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Abstract  

             This paper analyzes a M/M/1 queueing model with multiple input, where the rate of arrival and service 

capacity follow Poisson distribution. The arrival process of the model remains in three stages said to be state I, II, 

and III. The system remains in three state for a random time which is exponentially distributed. The queue discipline 

is first-in-first-out. Laplace transforms of the various probability generating functions are obtained and the steady 

state results are derived. The probability that the arrival process (input) will be. In state I, II and III is also 

analyzed. 
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I. INTRODUCTION 
 

      Queuing theory is the mathematical study of waiting lines, or queues [1]. In queuing theory, a model is 

constructed so that queue lengths and waiting times can be predicted [1].  Queuing theory is generally considered a 

branch of operations research because the results are often used when making business decisions about the resources 

needed to provide service. Queuing theory explored with research  by Agner Krarup Erlang when he created models 

to describe  the Copenhagen telephone exchange [1]. The word queue comes via French, from the Latin cavda, 

meaning tail. The spelling “queuing” over “queuing” is typically encountered in academic research field. In fact, one 

of the flagship journals of the profession is named Queuing Systems. 

In queuing system, utilization plays the crucial role and is defined as the proportion of the system„s resources which 

is used by the traffic which arrives at it. It should be strictly less than one for the system to function well. It is 

usually denoted by the symbol  . If 1  , then the queue will continue to grow as time goes on. In the simplest 

case of an M/M/1 queue  (Poisson arrivals and a single Poisson server) then it is given by the mean arrival rate over 

the mean service rate, that is,  





 , where   is the mean arrival rate and   is the mean service rate.  

More generally:  

c








, where   is the mean arrival rate,   is the mean service rate and c  is the number of servers, such as 

in an M/M/ c  queue.   
 

        In general, a lower utilization corresponds to less queuing for customers but means that the system is more idle, 

which may be considered inefficient. 

A useful queuing model represents a real life system with sufficient accuracy and is analytically tractable. A queuing 

model based on the Poisson process and its companion exponential probability distribution often meets two 

requirements. A Poisson process models random events as maintaining from a memoryless process. That is, the 

length of time interval from the current time to the occurrence of the next event does not depend upon the time 

occurrence of the last event.  
 

        Applications of queuing with customer impatience can be seen in business, traffic modeling and industries, 

computer-communication, health sector and medical science etc.,. A set of queuing problems by Avi-Itzhak and 

Naor [2] and Gaver [4]  may be considered as possessing characteristics of service heterogeneity, to wit, when the 

service station is subject to breakdown. Krishanamoorthy [6] considers a Poisson queue with two-heterogeneous 

servers with modified queue disciplines. The steady-state solution, transient solution and busy period distribution for 
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the first discipline and the steady-state solution for the second discipline are obtained. Singh [8] extends the work of 

Krishanamoorthy [6] on heterogeneous servers by incorporating balking to compares results with homogeneous 

servers queue to show that the conditions under which the heterogeneous system is better than corresponding 

homogeneous system. Heterogeneous researches in the area of queuing theory have been studied be  Yechiali and 

Naor [9], Neuts [11],  Murari and Agarwal [12]. In the queuing model studied in [9], the arrival pattern at a service 

station is Poisson, the service time distribution is taken as negative exponential and the parameters depend on the 

environment. In the queuing model studied by Murari and Agarwal [12], the arrival process breaks down with two 

arrival intensities viz.,   and 0. The system with zero arrival rate is repaired and then brought to stage I having   

as mean arrival rate. In a research paper by I. M. Premachandra and Liliana Gongalez [14], the service mechanism 

consists of three stages performed in sequence by two servers.  Kumar and Sharma [19] study the two-

heterogeneous server Markovian queuing model with discouraged arrivals, reneging and retention of reneged 

customers. The steady-state probabilities of system size are obtained explicitly using iterative method and also 

discussed some useful measures of effectiveness.  

 

          In the ensuing problem, the arrival pattern is non-homogeneous, i.e., there exists three different arrival rates, 

viz., 
1

  (when input source in state I), 
2

  (when input source in state II) and  zero (when input in state III). Further, 

it is assumed that 
2

  lower than 
1

  (i.e.,
2

 <
1

 ). The input source is operative in one state at a time. The queue 

discipline is first in first out which states that customers are served one at a time and that the customer that has been 

waiting the longest is served first. The service time of customers is exponentially distributed with Poissonian service 

rate   corresponding to arrival rates 
1

 , 
2

  and 0 (zero). The system starts with input source in the state I. The 

time interval during which the inputs function at any one level is an exponentially distributed random variable. The 

state I can jump to state II and state III with Poisson intensity 
1 2 1 3

 a n d     respectively. 

 

         The model under consideration possesses many practical use, e.e., consider a machine which can be in one of 

three states, i.e., state I (machine working with full capacity), state II (machine working with low capacity), and state 

III (machine not in working condition i.e., broken down). The state I can jump in state II by reasons like power 

shortage, go slow practice of workers, or shortage of raw material and in state III by reasons like power failure, 

strike of workers, or machinery failure etc., . Let us assume that a machine in state I will remain in this way for a 

random time and will go either state II or state III. A machine in state II will remain in that way for a random time 

and will then go to either state I or state III. A broken machine (state III) will be repaired and when repaired it may 

go to state I. If the machine is manufacturing some items then it may be identified as an input source. The behavior 

of input source exactly the same as that of machine. Thus, the input source remains in three states. 
 

II. FORMULATION OF MODEL 
 

(i) A stream of Poisson-type unit arrives at a single service station. There exists three different arrival rates 
1

 , 

2
  and 0 (zero), only one of which is operative at any instant. 

(ii) The system has Poissonian rate   to arrival rates 
1

 , 
2

  and 0 (zero). The state of the system, operating 

with arrival rate 
1

  is designated as P, operating with arrival rate 
2

  is designated as L, and operating with 

arrival rate zero is designated as M. 

(iii) The queue discipline is first-in-first-out. 

(iv) The Poisson rate at which the input source moves from state P to L or L to P and from state P to M or M to 

P and from state L to M are denoted by 
1 2 2 1

,   and 
1 3 3 1

,   and   respectively. 

(v) The system starts with input source in the state I. 

(vi) If at any instant the queue length is N, then the arriving customers will be considered lost for the system. 

(vii) The service is instantaneous. 
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The transition rate from one state to another state is as shown in the following diagram 1:
  

                                                                          
1 2

  

                                                             
               2 1

   

                                       State                                                                                                                                   

                                                                          
1 3

                                                      

                                                                        
3 1


 

 

 

          Further, service time is assumed to be exponentially distributed with parameter 


 for all states of the input. 

The stochastic processes involved, viz., interarrival time of units and service time of customers are independent of 

each other. 

The paper divided in two sections (A and B). The following results have been analyzed. 

SECTION A (TIME DEPENDENT SOLUTION) 

(i) . . '
S

L T of the probability generating function distribution of the  number of units in the system for 

different states of the input in both limited and unlimited space.  

(ii) . . '
S

L T of the  probabilities for different states of the input. 

SECTION B (STEADY STATE SOLUTION)  

(i) Explicit steady state probabilities for different states of the input.  

(ii) Explicit steady state probability generating function of the distribution of the number of units in the 

system for different states of the input.   

III. SOLUTION OF QUEUING MODEL 

         In this section, the mathematical framework of the queuing model is presented. The time dependent and steady 

state solution of the problem have been discussed.   

A. Time Dependent Solution  
     Define,  

 n
P t  = Probability that at time t, the input is in the state I and n units are       

        in the system, including one in service. 

 n
L t  = Probability that at time t, the input is in the state II and n units are     

        in the system, including one in service. 

( )
n

M t = Probability that at time t, the input is in the state III and n units are     

       in the system, including one in service. 

 n
R t  =     Probability that n units are in the system at time t, including one in service. 

Obviously, 

 ( ) ( ) ( )
n n n n

R t P t L t M t    

Initial conditions: 

Let the time be reckoned   from the instant when the queue length is zero and the input source is   in the  state I.  

 

 

          State I 

     State II 

     State III 



International Journal of Mathematics Trends and Technology (IJMTT) – Volume 60 Number 4 - August 2018 

ISSN: 2231-5373                               http://www.ijmttjournal.org                            Page 208 

 
1 , 0

0
0 ,

n

n
P

o th rew ise


 


 

     

L (0 ) 0 ,          0
n

n    

 

                             M (0 ) 0 ,          0
n

n    

Define the following probability generating functions of   n
P t ,   n

L t ,   n
M t  and   n

R t  by: 

0

( , ) ( )

N

n

n

n

P z t z P t



   

0

L ( , ) ( )

N

n

n

n

z t z L t



   

0

M ( , ) ( )

N

n

n

n

z t z M t



   

0

( , ) ( )

N

n

n

n

R z t z R t



   

These must converge within the unit circle 1z  . 

KQL MOGORV‟S forward differential equations lead to the model: 

For State I 

1 1 2 1 3 0 1 2 1 0 3 1 0
( ) ( ) ( ) ( ) ( ) ( )

o

d
P t P t P t L t M t

d t
                                                                         (1.1) 

1 1 1 2 1 3 1
( ) ( ) ( ) ( ) ( ) ( ) ,

n n n n n n

d
P t fP t P t P t L t M t

d t
   

 
         0˂n˂N                                                (1.2) 

1 1 1 2 1 3 1
( ) ( ) ( ) ( ) ( ) ( )

N N N N N

d
P t P t f P t L t M t

d t
   


                                                                        (1.3) 

                     Where    
1 1 2 1 3

( )f          

For State II 

2 2 1 0 1 1 2 0
( ) ( ) ( ) ( ) ( )

o

d
L t L t L t P t

d t
                                                                                              (1.4) 

2 1 1 1 2
( ) ( ) ( ) ( ) ( )

n n n n n

d
L t g L t L t L t P t

d t
  

 
          0˂n˂N                                                                   (1.5) 

2 1 2 1 1 2
( ) ( ) ( ) ( ) ( ) ( )

N N N N N

d
L t L t g L t L t L t

d t
   

 
                                                                        (1.6)  

Where 
2 2 1

     )  (g          
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For State III 

0 3 1 0 1 1 3 0 0
( ) ( ) ( ) ( ) ( )

d
M t M t M t P t L t

d t
                                                                                          (1.7) 

1 1 2
( ) ( ) ( ) ( ) ( ) ,

n n n n n

d
M t h M t M t P t L t

d t
  


      0˂n˂N                                                                     (1.8)  

1 3
( ) ( ) ( ) ( ) ,

N N N N

d
M t h M t P t L t

d t
                                                                                                         (1.9) 

 Where 
1 2

 (      )h      

Multiplying (1.1 – 1.9) by appropriate powers of z, using their respective probability generations function, taking 

L.T.‟s and using initial conditions, we have 

1

1 21 31 10
( , ) ( , ) ( 1) ( ) ( , ) ( , ) ( 1) ( )

N
Nk z s P z s z z p s z L z s z M z s z z P s   


                             (1.10) 

1
0

2 12 2
( , ) ( , ) ( 1) ( ) ( , ) ( 1) ( )

N
Nk z s L z s z L s z P z s z z L s  


                                                           (1.11) 

0
3 13
( , ) ( , ) ( 1) ( ) ( , ) ( , )k z s M z s z M s z P z s z L z s                                                                           (1.12) 

We have 

 1 1 1 2 1 3
( , ) (1 )k z s z s z            

 

 2 2 2 1
( , ) (1 )k z s z s z            

 

 3 3 1
( , )k z s z s        

 

Solving equations (1.10 – 1.12), we get 

   

  

0 0
2 3 2 1 3 3 1 3 1 20

1

1 2 3 2 3 1 3 3 1

2

1 2 3 1 2 2 1 3 1 3 3 1 2

( 1) ( ) ( , ) ( , ) ( 1) ( , ) ( ) ( 1) ( , ) ( )

( 1) ( , ) ( , ) ( ) ( , ) ( , )

( , )
( , ) ( , ) ( , ) ( , ) (

N
N N

z z p s k z s k z s z z k z s z L s z z k z s M s

z z k z s k z s P s z k z s z L z s

P z s
k z s k z s k z s z k z s k z

      

    

   



       
 

 
   

 


  
3

1 2 3 1
, )s z  

(1.13)

 

   

2 2 2
0 0

1 2 3 1 2 3 1 1 3 1 2 3 1 2 3 10

1 2

1 2 1 3 2 1 3 1 3 3 1

2

1 2 3 1 2 2 1 3 1 3 3 1 2

( , ) ( 1) ( , ) ( , ) ( ) ( , ) ( ) ( )

( 1) ( , ) ( ) ( , ) ( , ) ( )

( , )
( , ) ( , ) ( , ) ( , ) ( ,

N
N

N

z k z s z k z s k z s z L s z k z s p s z M s

z z z k z s p s k z s k z s z L s

L z s
k z s k z s k z s z k z s k z

      

    

   



    
 

    
 


  

3

1 2 3 1
)s z  
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(1.14)

   

 

   

2 2
0

1 3 2 1 2 1 1 3 2 10
3

1 2
2

0
1 2 1 2 2 1

1

1 1 2 1 3 1 2 1 3 2 1 1

2

1 2 3 1 2 2 1 3

( , ) ( ) ( , ) ( )

( 1)

( , ) ( , ) ( )

( 1) ( , ) ( ) ( , ) ( )

( , )
( , ) ( , ) ( , ) (

N
N N

z k z s z p s z k z s z L s

z z

k z s k z s z M s

z z z z k z s P s z z k z s L s

M z s
k z s k z s k z s z k

     

  

 

       

 



    
  
 
 

     
 


  

3

1 3 3 1 2 1 2 3 1
, ) ( , )z s k z s z    

  

(1.15) 

              Equations (1.13 -1.14) give the values of L.T‟s of p.g.f. of the distributions of the number of units for 

different states of the input source. These are explicitly known if the five unknowns, viz., 0 ( )P s , 0 ( )L s , 0 ( )M s ,

( )NP s  and ( )NL s  involved in these equations are determined. We observed the highest power of z in the 

numerator of each of the above mentioned equations in (N+5), and highest power of z in their denominators in five. 

Moreover, ( , )P z s etc. are polynomial of N degree. Hence, five zeros in the denominators of (1.13 -1.15) must 

vanish their numerators giving rise to five equations, we find their numerators giving rise to five equations in five 

above written unknowns. Solving this set of five equations, we find their values, therefore, ( , )P z s , ( , )L z s and

( , )M z s  are known. Thus, 

( , ) ( , ) ( , ) ( , )R z s p z s L z s M z s                                                                                                                 (1.16) 

Letting N   , equations (1.13 -1.15) in unlimited space,  

   

 

0 0
2 3 2 1 3 3 1 3 1 20

2 3

1 2 3 1 2 2 1 3 1 3 3 1 2 1 2 3 1

( 1) ( ) ( , ) ( , ) ( 1) ( , ) ( ) ( 1) ( , ) ( )

( , )
( , ) ( , ) ( , ) ( , ) ( , )

z z p s k z s k z s z z k z s z L s z z k z s M s

P z s
k z s k z s k z s z k z s k z s z

      

     

       
 


  

 (1.17)   

 

 

2 2 2
0 0

1 2 3 1 3 3 1 1 3 1 2 3 1 2 3 10

2 3

1 2 3 1 2 2 1 3 1 3 3 1 2 1 2 3 1

( , ) ( 1) ( , ) ( , ) ( ) ( , ) ( ) ( )

( , )
( , ) ( , ) ( , ) ( , ) ( , )

z k z s z k z s k z s z L s z k z s p s z M s

L z s
k z s k z s k z s z k z s k z s z

      

     

     
 


  

 (1.18) 

   

 

 

2 2
0

1 3 2 1 2 2 1 20
3

1 2
2

0
1 2 1 2 2 1

2 3

1 2 3 1 2 2 1 3 1 3 3 1 2 1 2 3 1

( , ) ( ) ( , ) ( )

( 1)

( , ) ( , ) ( )

( , )
( , ) ( , ) ( , ) ( , ) ( , )

z k z s z p s z k z s z L s

z z

k z s k z s z M s

M z s
k z s k z s k z s z k z s k z s z

     

  

 

     

    
  
 
 


  

            (1.19) 

Substituting the values ( , )P z s  etc. in (1.16), ( , )R z s  is also known in terms of three unknowns, viz., 

0
0

( ), ( ) ( )p s L s and M s  for determining ( , )R z s , completely, we proceed as follows: 

We now prove that each of 
1 2 3
( , ) , ( , ) ( , )k z s k z s a n d k z s  has a zero inside the unit circle 1z  . 

Write    
 1 1 2 1 3

( ) (1 )

( )

g z z s z

f z

   



     



 

To apply Rouche‟s theorem, we observe, 
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(i) Both ( )   ( )g z a n d f z  are analytic inside and on the contour  1z   

(ii) On 1z   

Therefore, we see that ( )g z  and  
1
( , ) ( ) ( )k z s g z f z  have the same number of zeros inside the unit circle 

1z  . Since ( )g z  has one zero inside the unit circle, 

  1 1 2 1 3
1z s z        > ,  for Rl ( )s > 0 

Ie, ( )g z > ( )f z  

Therefore 
1
( , )k z s  also has one zero inside the unit circle. 

Similarly it can be proved that each of  
1
( , )k z s  and 

3
( , )k z s   also has one zero inside the unit circle. 

The denominator of each equations (1.17-1.19) is of five degree in z. it is given by 

  
2 3

1 2 3 2 13 31 12 21 3 12 31
( , ) ( , ) ( , ) ( , ) ( , )k z s k z s k z s z k z s k z s z        . 

It is also the denominator of ( , )R z s  

Taking   
2

1 2 3 1 2 2 1 3 1 3 3 1 2
( ) ( , ) ( , ) ( , ) ( , ) ( , )G z k z s k z s k z s z k z s k z s      

 
 

3

1 2 3 1
( )F z z    

(i) Both  ( )G z  and ( )F z  are analytic inside and on the contour  1z   

(ii) On 1z   

 Hence ( )G z > ( )F z  

Both the conditions of Rouche‟s theorem are true. 

 Therefore ( )G z  and ( ) ( )G z F z  both will have same number of zeros inside the unit circle 1z  , 

( ) ( )G z F z  will also have three zeros inside the 1z  . 

Since ( , )R z s , in unlimited space, is a power series. It is differentiable inside the unit circle 1z  . 

Hence three zeros of denominator in ( , )R z s , which are inside 1z   must vanish its numerator giving rise to 

three equations in three unknowns, viz, 0 0 0( ) , ( )   ( )P s L s a n d M s . Solving these three equations one can 

determine these three unknowns occurring in the numerator of ( , )R z s . 

Thus ( , )R z s  is obtained completely. 

B. Different States of Input Source 
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         Setting 1z   in equation (1.10-1.12). 

12 13 21 31
( ) (1, ) 1 (1, ) (1, )s P s s M s                                                                                                   (1.20) 

12 12
( ) (1, ) (1, )s L s P s                                                                                                                            (1.21) 

31 13
( ) (1, ) (1, ) (1, )s M s P s L s                                                                                                               (1.22) 

Solving (1.20-1.22), we have 

2 1

1 2 2 1

( )
(1, )

( )

s
P s

s s

 

  

 


  
                                                                                                                            (1.23) 

1 2

1 2 2 1

(1, )
( )

L s
s s



  


  
                                                                                                                            (1.24) 

  

 

1 3 2 1 1 2

3 1 1 2 2 1

(1, )
( )

s
M s

s s s

   

   

  


   
                                                                                                          (1.25) 

Taking inverse L.T. Of equations (1.23-1.25) 

1 2 2 1
( )

2 1 1 2

1 2 2 1

1
(1, ) ( )

( )

t
p t e

  
  

  

  
   
 

 
 

≡  Probability that at time t the input in the state I. 

1 2 2 1
( )1 2

1 2 2 1

(1, ) 1
( )

t
L t e

  

  

  
  
 

 
  

≡  Probability that at time t the input will be in state II. 

 1 3 2 1 1 2

3 1 1 2 2 1

( )
(1, )

( )
M t

   

   

  
  

  

 

  ─
 

3 1
( )1 3 3 1 2 1 1 2

3 1 1 2 2 1 3 1

(

(

t
e


    

    


   

 
   

 

  
    

   

1 2 2 1
1 3 2 1 2 1 1 2 1 2 3 1 1 3 ( )

3 1 1 2 2 1 1 2 2 1 3 1

t
e

  
       

       

  
   

  
      

 

≡  Probability that at the time t the input will be in the state III. 

C. Steady State Solution  

            The steady state solution can be obtained by the well – known properly of the L, T., viz., 

  
0

( ) ( )
s t

L im sF s L im F t
  

                                                 (1.26) 
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If  the limit on the right exists. 

 

Thus, if  

             ( )
n n

t

L im P t P
 

     

We have,  

             
0

( )
n n

s

L im sP s P


    etc.  

Using property (1.26) to equations (1.10 -1.12) and letting N tend to infinity, we have. 

1 0 2 1 3 1
( ) ( ) ( 1) ( ) ( )k z P z z P z L z z M z                                                                                          (1.27) 

2 0 1 2
( ) ( ) ( 1) ( )k z L z z L z P z                                                                                                             (1.28) 

3 0 1 3
( ) ( ) ( 1) ( ) ( )k z M z z M z P z z L z                                                                                          (1.29) 

Where        1 1 1 2 1 3
( ) (1 )k z z z           

 

                   2 2 2 1
( ) (1 )k z z z           

 

                   3 31
( ) ( )k z z        

Setting Z=1 in equations (1.27 -1.29). 

1 2 1 3 2 1 3 1
( ) (1) (1) (1)P L M                                                                                                               (1.30) 

 21 12
(1) (1)L P                                                                                                                                  (1.31) 

3 1 1 3
(1) (1) (1)M P L                                                                                                                             (1.32) 

Equation (1.30 -1.32) give, 

(1)P   The Steady state probability that the system will be in the state I 

 

2 1

1 2 2 1

 

  




 
                                                                                                                    (1.33) 

   (1)L    The Steady state probability that the system will be in the state II 

  
 

1 2

1 2 2 1



  


 
                                                                                                                    (1.34)  

(1)M    The Steady state probability that the system will be in the state III. 

 
  

 

1 3 2 1 1 2

3 1 1 2 2 1

   

   

 


 
                                                                                                                      (1.35) 

Equation (1.27 -1.29) give  
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     

 

2 3 0 0 2 1 3 3 1 0 3 1 2 0

2 3

1 2 3 1 2 2 1 3 1 3 3 1 2 1 2 3 1

( 1) ( ) k ( ) ( ) ( )
( )

( ) k ( ) k ( ) ( ) ( )

z k z z P P z k z z L z k z M
P z

k z z z z k z k z z

   

     

     


  
                              (1.36) 

       

 

2 2

1 3 3 1 1 3 0 1 2 2 0 1 2 3 1 0

2 3

1 2 3 1 2 2 1 3 1 3 3 1 2 1 2 3 1

( 1) ( ) k ( ) ( )

( )
( ) k ( ) k ( ) ( ) ( )

z k z z z L z k z P z M

L z
k z z z z k z k z z

     

     

    
 


  

                              (1.37) 

     

 

2 2 2

1 3 2 1 2 0 1 1 3 2 1 0 1 2 1 2 2 1 0

2 3

1 2 3 1 2 2 1 3 1 3 3 1 2 1 2 3 1

( 1) ( ) ( ) ( ) k ( )

( )
( ) k ( ) k ( ) ( ) ( )

z z k z z P z k z z L k z z z M

M z
k z z z z k z k z z

        

     

      
 


  

 

                                                        (1.38) 

The denominator of ( ), ( )p z L z and ( )M z , 

c is of 5th  degree in z. So this must have five Zeros. We now prove that it has three zeros inside and two zeros 

outside the unit circle 1z  . 

 1 1 1 2 1 3
( ) (1 )k z z z           

 has two zeros, viz., 
1

  and  
2

  whose values are given by 

    
2

1 1 1 2 1 3 1 1 2 1 3 1

1

1
4

2
          



 
        

 
 

 

    
2

2 1 1 2 1 3 1 1 2 1 3 1

1

1
4

2
          



 
        

 
 

 

As proved earlier 
1
( , )k z s  has two real zeros, one inside and other outside of unit circle 1z  . 

Therefore, we say 
1

  is inside and 
2

  is outside of 1z  . 

 2 2 2 1
( ) (1 )k z z z           

, has two real zeros, viz., 
3

  and 
4

  whose values are given by; 

    
2

3 2 2 1 2 2 1 2

2

1
4

2
          



 
        

 
 

 

    
2

4 2 2 1 2 2 1 2

2

1
4

2
          



 
        

 
 

 

By the gives earlier 
3

  is inside and
4

  is outside 1z  . 

  3 31
( )k z       has one zero, viz., 

5
  

So,    
5

3 1




 



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Which is clearly inside 1z  . 

So, we Conclude that the zeros
1

 ,
3

  and 
5

  are inside of 1z  . and
2

 ,
4

  are outside 1z  .  

Observing (1.37) a factor (z-1) is common in numerator and denominator of ( )L z . We cancel this factor. The 

denominator of ( )L z will now have four zeros, two inside and two outside of 1z  .  We Now proceed to prove 

that denominator of ( )L z  has two real zeros outside the unit circle   1z  .   

Let  
2 3

1 2 3 12 21 3 13 31 2 12 31
( ) ( ) k ( ) k ( ) ( ) ( )f z k z z z z k z k z z          

          
 

3

1 2 3 1

1 2 3 4 5

1 2 3 1

z
z z z z z

 
    

   
      


                                                  (1.39) 

Dividing   ( )f z by ( 1)z   and taking limit of z tends to infinity, we find that   

( )
lim

1z

f z

z  
>0 

If we take limit as z tends to 1. Then 

       3 1 2 1 1 2 3 1 1 3 2 1 1 2 3 1 2 1 1 2 1 2
1

( )
lim

1z

f z

z
               



         
 


 

This is obtained by using L‟ Hospital‟s rule. 

For 
( )

( 1)

f z

z 
 to have even number of real zeros between 1 and , 

1

( )
lim 0 ,

1z

f z

z




 i.e., 

       3 1 2 1 1 2 3 1 1 3 2 1 1 2 3 1 2 1 1 2 1 2
                       

 
> 0                                 (1.40) 

 and this must be true, as  this is the condition of ergodicity , 

 Which is proved as below? 

Effective arrival rate of units is  1 2
(1) (1) ,P L   as it represents the total number of arrivals in one unit of time 

when the input is in working state (I and II). 

Total number of units served by the system in one unit of time are  (1) (1) (1) .P L M    
 

Condition of ergodicity demands that effective arrival rate be less them effective service rate. Therefore, 

   1 2
(1) (1) (1) (1) (1)P L P L M      . 

Substituting the values of  (1), (1) (1)P L a n d M  from equations (1.30 -1.32), We obtain, 
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    
  1 3 2 1 1 2

1 2 1 2 1 2 2 1 1 2

3 1

   
        



  
      

  

 

Or               3 1 2 1 1 2 3 1 1 3 2 1 1 2 1 2 1 2 1 2
                       
 

> 0                   (1.41)  

We find that (1.40) and (1.41) are identical and this gives the condition of ergodicity. 

 This Concludes that 
( )

lim
1z

f z

z  
 and 

1

( )
lim

1z

f z

z 
  have like signs, so an even number of zeros of ( )f z  lie in 

between 1 and  . 

 We proceed to prove that
( )

1

f z

z 
 has two zeros say

1 2
  z a n d z , which lie outside 1z    

Considering
4

 > 
2

 , we have from (1.39). 

   2

3

2 1 2 3 1

2 1 2 3 1

( )
lim

( 1) 1z

f z

z

  

    

  
  

 

Sign changes between 1 and 
2

 . So there is a real zero, say
1

z , in between 1 and 
2

 . 

   4

3

4 1 2 3 1

4 1 2 3 1

( )
lim 0

( 1) 1z

f z

z

  

    

 
  

  

Like sign between 
2

 and 
4

 . But there is a change of sign in between
4

 and  . So there is a real zero, say
2

z , is 

between 
4

  and  . This conclude that two real zeros of
( )

1

f z

z 
, 

1
z  and 

2
z  lie in the interval 

 2
1,  and   4

,   respectively.  

         The two zeros of the denominator in (1.37) which are inside 1z  . Must vanish its numerator, ( )L z is a well 

defined functions inside the unit circle. Thus, cancelling two factors in the numerator and in the denominator 

corresponding to these zeros, then equations (1.33) reduces to the following form: 

 
 1 2

( )
( )

A B
L z

z z z z
 

 
 

Where A and B are to determined. 

Setting 1z  . 

1 2

(1)
1 1

A B
L

z z
 

 
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Using (1.31),
 

 

 

 

1 1 1 2

2 1 2 3 1

1 1

1

B z z
A

z



  

  
   

  
 

  

Therefore, ( )L z  in term of B is 

   

     

 

   

2 1 1 1 2

2 2 1 1 1 2 2 1

1 1
( )

1

B z z z z
L z

z z z z z z z



  

  
 

     
                                                                          (1.42) 

 

 

 

 

1 2 1

0

1 2 2 1 1 2 2 1

1

1

B z z z
L

z z z z   

 
 

  
                                                                                                             (1.43) 

Substituting the values of ( )L z  and 
0

L  from (1.42) and (1.43) in equation (1.28). 

   

 

  

   

2 2 12 1

2 1 2 1 2 1 2

11
(z )

1

zB z z z
P

z z z z z z z z z

     



     
   

    

 

 

   
  

   1 1

2 2 1

1 1 2 2 1 1

1 1
1

z z z z
z

z z z z


   

  

   
       

    

                                      (1.44) 

Setting z=0 in (1.44) 

 

 

   

 
 

1 2 2 2 1 1

0 2 2 1

1 2 2 1 2 1 1 2 2 1

1

1

B z z z
P

z z z z

   
   

   

     
     

   

                                        (1.45) 

Substituting the values of ( ), ( )L z P z  and 
0

P  from equations (1.42) ,(1.44) and (1.45) in equation (1.27), 

   

 

      

   

   

 

     

1 1 2 1 3 1 2 1

1 2

2 1

1 1 2 1 3

2 1 2 3 1 1 2

2 2 1 1 2 2 1

1 2 1 2

1 1

1 1
( ) 1 1

1

1

z z z

z z z z

B z z z
M z z z

z z z z z

z

z z z z z z z

        


    

 

      

          
 

  

 
    

           
 

   
  

  
  

 

 

   

      

       
  

1 1 2 1 3 2 2 1

1

1 1
3 1 1 1 2 2 1

2 2 1 2 1 1 2

1 1

1 1
1

1 1

z z z
z

z z z z z z
z z z z

z z z

        

 
         

          
 

     
           

 

 

                                             (1.46) 

Setting z=0 in (1.46), 
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 

 

   1 2 2 2 1 1 1 2 1 3 1 2 2 1

0

1 2 3 1 2 1 1 2 1 2

B z z
M

z z z z z z

         

 

       
  

  

 

 

 
   

1

1 1 2 1 3 2 2 1 2 1 1 2

3 1 1 1 2 2 1

1z

z
         

   


          

 
                       (1.47) 

Equations (1.42 -1.47) give the values of 
0 0 0

( ) , , ( ) ,   ( ) ,L z L P z P a n d M z M   respectively in terms of B,  if B is 

known, these all are obtained explicitly. 

Setting  
3

z   in (1.28), we get 

 
 3

3 0

3 1 2

1
P L

 


 


                                                                                                                         (1.48) 

Substituting the value of 
0

L  from (1.43), 

 
   

 

   

 

3 1 2 3 1

3

3 1 2 1 2 2 1 3 1 2 2 1

1 1 1

1

B z z z
P

z z z z

   


     

   
 

  
 

Substituting  
3

z   in ( )P z  gives by (1.44) and equations two values of  3
P  , thus we obtained  

   

 

  

   

2 3 2 12 1 3

1 2 2 3 2 3 1 3

11

1

B z z

z z z

     

   

     
  

    

 

 

 

    

   

 2 3 2 11 3 3

1 2 2 1 3 1 3 1 3 3 1 1

11 1 1z

z z z z

       

      

      
     

     

      (1.49) 

IV. CONCLUSION 

          The time dependent and steady state results are analyzed explicitly as assumptions mentioned in the 

formulation of model. 
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