New Type of Quadratic Functional Equation and Its Stability

Sandra Pinelas ${ }^{* 1}$, V.Govindan ${ }^{2}$, K.Tamilvanan ${ }^{3}$
${ }^{*}$ 1 Departmento de Ciências Exatas e Engenharia, Academia Militar, Portugal.
${ }^{2,3}$ Sri Vidya Mandir Arts \& Science College
Katteri, Uthangarai, Tamilnadu, India-636902.

Abstract

We prove the generalized Hyers-Ulam Stability of the Quadratic functional equation $f\left(2 x_{1} \pm x_{2} \pm x_{3} \pm x_{4}\right)=f\left(x_{1} \pm x_{3} \pm x_{4}\right)+f\left(x_{1} \pm x_{2} \pm x_{3}\right)+f\left(x_{1} \pm x_{2} \pm x_{4}\right)+f\left(\pm x_{1}\right)-f\left(\pm x_{2}\right)-f\left(\pm x_{3}\right)-f\left(\pm x_{4}\right)$ in non-Archimedean Banach Spaces using Direct Method and Fixed Point Method.

Keywords

Fixed point method, Hyers-Ulam stability, Non-Archimedean Banach space, Quadratic functional equation.
MSC: 39B22, 39B82,46S10.

I. INTRODUCTION

The functional equation

$$
f(x+y)+f(x-y)=2 f(x)+2 f(y)
$$

(1.1)
is called the quadratic functional equation. In particular, every solution of the quadratic functional equation is said to be quadratic mapping. In 1996, Isac and Rassias [8] were the first to provide applications of stability theory of functional equations for the proof of new fixed point theorems with applications. By using fixed point methods, the stability problems of several functional equations have been extensively investigated by a number of authors (see [1],[4],[5],[11] - [16]). Recently, Brzdek et al.,[2] and Dong Yun Shin et al.,[7] gave a survey on the fixed point method and the direct method to prove the Hyers-Ulam stability of functional equations and functional inequalities. In this paper, we introduce the following quadratic functional equation

$$
\begin{align*}
& f\left(2 x_{1}+x_{2}+x_{3}+x_{4}\right)=f\left(x_{1}+x_{3}+x_{4}\right)+f\left(x_{1}+x_{2}+x_{3}\right)+f\left(x_{1}+x_{2}+x_{4}\right)+f\left(x_{1}\right)-f\left(x_{2}\right)-f\left(x_{3}\right)-f\left(x_{4}\right) \tag{1.2}\\
& f\left(2 x_{1}-x_{2}-x_{3}-x_{4}\right)=f\left(x_{1}-x_{3}-x_{4}\right)+f\left(x_{1}-x_{2}-x_{3}\right)+f\left(x_{1}-x_{2}-x_{4}\right)+f\left(-x_{1}\right)-f\left(-x_{2}\right)-f\left(-x_{3}\right)-f\left(-x_{4}\right) \tag{1.3}\\
& f\left(2 x_{1} \pm x_{2} \pm x_{3} \pm x_{4}\right)=f\left(x_{1} \pm x_{3} \pm x_{4}\right)+f\left(x_{1} \pm x_{2} \pm x_{3}\right)+f\left(x_{1} \pm x_{2} \pm x_{4}\right)+f\left(\pm x_{1}\right)-f\left(\pm x_{2}\right)-f\left(\pm x_{3}\right)-f\left(\pm x_{4}\right) \tag{1.4}
\end{align*}
$$

in non-Archimedean Banach Spaces using Direct Method and Fixed Point Method.
All over this paper, we assume that the base field is a non-Archimedean field,hence call it simply a field.
Definition 1.1[9] Let X be a vector space over a field K with a non-Archimedean valuation $|$.$| . A function$ $\|\cdot\|: X \rightarrow[0, \infty)$ is said to be a non-Archimedean norm (valuation) if it satisfies the following conditions:
i) $\quad\|x\|=0$ if and only if $x=0$;
ii) $\quad\|r x\|=|r|\|x\|$ for all $r \in K, x \in X$;
iii) The strong triangle inequality

$$
\|x+y\| \leq \max \{\|x\|,\|y\|\}
$$

for all $x, y \in X$.Then $(x,\| \|)$ is called a non-Archimedean normed space.
We recall a fundamental result in fixed point theory.
Theorem 1.2 ([3],[6]) Let (x, d) be a complete generalized metric space and let $J: X \rightarrow X$ be a strictly contractive mapping with Lipschitz constant $\mathrm{L}>1$. Then for each given element $x \in X$, either $d\left(J^{n}{ }_{x, J}{ }^{n+1}{ }_{x}\right)=\infty$ for all non negative integers n or there exists a positive integer n_{0} such that
i) $d\left(J^{n} x, J^{n+1} x\right)<\infty, \quad \forall n \geq n_{0}$;
ii) The sequence $\left\{J^{n}{ }_{x}\right\}$ converges to a fixed point y^{*} of \mathbf{J};
iii) y^{*} is the unique fixed point of J in the set $Y=\left\{y \in X \mid d\left(J^{n}{ }^{n} x, y\right)<\infty\right\}$;
iv) $d\left(y, y^{*}\right) \leq \frac{1}{1-L} d(y, J y)$ for all $y \in Y$.

Throughout this paper, assume that X is a non-Archimedean normed space and that Y is a non-Archimedean Banach Space.

II. GENERAL SOLUTION OF THE QUADRATIC FUNCTIONAL EQUATION

In this section, we find out the general solution of the Quadratic functional equation .
Theorem 2.1 If a mapping $f: X \rightarrow Y$ satisfies the functional equation (1.1) for all $x, y \in X$, iff the function $f: X \rightarrow Y$ satisfies the functional equation (1.2) for all $x, y \in X$.
Proof. Setting (x, y) by $(0,0)$ in (1.1), we get $f(0)=0$. Again replacing (x, y) by $(0, x)$ in (1.1), we have $f(-x)=f(x)$, for all $x \in X$. Replacing (x, y) by (x, x) and $(2 x, x)$ in (1.1), we obtain $f(2 x)=4 x$ and $f(3 x)=9 f(x)$, for all $x \in X$. respectively. In general for any positive integer a, we receive $f(a x)=a^{2} f(x)$, for all $x \in X$. Replacing $x=x_{3}$ and $y=x_{4}$ in (1.1), we get
$f\left(x_{3}+x_{4}\right)+f\left(x_{3}-x_{4}\right)=2 f\left(x_{3}\right)+2 f\left(x_{4}\right)$
for all $x_{3}, x_{4} \in X$.It follows from (2.1), we have
$f\left(x_{3}+x_{4}\right)+f\left(x_{1}+x_{2}+x_{3}-\left(x_{1}+x_{2}+x_{4}\right)\right)=2 f\left(x_{3}\right)+2 f\left(x_{4}\right)$
for all $x_{1}, x_{2}, x_{3}, x_{4} \in X$. Adding $f\left(x_{1}+x_{2}+x_{3}+\left(x_{1}+x_{2}+x_{4}\right)\right)$ on both sides in (2.2), we arrive

$$
\begin{align*}
& f\left(x_{3}+x_{4}\right)+f\left(x_{1}+x_{2}+x_{3}-\left(x_{1}+x_{2}+x_{4}\right)\right)+f\left(x_{1}+x_{2}+x_{3}+\left(x_{1}+x_{2}+x_{4}\right)\right) \\
&=2 f\left(x_{3}\right)+2 f\left(x_{4}\right)+f\left(x_{1}+x_{2}+x_{3}+\left(x_{1}+x_{2}+x_{4}\right)\right) \tag{2.3}
\end{align*}
$$

for all $x_{1}, x_{2}, x_{3}, x_{4} \in X$. Using (1.1) in (2.3), we get

$$
\begin{equation*}
f\left(x_{3}+x_{4}\right)+2 f\left(x_{1}+x_{2}+x_{3}\right)+2 f\left(x_{1}+x_{2}+x_{4}\right)=2 f\left(x_{3}\right)+2 f\left(x_{4}\right)+f\left(2 x_{1}+x_{2}+x_{3}+x_{4}+x_{2}\right) \tag{2.4}
\end{equation*}
$$

for all $x_{1}, x_{2}, x_{3}, x_{4} \in X$. It follows from (2.4), we have
$f\left(x_{1}+x_{3}+x_{4}-x_{1}\right)+2 f\left(x_{1}+x_{2}+x_{3}\right)+2 f\left(x_{1}+x_{2}+x_{4}\right)=2 f\left(x_{3}\right)+2 f\left(x_{4}\right)+f\left(2 x_{1}+x_{2}+x_{3}+x_{4}+x_{2}\right)$
for all $x_{1}, x_{2}, x_{3}, x_{4} \in X$. Adding $f\left(x_{1}+x_{3}+x_{4}+x_{1}\right)$ on both sides in (2.5), we arrive

$$
\begin{align*}
& f\left(x_{1}+x_{3}+x_{4}-x_{1}\right)+f\left(x_{1}+x_{3}+x_{4}+x_{1}\right)+2 f\left(x_{1}+x_{2}+x_{3}\right)+2 f\left(x_{1}+x_{2}+x_{4}\right) \\
&=2 f\left(x_{3}\right)+2 f\left(x_{4}\right)+f\left(2 x_{1}+x_{2}+x_{3}+x_{4}+x_{2}\right)+f\left(x_{1}+x_{3}+x_{4}+x_{1}\right) \tag{2.6}
\end{align*}
$$

for all $x_{1}, x_{2}, x_{3}, x_{4} \in X$. Using (1.1) in (2.6), we obtain

$$
\begin{align*}
& 2 f\left(x_{1}+x_{3}+x_{4}\right)+2 f\left(x_{1}\right)+2 f\left(x_{1}+x_{2}+x_{3}\right)+2 f\left(x_{1}+x_{2}+x_{4}\right) \\
& \quad=2 f\left(x_{3}\right)+2 f\left(x_{4}\right)+f\left(2 x_{1}+x_{2}+x_{3}+x_{4}+x_{2}\right)+f\left(2 x_{1}+x_{3}+x_{4}\right) \tag{2.7}
\end{align*}
$$

for all $x_{1}, x_{2}, x_{3}, x_{4} \in X$. It follows from (2.7), we have

$$
\begin{align*}
2 f\left(x_{1}+x_{3}+x_{4}\right) & +2 f\left(x_{1}\right)+2 f\left(x_{1}+x_{2}+x_{3}\right)+2 f\left(x_{1}+x_{2}+x_{4}\right) \\
& =2 f\left(x_{3}\right)+2 f\left(x_{4}\right)+f\left(2 x_{1}+x_{2}+x_{3}+x_{4}+x_{2}\right)+f\left(2 x_{1}+x_{2}+x_{3}+x_{4}-x_{2}\right) \tag{2.8}
\end{align*}
$$

for all $x_{1}, x_{2}, x_{3}, x_{4} \in X$. Using (1.1) in (2.8), we get

$$
\begin{equation*}
2 f\left(2 x_{1}+x_{2}+x_{3}+x_{4}\right)=2 f\left(x_{1}+x_{3}+x_{4}\right)+2 f\left(x_{1}\right)+2 f\left(x_{1}+x_{2}+x_{3}\right)+2 f\left(x_{1}+x_{2}+x_{4}\right)-2 f\left(x_{2}\right)-2 f\left(x_{3}\right)-2 f\left(x_{4}\right) \tag{2.9}
\end{equation*}
$$

for all $x_{1}, x_{2}, x_{3}, x_{4} \in X$. Dividing 2 on both sides of (2.9), we receive (1.2)
Conversely, let $f: X \rightarrow Y$ satisfies the functional equation (1.2). Setting $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ by ($0,0,0,0$), we get $f(0)=0$. Replacing $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ by $(x,-x, x,-x)$ in (1.2) we obtain $\mathrm{f}(-\mathrm{x})=\mathrm{f}(\mathrm{x})$. Hence f is even. Again setting $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ by ($\left.\mathrm{x}, 0,0,0\right)$ in (1.2), we get $f(2 x)=4 f(x)$ for all $x \in X$. Replace $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ by $(x, x, 0,0),(x, x, x, 0)$ and (x, x, x, x) in (1.2), we arrive $f(3 x)=9 f(x), f(4 x)=16 f(x)$ and $f(5 x)=25 f(x)$, for all $x \in X$, respectively. In general for any positive integer "a", we have $f(a x)=a^{2} f(x)$. Put $x_{1}=0$ in (1.2) we get,
$f\left(x_{2}+x_{3}+x_{4}\right)=f\left(x_{3}+x_{4}\right)+f\left(x_{2}+x_{3}\right)+f\left(x_{2}+x_{4}\right)-f\left(x_{2}\right)-f\left(x_{3}\right)-f\left(x_{4}\right)$
for all $x_{2}, x_{3}, x_{4} \in X$. Adding $f\left(x_{2}+x_{3}-x_{4}\right)$ on both sides in (2.10), we have
$2 f\left(x_{2}+x_{3}\right)+2 f\left(x_{4}\right)=f\left(x_{3}+x_{4}\right)+f\left(x_{2}+x_{3}\right)+f\left(x_{2}+x_{4}\right)-f\left(x_{2}\right)-f\left(x_{3}\right)-f\left(x_{4}\right)+f\left(x_{2}+x_{3}-x_{4}\right)$
for all $x_{2}, x_{3}, x_{4} \in X$. Put $x_{2}=x, x_{3}=0$ and $x_{4}=y$ in (2.11), we get our desired result (1.1).
Theorem 2.2 If a mapping $f: X \rightarrow Y$ satisfies the functional equation (1.1) for all $x, y \in X$, iff the function $f: X \rightarrow Y$ satisfies the functional equation (1.3) for all $x, y \in X$.
Theorem 2.3 If a mapping $f: X \rightarrow Y$ satisfies the functional equation (1.1) for all $x, y \in X$, iff the function $f: X \rightarrow Y$ satisfies the functional equation (1.4) for all $x, y \in X$.

III. STABILITY OF THE QUADRATIC FUNCTIONAL EQUATION (1.4) -DIRECT METHOD

In this section, we investigate the stability of the Quadratic functional equation (1.4) in Non-Archimedean Banach Space using Direct Method.
Theorem 3.1 Let G is an quadratic semi group and X is a complete non-Archimedean space. Assume that $\varphi: G^{4} \rightarrow[0,+\infty)$ be a function such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\varphi\left(5^{n} x_{1}, 5^{n} x_{2}, 5^{n} x_{3}, 5^{n} x_{4}\right)}{|5|^{2 n}}=0 \tag{3.1}
\end{equation*}
$$

for all $x_{1}, x_{2}, x_{3}, x_{4} \in G$. Let for all $x \in G$

$$
\begin{equation*}
\Phi(x)=\operatorname{Sup}_{k \geq 0}\left\{\frac{\varphi\left(5^{k} x, 5^{k} x, 5^{k} x, 5^{k} x\right)}{|5|^{2 k}} ; k \in \square \cup\{0\}\right\} \tag{3.2}
\end{equation*}
$$

exists. Suppose that $f: G \rightarrow X$ be a mapping satisfying the inequality

$$
\begin{gather*}
\left\|f\left(2 x_{1} \pm x_{2} \pm x_{3} \pm x_{4}\right)=f\left(x_{1} \pm x_{3} \pm x_{4}\right)+f\left(x_{1} \pm x_{2} \pm x_{3}\right)+f\left(x_{1} \pm x_{2} \pm x_{4}\right)+f\left(\pm x_{1}\right)-f\left(\pm x_{2}\right)-f\left(\pm x_{3}\right)-f\left(\pm x_{4}\right)\right\| \\
\leq \varphi\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \tag{3.3}
\end{gather*}
$$

for all $x_{1}, x_{2}, x_{3}, x_{4} \in G$. Then the limit

$$
Q(x):=\lim _{n \rightarrow \infty} \frac{f\left(5^{n} x\right)}{5^{2 n}}
$$

exist for all $x \in G$ and $Q: G \rightarrow X$ is an quadratic mapping satisfying

$$
\begin{equation*}
\|f(x)-Q(x)\| \leq \frac{1}{|25|} \Phi(x) \tag{3.4}
\end{equation*}
$$

for all $x \in G$. More over, if

$$
\lim _{j \rightarrow \infty} \lim _{n \rightarrow \infty} \max \left\{\frac{\varphi\left(5^{k} x, 5^{k} x, 5^{k} x, 5^{k} x\right)}{|5|^{2 k}} ; j \leq k<n+j\right\}=0
$$

Then Q is the unique mapping satisfying (3.4).
Proof. Setting $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ by (x, x, x, x) in (3.3), we have

$$
\begin{equation*}
\left\|\frac{f(5 x)}{5^{2}}-f(x)\right\|_{X} \leq \frac{1}{|25|} \varphi(x, x, x, x) \tag{3.5}
\end{equation*}
$$

for all $x \in G$. Replacing x by $5^{n} x$ in (3.5), we obtain

$$
\begin{equation*}
\left\|\frac{f\left(5^{n+1} x\right)}{5^{2(n+1)}}-\frac{f\left(5^{n} x\right)}{5^{2 n}}\right\|_{X} \leq \frac{1}{|5|^{2(n+1)}} \varphi\left(5^{n} x, 5^{n} x, 5_{x, 5^{n} x}\right) \tag{3.6}
\end{equation*}
$$

It follows from (3.1) and (3.6) that the sequence $\left\{\frac{f\left(5^{n} x\right)}{5^{2 n}}\right\}_{n=1}^{\infty}$ is a Cauchy sequence. Since X is complete, so $\left\{\frac{f\left(5^{n} x\right)}{5^{2 n}}\right\}_{n=1}^{\infty}$ is convergent. Set

$$
Q(x):=\lim _{n \rightarrow \infty} \frac{f\left(5^{n} x\right)}{5^{2 n}}
$$

Using induction, we see that

$$
\begin{equation*}
\left\|\frac{f\left(5^{n} x\right)}{5^{2 n}}-f(x)\right\|_{X} \leq \frac{1}{|5|^{2}} \max \left\{\frac{\varphi\left(5^{k} x, 5^{k} x, 5^{k} x, 5^{k} x\right)}{|5|^{2 k}} ; 0 \leq k<n\right\} \tag{3.7}
\end{equation*}
$$

Indeed, (3.7) holds for $n=1$ by (3.5). Let (3.7) holds for n, so by (3.6), we have

$$
\begin{align*}
& \left\|\frac{f\left(5^{n+1} x\right)}{5^{2(n+1)}}-f(x)\right\|_{X}=\left\|\frac{f\left(5^{n+1} x\right)}{5^{2(n+1)}} \pm \frac{f\left(5^{n} x\right)}{5^{2 n}}-f(x)\right\|_{X} \tag{3.8}\\
& \leq \max \left\{\left\|\frac{f\left(5^{n+1} x\right)}{5^{2(n+1)}}-\frac{f\left(5^{n} x\right)}{5^{2 n}}\right\|_{X},\left\|\frac{f\left(5^{n} x\right)}{5^{2 n}}-f(x)\right\|_{X}\right\} \\
& \leq \frac{1}{|5|^{2}} \max \left\{\frac{\varphi\left(5^{n} x, 5^{n} x, 5^{n} x, 5^{n} x\right)}{|5|^{2 n}}, \max \left\{\frac{\varphi\left(5^{k} x, 5^{k} x, 5^{k} x, 5^{k} x\right)}{|5|^{2 k}} ; 0 \leq k<n\right\}\right\} \\
& =\frac{1}{|5|^{2}} \max \left\{\frac{\varphi\left(5^{k} x, 5^{k} x, 5^{k} x, 5^{k} x\right)}{|5|^{2 k}} ; 0 \leq k<n+1\right\} .
\end{align*}
$$

So for all $n \in \square$ and all $x \in G$, (3.7) holds. By taking n to approach infinity in (3.8), one obtain (3.4). If R is another mapping satisfies (3.4), then for $x \in G$, we get

$$
\|Q(x)-R(x)\|_{X}=\lim _{k \rightarrow \infty}\left\|\frac{Q\left(5^{k} x\right)}{5^{2 k}}-\frac{R\left(5^{k} x\right)}{5^{2 k}}\right\|_{X}
$$

$$
\begin{aligned}
& =\lim _{k \rightarrow \infty}\left\|\frac{Q\left(5^{k} x\right)}{5^{2 k}} \pm \frac{f\left(5^{k} x\right)}{5^{2 k}}-\frac{R\left(5^{k} x\right)}{5^{2 k}}\right\| \\
& \leq \lim _{k \rightarrow \infty} \max \left\{\left\|\frac{\| Q\left(5^{k} x\right)-f\left(5^{k} x\right)}{5^{2 k}}\right\|_{X},\left\|\frac{f\left(5^{k} x\right)-R\left(5^{k} x\right)}{5^{2 k}}\right\|_{X}\right\} \\
& \leq \lim _{j \rightarrow \infty} \lim _{n \rightarrow \infty} \max \left\{\frac{\varphi\left(5^{k} x, 5^{k} x, 5^{k} x, 5^{k} x\right)}{|5|^{2 k}} ; j \leq k<n+j\right\} \\
& =0
\end{aligned}
$$

Therefore $\mathrm{Q}=\mathrm{R}$. This completes the proof.
Corollary 3.2 Let $f: G \rightarrow X$ is a mapping satisfying the inequality

$$
\begin{align*}
\| f\left(2 x_{1} \pm x_{2} \pm x_{3} \pm x_{4}\right)=f\left(x_{1} \pm x_{3} \pm x_{4}\right) & +f\left(x_{1} \pm x_{2} \pm x_{3}\right)+f\left(x_{1} \pm x_{2} \pm x_{4}\right)+f\left(\pm x_{1}\right)-f\left(\pm x_{2}\right)-f\left(\pm x_{3}\right)-f\left(\pm x_{4}\right) \| \\
& \leq \delta\left(\eta\left(\left\|x_{1}\right\|\right)+\eta\left(\left\|x_{2}\right\|\right)+\eta\left(\left\|x_{3}\right\|\right)+\eta\left(\left\|x_{4}\right\|\right)\right) \tag{3.9}
\end{align*}
$$

for all $x_{1}, x_{2}, x_{3}, x_{4} \in G$. Then the limit $Q(x)=\lim _{n \rightarrow \infty} \frac{f\left(5^{n} x\right)}{5^{2 n}}$ exists for all $x \in G$ and $Q: G \rightarrow X$ is a unique quadratic mapping such that

$$
\|f(x)-Q(x)\| \leq \frac{25 \delta \eta(\|x\|)}{6|5|^{2}}
$$

for all $x \in G$.

IV. STABILITY OF THE QUADRATIC FUNCTIONAL EQUATION (1.4) - FIXED POINT METHOD

In this section, we establish the stability of the Quadratic functional equation (1.4) in NonArchimedean Banach Space using Fixed Point Method.
Theorem 4.1 Let $\varphi: G^{4} \rightarrow[0, \infty)$ be a function such that there exists and $L<1$ with

$$
\begin{equation*}
\varphi\left(\frac{x_{1}}{5}, \frac{x_{2}}{5}, \frac{x_{3}}{5}, \frac{x_{4}}{5}\right) \leq \frac{L}{|25|} \varphi\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \tag{4.1}
\end{equation*}
$$

for all $x_{1}, x_{2}, x_{3}, x_{4} \in G$. Let $f: X \rightarrow Y$ be a mapping satisfying $f(0)=0$ and (3.3) for all $x_{1}, x_{2}, x_{3}, x_{4} \in G$. Then there exists a unique quadratic mapping $Q: G \rightarrow X$ such that

$$
\begin{equation*}
\|f(x)-Q(x)\| \leq \frac{L}{|25|(1-L)} \varphi(x, x, x, x) \tag{4.2}
\end{equation*}
$$

for all $x \in G$.
Proof. Setting $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ by (x, x, x, x) in (3.3), we have

$$
\begin{equation*}
\|f(5 x)-25 f(x)\| \leq \varphi(x, x, x, x) \tag{4.3}
\end{equation*}
$$

for all $x \in G$. Now, consider the set $S:=\{h: X \rightarrow Y, h(0)=0\}$ and introduced the generalized metric on S :

$$
d(g, h)=\inf \left\{\mu \in \square_{+}:\|g(x)-h(x)\| \leq \mu \varphi(x, x, x, x), \forall x \in G\right\},
$$

where, as usual, $\inf \phi=+\infty$. It is easy to show that (s, d) is complete. Now we consider the linear mapping $J: S \rightarrow S$ such that

$$
J g(x):=25 g\left(\frac{x}{5}\right)
$$

for all $x \in G$. Let $g, h \in S$ be given such that $d(g, h)=\varepsilon$. Then

$$
\|g(x)-h(x)\| \leq \varepsilon \varphi(x, x, x, x)
$$

for all $x \in G$. Hence

$$
\begin{aligned}
\|J g(x)-J h(x)\| & =\left\|25 g\left(\frac{x}{5}\right)-25 h\left(\frac{x}{5}\right)\right\| \leq|25| \varepsilon \varphi\left(\frac{x}{5}, \frac{x}{5}, \frac{x}{5}, \frac{x}{5}\right) \\
& \leq|25| \varepsilon \frac{L}{|25|} \varphi(x, x, x, x) \leq \operatorname{L\varepsilon \varphi }(x, x, x, x)
\end{aligned}
$$

for all $x \in G$. So $d(g, h)=\varepsilon$ implies that $d(J g, J h) \leq L \varepsilon$. This means that

$$
d(J g, J h) \leq L d(g, h)
$$

for all $g, h \in S$. It follows from (4.3) that

$$
\left\|f(x)-25 f\left(\frac{x}{5}\right)\right\| \leq \varphi\left(\frac{x}{5}, \frac{x}{5}, \frac{x}{5}, \frac{x}{5}\right) \leq \frac{L}{|25|} \varphi(x, x, x, x)
$$

for all $x \in G$. So $d(f, J f) \leq \frac{L}{|25|}$. By Theorem 1.2, there exists a mapping $Q: G \rightarrow X$ satisfying the following:
(1) Q is a fixed point of J ,

$$
\begin{equation*}
\text { i.e., } Q(x)=25 Q\left(\frac{x}{5}\right) \tag{4.4}
\end{equation*}
$$

for all $x \in G$. The mapping Q is a unique fixed point of J in the set

$$
M=\{g \in S: d(f, g)<\infty\} .
$$

This implies that \mathbf{Q} is a unique mapping satisfying (4.4) such that there exists a $\mu \in(0, \infty)$ satisfying

$$
\|f(x)-Q(x)\| \leq \mu \varphi(x, x, x, x)
$$

for all $x \in G$;
(2) $d\left(J^{l} f, Q\right) \rightarrow 0$ as $l \rightarrow \infty$. This implies the equality

$$
\lim _{l \rightarrow \infty} 5^{2 n} f\left(\frac{x}{5^{n}}\right)=Q(x)
$$

for all $x \in G$;
(3) $d(f, Q) \leq \frac{1}{1-L} d(f, J f)$, which implies

$$
\|f(x)-Q(x)\| \leq \frac{L}{|25|(1-L)} \varphi(x, x, x, x)
$$

for all $x \in G$. It follows from (4.1) and (3.3) that

$$
\begin{aligned}
& \left\|Q\left(2 x_{1} \pm x_{2} \pm x_{3} \pm x_{4}\right)-Q\left(x_{1} \pm x_{3} \pm x_{4}\right)-Q\left(x_{1} \pm x_{2} \pm x_{3}\right)-Q\left(x_{1} \pm x_{2} \pm x_{4}\right)-Q\left(\pm x_{1}\right)+Q\left(\pm x_{2}\right)+Q\left(\pm x_{3}\right)+Q\left(\pm x_{4}\right)\right\| \\
& =\lim _{n \rightarrow \infty}|5|^{2 n}\left\|f\left(\frac{2 x_{1} \pm x_{2} \pm x_{3} \pm x_{4}}{5^{n}}\right)-f\left(\frac{x_{1} \pm x_{3} \pm x_{4}}{5^{n}}\right)-f\left(\frac{x_{1} \pm x_{2} \pm x_{3}}{5^{n}}\right)-f\left(\frac{x_{1} \pm x_{2} \pm x_{4}}{5^{n}}\right)-f\left(\frac{ \pm x_{1}}{5^{n}}\right)+f\left(\frac{ \pm x_{2}}{5^{n}}\right)+f\left(\frac{ \pm x_{3}}{5^{n}}\right)+f\left(\frac{ \pm x_{4}}{5^{n}}\right)\right\| \\
& \leq \lim _{n \rightarrow \infty}|5|^{2 n} \varphi\left(\frac{x_{1}}{5^{n}}, \frac{x_{2}}{5^{n}}, \frac{x_{3}}{5^{n}}, \frac{x_{4}}{5^{n}}\right)=0
\end{aligned}
$$

for all $x_{1}, x_{2}, x_{3}, x_{4} \in G$. So

$$
\left\|Q\left(2 x_{1} \pm x_{2} \pm x_{3} \pm x_{4}\right)-Q\left(x_{1} \pm x_{3} \pm x_{4}\right)-Q\left(x_{1} \pm x_{2} \pm x_{3}\right)-Q\left(x_{1} \pm x_{2} \pm x_{4}\right)-Q\left(\pm x_{1}\right)+Q\left(\pm x_{2}\right)+Q\left(\pm x_{3}\right)+Q\left(\pm x_{4}\right)\right\|=0
$$

for all $x_{1}, x_{2}, x_{3}, x_{4} \in G$. By Theorem 2.3, the mapping $Q: G \rightarrow X$ is quadratic.
Corollary 4.2 Let $r<5$ and λ be non negative real numbers and let $f: X \rightarrow Y$ be a mapping satisfying $f(0)=0$ and
$\left\|f\left(2 x_{1} \pm x_{2} \pm x_{3} \pm x_{4}\right)=f\left(x_{1} \pm x_{3} \pm x_{4}\right)+f\left(x_{1} \pm x_{2} \pm x_{3}\right)+f\left(x_{1} \pm x_{2} \pm x_{4}\right)+f\left(\pm x_{1}\right)-f\left(\pm x_{2}\right)-f\left(\pm x_{3}\right)-f\left(\pm x_{4}\right)\right\|$

$$
\begin{equation*}
\leq \lambda\left(\left\|x_{1}\right\|^{r}+\left\|x_{2}\right\|^{r}+\left\|x_{3}\right\|^{r}+\left\|x_{4}\right\|^{r}\right) \tag{4.5}
\end{equation*}
$$

for all $x_{1}, x_{2}, x_{3}, x_{4} \in G$. Then there exists a unique quadratic mapping $Q: G \rightarrow X$ such that

$$
\|f(x)-Q(x)\| \leq \frac{25 \delta \eta(\|x\|)}{6|5|^{2}}
$$

for all $x \in G$.
Proof. The proof follows from Theorem 4.1 by taking $\varphi\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\lambda\left(\left\|x_{1}\right\|^{r}+\left\|x_{2}\right\|^{r}+\left\|x_{3}\right\|^{r}+\left\|x_{4}\right\|^{r}\right)$ for all $x_{1}, x_{2}, x_{3}, x_{4} \in G$. Then we can choose $L=|5|^{2-r}$ and we get the required result.

V. CONCLUSION

Throughout this paper, we introduced the following results:
(i) In the section II, we established the general solution for the functional equation (1.4)
(ii) In section III, we investigated the stability of the Quadratic functional equation (1.4) in NonArchimedean Banach Space using Direct Method and also the output of the stability results exposed in Corollary 3.2.
(iii) In the section IV, we estimated the stability of the Quadratic functional equation (1.4) in NonArchimedean Banach Space using fixed Method and also the output of the stability results exposed in Corollary 4.2.

REFERENCES

[1] S.Alizadeh, F. Moradlou, Approximate a quadratic mapping in multi-Banach spaces, a fixed point approach, Int. J. Nonlinear Anal. Appl.Vol. 7, 63-75, 2016.
[2] J.Brzdek, L. Cǎdariu and K. Cieplinski, Fixed point theory and the Ulam stability, J. Function Spaces, Art.ID 829419, 2014.
[3] L.Cǎdariu and V. Radu, Fixed points and the stability of Jensen's functional equation, J. Inequal. Pure Appl. Math., Art. ID 4 ,2003.
[4] L.Cǎdariu and V. Radu, On the stability of the Cauchy functional equation: a fixed point approach, Grazer Math. Ber., Vol. 346, 4352, 2004.
[5] L.Cǎdariu and V. Radu, Fixed point methods for the generalized stability of functional equations in a single variable, Fixed Point Theory Appl., Art. ID 749392, 2008.
[6] J.Diaz and B. Margolis, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc., Vol. 74, 305-309, 1968.
[7] Dong Yun Shin, Hassan Azadi Kenary, N. Sahami, Hyers-Ulam-Rassias Stability Of Functional Equation in NAB-Spaces, Inter. J. Pure and Appl. Math.,Vol. 95 (1), 1-11, 2014.
[8] G.Isac and Th. M. Rassias, Stability of ψ-additive mappings: Applications to Nonlinear analysis, Inter. J. Math. Math. Sci., Vol.19, 219-228, 1996.
[9] M.S.Moslehian and Gh. Sadeghi, A Mazur-Ulam theorem in non-Archimedean normed spaces, Nonlinear Anal.-TMA , Vol. 69 ,34053408, 2008.
[10] S.Murthy, V.Govindhan, M.SreeShanmugaVelan, Solution and stability of two types of n-Dimensional Quartic Functional Equation in generalized 2- normed spaces, Int. J. Pure and Applied Math., 111(2), 249-272, 2016.
[11] S.Murthy, V.Govindhan and M.SreeShanmugaVelan, Generalized U - H Stability of New n - type of Additive Quartic Functional Equation in Non - Archimedean, Int. J. Math. Appl., 5 (2-A), 1- 11, 2017.
[12] S.Murthy\&V.Govindhan, General solution and generalized hu (Hyers - Ulam) Statbility of New Dimension cubic functional equation. in Fuzzy Ternary Banach Algebras: Using Two different Methods, Int. J. Pure and Applied Math.,113(6),2017.
[13] P.Narasimman, K. Ravi and Sandra Pinelas, Stability of Pythagorean Mean Functional Equation, Global J. Math., 4(1), 398-411, 2015.
[14] V.Radu, The fixed point alternative and the stability of functional equations, Fixed Point Theory , Vol. 4, 91-96, 2003.
[15] K.Ravi, J. M. Rassias, Sandra Pinelas and P. Narasimman, The Stability of a Generalized Radical reciprocal Quadratic Functional Equation in Felbin's Space, Pan American Mathematical Journal, 24(1), 75-92, 2014.
[16] K.Ravi, J. M. Rassias, Sandra Pinelas and R. Jamuna, A Fixed Point Approach to the Stability Equation in Paranormed Spaces, Pan American Mathematical Journal,24(2),61-84,2014.

