎𝑘𝑛

𝑘=1 ,    1 −𝑛
𝑘=1

𝐹𝑖𝑗
((𝑘) 

𝑎𝑘
) where a = (a1, a2,…, as)

T is a weight vector of NFOWA operator with ak> 0 (k = 1, 2,…, s) and  𝑎𝑘
𝑠
𝑘=1  

= 1. Here rij
(k) =   (Tij

(k), Iij
(k), Fij

(k)) andrij
k) =   (Tij

(k), Iij
(k), Fij

(k)
)is the kth largest of the weighted NFSs , and rij

(k)is 

the image of rij
kunder the permutation  for i = 1 to m, and j = 1 to n.  

 

Definition:  The Neutrosophic fuzzy hybrid average operator rj = NFHA (r1j, r2j ,…,  rmj) = r1j
w1 r2j

w2 … rmj
wm = 

[1-  1 − 𝑇𝑖𝑗 )𝑤 𝑖𝑚
𝑖=1 , 1-  1 − 𝐼𝑖𝑗 )𝑤 𝑖𝑚

𝑖=1 ,   1 − 𝐹𝑖𝑗 )𝑤𝑖𝑚
𝑖=1  ]  where the weight vector w = (w1, w2,…, wm)T  of the 

attributes can be completely determined in advance.  

 For the ranking order of the alternatives in accordance with the decision making problem, we give the 

largest NFS r* = < (1,0,0), (0,1,0), (0,0,1) > as the value of the ideal alternative. 

 

VI. ALGORITHM I 

 

Step 1: Utilize the NFOWA operator to aggregate all individual neutrosophic fuzzy decision matricesR(k) = (rij
(k))m x n 

(k=1 to 4) into a collective neutrosophic fuzzy decision matrix R=(rij)mxn. 

Step: 2 To derive the unknown weights by Shannon Entropy methods by using  

In wj = (j-1)/(n-1 in wn + (n-j)/(n-1) In w1 

wj =  𝑤1
(𝑛−𝑗 )𝑤𝑛

(𝑗−1)
(𝑛−1)

 

and   w1[(n-1)α + 1 – nw1] = [(n-1)α]n-1 [ ((n-1)-n)w1 + 1]. 

Step: 3   Use the NFHA operator to get the overall values rj of the alternatives Oj (j = 1, 2,…,n) using the weights 

0.2717, 0.2254, 0.2608, 0.2421 by funding from Posssion distribution through a method of fitness.   

Step: 4     Using r* = (1,0,0) = (TA*,IA*,FA*), find d(r*, rj) =  𝑇𝐴
∗ − 𝑇𝑗𝐴  

2
+  𝐼𝐴

∗ − 𝐼𝑗𝐴  
2

+  𝐹𝐴
∗ − 𝐹𝑗𝐴

 
2
to 

calculate the distances between informational neutrosophicvalues rj= (𝑇𝑗𝐴 , 𝐼𝑗𝐴 , 𝐹𝑗𝐴
 ) (j = 1,2,...,n).  

Step 5: Rank the alternatives based on distances. 
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Step 6: Select the best alternative.  

VII. ALGORITHM II 

 

Step 1: Utilize the NFOWA operator to aggregate all individual neutrosophic fuzzy decision matrices R(k) = 

 𝑟𝑖𝑗
(𝑘) 

𝑚  ×𝑛
 ( k = 1, 2, 3,4) into a collective neutrosophic fuzzy decision matrixR = (rij)m x n. 

Step 2: For every A  NFS (X), ENFS (A) =  (1/n) [  𝑇𝐴
2 𝑥  + (1 −  𝐼𝐴 𝑥 )2   +  (1 −  𝐹𝐴 𝑥 )2𝑛

𝑖=1  ]  defined to 

calculate the informational neutrosophic energy of A. 

Step 3 :    For every B  NFS (X), ENFS (B) =  (1/n) [ 𝑇𝐵
2 𝑥  + (1 −  𝐼𝐵 𝑥 )2   +  (1 −  𝐹𝐵 𝑥 )2𝑛

𝑖=1 ]  is defined 

to calculate the informational neutrosophic energy of B. 

Step 4: The covarianceCNFS (A, B) =  
1

𝑛
[  [ 𝑇𝐴 𝑥 𝑇𝐵 𝑥 + 𝑛

𝑖=1 (1 − 𝐼𝐴 𝑥 ) 1 − 𝐼𝐵 𝑥   + (1 − 𝐹𝐴 𝑥 )(1 − 𝐹𝐵 𝑥 )] 

for all x in X  to calculate the covariance between the neutrosophic values A , and B.  

Step 5: The correlation coefficients RNFS is calculated by  equation RNFS (A, B) = 
C𝑁𝐹𝑆 (A,   B)

 E𝑁𝐹𝑆 ( A .E𝑁𝐹𝑆  𝐵 
 

 

VIII. NUMERICAL ILLUSTRATION 

 

 A problem concerning with a manufacturing company is discussed, searching the best global supplier for one of 

its most critical parts used in assembling process. The attributes which are considered here in selection of four 

potential global suppliers 
j

O (j=1, 2, 3, 4) are: 

 U1: Overall cost of the product; U2: Quality of the product; U3: Service performance of supplier; 

 U4: Supplier’s profile; U5: Risk factor. 

 

Step 1: The experts ( 1, 2 , 3, 4 )
k

d k  represent, respectively, the characteristics of the potential global suppliers 

 1, 2, 3, 4
j

O j  in terms of Neutrosophic fuzzy sets ( 𝑟𝑖𝑗
(𝑘)) where  i = 1,2,3,4; and  j = 1, 2, 3, 4.  An expert group is 

formed which consists of four experts  1, 2, 3, 4
k

d k  (whose weight vector is  (0 .3, 0 .2 , 0 .3, 0 .2 )
T

  ) from each 

strategic decision area. 

R1   =  

< 0.25,0.54,0.8 > < 0.3,0.4,0.9 >
< 0.6,0.5,0.5 > < 0.6,0.2,0.3 >

< 0.7,0.35,0.5 > < 0.9,0.2,0.8 >
< 0.2,0.4,0.9 > < 0.6,0.23,0.7 >

< 0.3,0.45,0.9 > < 0.7,0.1,0.4 >
< 0.45,0.38,0.27 > < 0.37,0.68,0.16 >

< 0.6,0.5,0.5 > < 0.4,0.2,0.9 >
< 0.6,0.25,0.3 > < 0.1,0.4,0.8 >

  

R2   =  

< 0.1,0.3,0.7 > < 0.6,0.6,0.5 >
< 0.3,0.55,0.37 > < 0.75,0.42,0.1 >

< 0.4,0.2,0.1 > < 0.3,0.7,0.6 >
< 0.32,0.67,0.56 > < 0.35,0.56,0.72 >

< 0.5,0.4,0.32 > < 0.65,0.25,0.32 >
< 0.27,0.9,0.81 > < 0.31,0.4,0.6 >

< 0.6,0.3,0.1 > < 0.75,0.25,0.55 >
< 0.75,0.65,0.55 > < 0.3,0.7,0.9 >

  

R3   =  

< 0.32,0.47,0.6 > < 0.9,0.1,0.3 >
< 0.12,0.32,0.52 > < 0.17,0.81,0.9 >

< 0.6,0.4,0.5 > < 0.3,0.5,0.7 >
< 0.5,0.3,0.1 > < 0.45,0.65,0.27 >

< 0.50,0.6,0.23 > < 0.56,0.52,0.23 >
< 0.54,0.83,0.72 > < 0.73,0.86,0.61 >

< 0.3,0.6,0.1 > < 0.57,0.52,0.55 >
< 0.5,0.52,0.4 > < 0.6,0.4,0.2 >

  

R4   =  

< 0.7,0.3,0.1 > < 0.5,0.4,0.4 >
< 0.3,0.56,0.73 > < 0.57,0.24,0.1 >

< 0.2,0.1,0.6 > < 0.7,0.9,0.6 >
< 0.23,0.76,0.65 > < 0.53,0.65,0.27 >

< 0.32,0.32,0.6 > < 0.56,0.52,0.32 >
< 0.72,0.5,0.18 > < 0.13,0.6,0.4 >

< 0.1,0.3,0.9 > < 0.57,0.52,0.55 >
< 0.55,0.56,0.78 > < 0.7,0.1,0.6 >

  

R5   =  

< 0.52,0.45,0.1 > < 0.57,0.37,0.1 >
< 0.3,0.6,0.7 > < 0.7,0.4,0.1 >

< 0.76,0.65,0.23 > < 0.57,0.52,0.55 >
< 0.3,0.7,0.6 > < 0.5,0.4,0.6 >

< 0.2,0.3,0.2 > < 0.6,0.2,0.5 >
< 0.27,0.5,0.81 > < 0.75,0.25,0.32 >

< 0.1,0.6,0.65 > < 0.3,0.9,0.7 >
< 0.32,0.67,0.56 > < 0.35,0.56,0.72 >

  

 

Step 2: To derive the unknown weights by Shannon Entropy methods by using  

In wj = (j-1)/(n-1 in wn + (n-j)/(n-1) In w1 

wj =  𝑤1
(𝑛−𝑗 )𝑤𝑛

(𝑗−1)
(𝑛−1)

  and    

w1[(n-1)α + 1 – nw1]
n = [(n-1)α]n-1 [ ((n-1)-n)w1 + 1]. 

 

To derive a weight vector w by using Shannon entropy methods. 
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Take n = 5, α = 0.4.  

w1[4(0.4) + 1 – 5w1]
5 = [4(0.4)]4 [ (4(0.4) - 5)w1 + 1]. 

[ -3125 w1
6 + 8125 w1

5 - 8450 w1
4

 + 4394 w1
3

  - 1142 w1
3

 + 141.09 w1 – 6.5576 ] = 0. 
 

Solving the above equation by using Matlab, we get 

w1
* = 0.1289; w5

* = 

  𝑛−1 𝛼−𝑛 𝑤1
∗+1

 𝑛−1 𝛼+1−𝑛𝑤1
∗ =  0.2872;  w2* = =  (𝑤1

∗)3𝑤5
∗4
 = 0.1567;  

w3* =  (𝑤1
∗)2(𝑤1

∗)24
 = 0.1922; w4* = =  (𝑤5

∗)3𝑤1
∗4
 = 0.2359;  

Hence w1
* = 0.1289;   w2

* = 0.1567; w3
* = 0.1922;  w4

* = 0.2359;  w1
* = 0.2872.  

 

Step 3: Utilize the IIFOWA operator (consider  = (0.1289, 0.1567, 0.1922, 0,2359, 0.2872)Tbe its weight vector 

derived by the normal distribution based method) to aggregate the individual neutrosophic  fuzzy decision matrices 

into the collective interval-valued intuitionistic fuzzy decision matrix R=(rij)mxn. The weights are arranged in the 

decreasing order.  
 

R=

 

< 0.0465,0.0252,0.0108 > < 0.1043,0.0077,0.0102 >
< 0.0418,0.0318,0.0395 > < 0.0836,0.0162,0.0063 >

< 0.0814,0.0064,0.0078 > < 0.1016,0.212,0.0737 >
< 0.0306,0.0323,0.0116 > < 0.0584,0.0221,0.0291 >

< 0.0379,0.0258,0.0198 > < 0.0876,0.0060,0.0159 >
< 0.0643,0.0478,0.0194 > < 0.0652,0.0277,0.0099 >

< 0.0480,0.0271,0.0081 > < 0.0800,0.0179,0.0733 >
< 0.0862,0.0250,0.0293 > < 0.0524,0.0089,0.0265 >

  

 

Step 4: Use the NFHA operator to get the overall values rj of the alternatives Oj (j = 1, 2,…,n) using the weights 

0.2717, 0.2254, 0.2608, 0.2421 by funding from Poisson distribution through a method of fitness.  The NFHA 

operator is rj = (1-   1 − 𝑇𝑖𝑗 )𝑤 𝑖 𝑛
𝑘=1 , 1-   1 − 𝐼𝑖𝑗 )𝑤 𝑖 𝑛

𝑘=1 ,     1 − 𝐹𝑖𝑗 )𝑤𝑖 𝑛
𝑘=1 New reduced row Matrix R = (r1, r2, 

r3, r4) using the weights w = {0.2717, 0.2608, 0.2254, 0.2421} is R = (r1, r2, r3, r4); four neutrosophic fuzzy values 

are  r1 = (0.0476, 0.9674, 0.9775);r2 = (0.0858, 0.9855, 0.9895); r3 = (0.0621, 0.9776, 0.9858); and r4 = (0.0738, 

0.9260, 0.9491) 

Step 5:     Using r* = (1,0,0) = (TA*, IA*, FA*), find d(r*, rj) =   𝑇𝐴
∗ − 𝑇𝑗𝐴  

2
+  𝐼𝐴

∗ − 𝐼𝑗𝐴  
2

+  𝐹𝐴
∗ − 𝐹𝑗𝐴

 
2
to 

calculate the distances between informational neutrosophic values  rj = (𝑇𝑗𝐴 , 𝐼𝑗𝐴 , 𝐹𝑗𝐴
 ) (j = 1, 2, 3, 4).  

Thus  d( r , r1 ) = 1.1828 = A1;  d( r , r2) = 1.1802 = A2; d( r , r3 ) = 1.1847 = A3; d( r , r4 ) = 1.1437 = A4. 

Step 5: Rank the alternatives based on distances.A2>A3 > A4  >A1. 

Step 6: Select the best alternative:  A2 is best alternative 

                                                                               IX. CONCLUSIONS 

      The MAGDM problems are investigated under neutrosophic fuzzy environment, and proposed an approach to 

handling the situations where the attribute values are characterized by NFSs, and the information about attribute 

weights completely unknown. The proposed approach first fuses all individual neutrosophic fuzzy decision matrices 

into the collective neutrosophic fuzzy decision matrix by using the NFOWA operator. Then the obtained attribute 

weights and the NFHA operator are used to get the overall neutrosophic fuzzy values of alternatives  

Also it has proposed a method for calculating correlation coefficients between NFSs to rank the alternatives 

and then to select the most desirable one. The proposed approach in this work not only can comfort the influence of 

unjust arguments on the decision results, but also avoid losing or distorting the original decision information in the 

process of aggregation. Thus, the proposed approach provides us an effective and practical way to deal with multi-

person multi-attribute decision making problems, where the attribute values are characterized by NFSs and the 

information about attribute weights is partially known. The suitable alternative is selected through the algorithm 

from the given neutrosophic information in which the unknown weights are derived the unknown weights by 

Shannon Entropy methods, and some weights from Poisson distribution. 
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