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Abstract

In this paper, we discuss about the existence and uniqueness of solutions for the fractional integro-
differential equations with nonlocal integral boundary conditions of Riemann- Liouville Type. Existence result
is based on Krasnoselskii’s fixed point theorem and the uniqueness result is based on the contraction mapping
principle.
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I. INTRODUCTION

Fractional Differential equation defined as fractional derivatives involving an equation. Fractional
differential equations has recently used by several researchers such as aerodynamics, polymer rheology,
biophysics and etc. In recent years, many authors interest in the study of fractional — order differential equations
with boundary conditions. [see 1-6, 10].

In this paper, we consider the following fractional integro-differential equations with nonlocal integral
boundary conditions of Riemann-Liouville Type :

Drut) = g (t,u(t), NI s,u(s))ds), tej=[01], 1<a<2 1)
¢
G —s)yt
u(0) =alfu(()=a| ———u(s)ds , 0<p<1,
0{ r)
g1
u(l) =blu(é) =b %u(s)ds, 0<g<1 2
0

where the function f:J x R — R is a continuous function. Here ° D¢ is the caputo fractional derivative of order
1 < a < 2, 1% is the Riemann-Liouville fractional integral of order « > 0 and a, b, ¢, ¢ are real constants with
0<{é<.

In section 2 is devoted to preliminaries related to the existence of solution. The proof of main results of
the paper discussed in section 3. Finally, an example is illustrated in the section 4.

Il. PRELIMINARIES

In this section, we introduce definitions [7, 8, 9] and preliminary facts which are used throughout this
paper. Denote by Y = C (J,R), the Banach space of all continuous functions from J into R with the norm

lull =7 {lu@®}

Definition 2.1. The Riemann-Liouville fractional integral of order a > 0 for a function f(t) is defined as
t

1
r(a)

provided that the right hand side is point wise defined on [0,00), where I is the gamma function.

1°f(t) = f(t —5)*1f(s)ds, t>0,
0
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Definition 2.2. The Caputo fractional derivative of order a > 0 of a function
f:[0,0) = R is defined as

DEf(t) = ﬁ!(t —s)" e fM()ds, n—1<a<n,

where n = [a] + 1 and [«] denotes the integral part of the real number.
Lemma 2.3. For any given w € Y,u € Y2 is a solution of the fractional differential equation

Diu(t) =w(), 1<a<?2 3)
with the boundary conditions
u(0) = alPu({), u(l) =bl"u(§), 0<p=<1<q=<1 (4)
if and only if u(t) is a solution of the fractional integral equation
u(®) =1w(0) + (21 — 21 Pw(Q) + (2 + 23O [BI“TTW(§) — I"w(1)] )
Where
a b€q+1 a (p+1
= 2(1 “T(q+ 2))' 7= E(r(p + 2))'
= (-rpsp) =3 (- rD)
B TTe+) T\ T T+ D
P b q+1 p+1 b&q
z=(1—L) PR SR Y (1—L) 6)
r'p+1) riq+2) I'p+2) '(g+1)
Proof. We know that, the general solution of the fractional differential equation (3) can be written as
u(t) = Iw(t) + ¢y + ¢yt )

where ¢, c; are arbitrary constants.
Applying the boundary conditions (4) in (7), we have

a(p a(P+1 a+
(e (Grp)e = v
b¢* BT\ L ae «
(1-r(q+1>)00+(1—m>““” e = ®

Solving the system of equations (8) and (9), we get

1 pEa+l p+1
o= e (1= rrrr) O+ (7 ) e @ el and

c =1{—a<1 L )i<rw@ + (1 o )1+ (e) - 1w}
17y r@@+1 rp+1) '
Substituting the values of ¢, ¢; in (7), we get (5).
Conversely, it is clear that the integral solution (5) satisfies the equation (3) and boundary conditions
(4). This completes the proof.

I11. MAIN RESULTS

In view of lemma 2.3, we define the operator G:Y — Y by
(Gu)() = 1°g(s,u(s), Hu(s)) () + (21 — z,)I**? g(s,u(s), Hu(s)) ({) + (2, + z3t)
[b1%%9 g(s,u(s), Hu(s))(§) — I” g(s,u(s), Hu(s))(D], t €]
For the forthcoming analysis, we need the following assumptions:
(H1) There exists constants L, and Lj, such that
() 1g(t uy,v1) — g(t,up, vp)| < Ly(lug —up| + vy —v20), t €], ug,up,vy,v, €Y
(ii) |a(t, s, uq) = h(t,s,uz)| < Ly (Jug — uzl)

(H2) |f(t,u,v)| < L@®)p(lull), (t,u,v) €] x R?, wherel € L'(J,R*) and ¢:[0,0) — [0, ) is a continuous
non-decreasing function.

For our convenience, we can take

<a+p |b|€a+q 1
————+ (2| + |z5])
'a+p+1) 'a+q+1) T'(a+1)

Y=
L= gyt al+ 1D

and
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a+p

o 1 ¢ |blge*a 1
2 g{(F(tx+1)+(|le+|Z4D1"(a+p+1)+(|22|+|Z3|)[F(a+q+1)+1"(a+1)]>

L 1 (a+p |b|€a+q 1
+ L (F(a T Hlal+labrg D (Iz2] + 1z [F(a g+ D) T+l )}

A. Existence result via Krasnoselskii’s fixed point theorem
Lemma 3.1. [Krasnoselskii’s Theorem]. Let S be a closed, bounded, convex and honempty subset of a

Banach space X.
Let P,Q be two operators such that

e Px+ Qy € S,whenever x,y €S,

e Piscompact and continuous,

e (s acontraction mapping.
Then there exists z € S such that z = Pz + Qz.

Theorem 3.2. Assume that the hypotheses (H1) and (H2) are satisfied. Then the boundary value problem (1)-(2)
has
at least a solution in C (J, R), provided that

(zx+p
Loy Uzl + 124D sy + (22| + I23I)[

|b|ge*a 1
ratp+D F(a+q+1)+l"(a+1)]

a+p

¢ bl 1
+ Ly | (Jze | + |Z4|)m+ (Izz] + 231D Ia+tq+1) +1"(a 1) <1

Proof. We considertheset B, ={u € R: |lu|| <r}, foru € B,.
We define the two operators G; and G, by

G =1%g(s,u(s), Hu(s))(®), te]

G, =
(21 — z4)1°*P g(5,u(s), Hu(s))(Q) + (2, + z3t)[bI“* g (s, u(s), Hu(s))(§) —I1*g(s,u(s), Hu(s))(1)]
Choosing r = ||l||¢(r)¥;. For u,v € B, , we have
|G1u(t) + Gov(o)] s
<, Ep] {1*]g(s,u(s), Hu())|(@©) + (Iz1] + |zsDI**P| g (s, v(s), Hv(5))| ()
+ (122 + |zzD[Ib11%4 | g (s, v(s), HV(s))| (&) + 1*|g(s, v(s), Hv(s))| (D]}
< 1| g(s,u(s), Hu(s))|(D) + (Iz1] + |za]) 19| g (s, v(s), HV(5))| (D) + (1z| + |23
[|b|1“+q|g(s,v(s), Hv(s))|(f) + I“|g(s,v(s), Hv(s))|(1)]

< Ml (] + 1) (] + 123 |2 1
= L r'a+1) 1 4 r@+p+1) 2 3 Fatq+D @D
< IUl$I¥,
<r

Hence, Giu + G,v € B,.
Next we prove that G, is a contraction.

1Gou(t) — Gov(B)] su
< ¢ e Lzl +12aD17 g (s, u(s), Hu(s)) = g s, v(s), Hu($)| )
+ (12| + |zzD[Ib117% | g (s, u(s), Hu(s)) — g(s, v(s), Hv(s))|(&)
+ I“|g(s,u(s),Hu(s)) — g(s,v(s),Hv(s))|(1)] }
< (Iz| + 1z DI [Lg llu — v]l + |Hu(s) — Hu()[1]()
+(1z| + 1z3D[IbIEF Ly llu — vl + [[Hu(s) — Hu(s)II](€)
+1%[Lyllu — vl + |Hu(s) — Hu(s)[I] (1]

<L et |bIge 1
< Lgij| Uzl + |Z4DI"(a+—p+1) + (Iz2] + |231) [I“(a o+ 1) + Ia+ 1)]
)}Ilu—vll

a+p |b|€a+q
Na+q+1) I'(a+1)

+ Ly <(|Z1| + 1z4])

Thus G, is a contraction mapping.

+ (Iz2| + 1z3]) [

Ta+p+1)
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Moreover, continuity of g and h implies that the operator G, is continuous. Also, G; is uniformly bounded on
B, as

sup
IGru@)] < E]{I”‘IQ(S.u(S).Hu(S))I(t)}

< 19|g(s,u(s), Hu(s))| (D)

Il (r)

< _

“I(a+1)
Next we prove the compactness of the operator G;.
Now, for any t,t, € J, t; < t,,andu € B,

[(G12)(t2) — (G1x) ()]
= |I“g(s,u(s), Hu(s))(tz) — I"’g(s,u(s),Hu(s))(tl)|

t1

< "lﬂ((i()r) f [(t; —$)* T = (t; —s)* ]ds + f(tz —5)*lds
0 t1
l
< JE B 21ty — 1 + 1 — 1)

which is independent of u and tends to zero as t, — t; — 0. Thus G; is equicontinuous. Hence , by the Arzela-
Ascoli Theorem, G, is compact on B,.. Hence, by the Krasnoselkii fixed point theorem, there exists a fixed point

u € Y such that Gx = x which is a solution to the boundary value problem (1)-(2) has a at least one solution on
J. This completes the proof.

B. Uniqueness result via Banach’s fixed point Theorem
Theorem 3.3: Assume that the hypotheses (H1) and (H2) hold and ¥, < 1,. Then the boundary value
problem (1)-(2) has a unique solution on J.
Proof:
Let M; =suplg(s,0,0)] and M, = sup|h(t,s,0)|
te] te]

and choose
My Ay + LyMyA,

<r.
1—Ly(A) — LyAy)
We take
wt Iblge+a 1
A= —— . N
=t T (al iz reme gy Uzl +zD [F(a Tq+D) T@a+D
1 a+p+1 |b|Ea+q+1 1
A= ——— —_—
=T+’ (Iz: ]+ lZ‘*Dr(a T+ (Ize| + 1z 1) [F(a +q+2) T(a+ 2)]

Now we prove that GB, < B,.
For u € B,, we have

IGu©1 =<, 1 (lg(sus), Hu(s)) = 9(5,00)| + 19, 00D ©)

+ (Iz1] + 124 D17¥7 (| g (s, u(s), Hu(s)) — g(s,0,0)| + 1g(s,0,0)1)({)
+ (2] + 1zsD[1b11°* (|g (s, u(s), Hu(s)) = g(5,0,0)| + 19(s,0,0)[)(£)
+ I“(|g(s,u(s), Hu(s)) —9g(s, 0,0)| +|g(s, 0,0)I)(l)]}

< 1“(|g(s,u(s), Hu(s)) - g(s, 0,0)| +|g(s, 0,0)I)(l)
+ (Iz1] + 124 D) 1%%7 (| g (s, u(s), Hu(s)) — g(s,0,0)| + g(s,0,0)1)({)
+ (1221 + 123D [Ib11°7 (g (s, u(s), Hu(s)) — g(s,0,0)| + 1g(s,0,0)[)(§)
+ I“(|g(s,u(s), Hu(s)) —g(s, 0,0)| + |g(s, 0,0)l)(l)]

1 a+p b a+q 1
S(Lgr+M1){—+(I21I+IZ4I)(— + (Iz2] + 1z3]) bl + ]}

'a+1) r'a+p+1) 'a+q+1) T'(a+1)
+
1 a+p+1
(LthT + LgMZ) {m‘l‘ (1] + |Z4|)1_,(a+—p+2)

b a+q+1 1
+(|z2|+|z3|>[ bl }

Fa+q+2) I'(a+2)
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< (Lpr + M)Ay + (LpLgr + LMy )A,
< rLf(A1 + LgAz) + M1A1 + LszAZ
<r
Thus GB, C B,.
Next we will prove that G is a contraction mapping on B,. For u,v € y and t € J, we have
Sup
IGu(®) —Gv(O)l <, E]{1"‘|g(5.u(5).Hu(S)) — g(s,v(s), Hv(s))| ()

+ (Iz1] + 124 D17¥P | g (s, u(s), Hu(s)) — g(s,v(s), Hv(s))| ()
+ (Izo| + 1z3D[1b117%| g (5, uls), Hu(s)) — g(s, v(s), Hv(s))|(€)
+I” |g(s,u(s), Hu(s)) - g(s,v(s),Hv(s))|(1)] }

-1 1 a+p |b|€a+q 1
=% {(F(a T T Ul + 2D ey + (zl + HzsD) [F(a g+ Tax 1)])

a+p

1
+Lh<r(a+1) ra+p+1

bl L
+ (2] + |2 [r(a+q+1)+r(a+1)])} lu = vl

< ¥llu—wvll
Since ¥, < 1. Hence, the operator G is contraction. Then G has a unique fixed point which is a solution of the
boundary value problem (1)-(2) on J.
This completes the proof.

+ (2] + |z4])

IV. EXAMPLES

Example 4.1. Consider the following fractional integro-differential equation

1/ |u(®)] 1 e

poSu(t) = - | ——— 2t —f 3sds, t e 10

u(t) 5<1+|u(t)| cos +5 g cos’sds ] (10)
0

with Riemann-Liouville fractional integral conditions

u(0) = Il/3u<%), u(1) = M4y (%) (1)

Herea =6/5,p=1/3, q=1/4, {=1/2,§=1/6,a=b = 1,and also Ly = 1/5,L, = 1/9. Using the
given
data, we find that values z; = 4.8048, z, = 1.8467,z; = 0.5034,z, = 1.5634 and z = 0.1885

Th
H za+p [ |b|§a+q 1

Ly {(I"(a T Tl HlzD re gy + Uzl + lzsD) T@+q+D Ta+D )

a+p

1
+ Ly (m'l' (Iz ] + |Z4|)m+—m

|p|gta 1
+ (Iz2] + |z3]) [F(a fq+1) + I'(a+ 1)_)}

~ 0.3760 < 1
The conditions (H1) and (H2) are satisfied . Thus, by theorem 3.3 , the problem (10) and (11) has a unique
solution on J.

V. CONCLUSION

In this paper, we have established the existence and uniqueness of solutions for fractional integro-
differential equations with Riemann-Liouville fractional integral conditions (1) — (2) in a Banach space.
Existence result of the problem is derived by the Krasnoselskii’s fixed point theorem, while the uniqueness
result is proved by the application of Banach’s Contraction Principle.
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