Generalization of S - Normal Matrices

P. Raju, K. Asha Devi
Department of Mathematics, Ponnaiyah Ramajayam Institute of Science and Technology, Thanjavur- 613403, Tamil Nadu

Abstract

The properties of matrices namely bi-normal and bi-unitary matrices and also the generalization of normal and s-normal and s-unitary matrices. Further to extend the polynomial normal matrices.

Keywords: Bi-normal, S-normal, polynomial matrix.

I. INTRODUCTION

In matrix theory, the special types of matrices namely bi-normal matrices and bi-unitary matrices as a generalization of normal and s-normal and s-unitary matrices. Some of its basic properties are studied. Numerical examples are provided. Further, we shall define polynomial s-normal matrices with an example, with reference to Ramesh, Sudha and Gajalakshmi [1,2].

II. MAIN RESULTS

Definition: 2.1
Let $\mathrm{A} \in \mathrm{C}^{\mathrm{n} \times \mathrm{n}}$ is said to be bi-normal if A is normal as well as s-normal.

Example:

$$
\mathrm{A}=\left[\begin{array}{cc}
i & 1+i \\
1+i & i
\end{array}\right] \quad \text { is bi-normal. }
$$

Remark:

Any normal matrix need not be s-normal. This can be seen from the following example,

$$
\mathrm{A}=\left[\begin{array}{ll}
1 & 2 \\
2 & 0
\end{array}\right] \text { is normal, but not s-normal. }
$$

Similarly, any s-normal matrix need not be normal. This can be seen from the following example,

$$
A=\left[\begin{array}{ll}
1 & 2 \\
2 & 0
\end{array}\right] \text { is s-normal but it is not a normal matrices. }
$$

In the following we shall see some basic properties of bi-normal matrices analogous to that of s-normal matrices.

Theorem: 2.2
Any matrix $\mathrm{A} \in \mathrm{C}^{\mathrm{n} \times \mathrm{n}}$ is bi-normal if and only if A^{T} is bi-normal.

Proof:

$$
\begin{aligned}
& \text { A is bi-normal } \square \mathrm{AA}=\mathrm{A}^{*} \mathrm{~A} \& \mathrm{AA}^{\theta}=\mathrm{A}^{\theta} \mathrm{A} \text {. } \\
& \left(\mathrm{AA} A^{*}\right)^{\mathrm{T}} \square\left(\mathrm{~A}^{*} \mathrm{~A}\right)^{\mathrm{T}} \square \&\left(\mathrm{~A} \mathrm{~A}^{\theta}\right)^{\mathrm{T}} \square=\left(\mathrm{A}^{\theta} \mathrm{A}\right)^{\mathrm{T}} \square(\text { Taking transpose on both sides) } \\
& \left(\mathrm{A}^{*}\right)^{\mathrm{T}}(\mathrm{~A})^{\mathrm{T}} \square=\left(\mathrm{A}^{\mathrm{T}}\right)\left(\mathrm{A}^{*}\right)^{\mathrm{T}} \square \square \&\left(\mathrm{~A}^{\mathrm{T}}(\mathrm{~A})^{\mathrm{T}} \square=\left(\mathrm{A}^{\mathrm{T}}\right)\left(\mathrm{A}^{\theta}\right)^{\mathrm{T}}\right. \\
& \left(\mathrm{A}^{\mathrm{T}}\right)^{*}(\mathrm{~A})^{\mathrm{T}} \square=\left(\mathrm{A}^{\mathrm{T}}\right)\left(\mathrm{A}^{\mathrm{T}}\right)^{*} \&\left(\mathrm{~A}^{\mathrm{T}}\right)^{\theta}(\mathrm{A})^{\mathrm{T}} \square=\left(\mathrm{A}^{\mathrm{T}}\right)\left(\mathrm{A}^{\mathrm{T}}\right)^{\theta} \\
& \mathrm{A}^{\mathrm{T}} \text { is bi-normal. }
\end{aligned}
$$

Hence it is proved.

Theorem: 2.3

Any matrix $\mathrm{A} \in \mathrm{C}^{\mathrm{n} \times \mathrm{n}}$ is bi-normal if and only if A * is bi-normal.
Proof:
A is bi-normal $\square \mathrm{AA}^{*}=\mathrm{A}^{*} \mathrm{~A} \& \mathrm{AA}^{\theta}=\mathrm{A}^{\theta} \mathrm{A}$.

$$
\left(\mathrm{AA}^{*}\right)^{*}=\left(\mathrm{A}^{*} \mathrm{~A}\right)^{*} \&\left(\mathrm{AA}^{\theta}\right)^{*}=\left(\mathrm{A}^{\theta} \mathrm{A}\right)^{*}
$$

$\left(\mathrm{A}^{*}\right)^{*}(\mathrm{~A})^{*}=\left(\mathrm{A}^{*}\right)\left(\mathrm{A}^{*}\right)^{*} \&\left(\mathrm{~A}^{\theta}\right)^{*}(\mathrm{~A})^{*}=\left(\mathrm{A}^{*}\right)\left(\mathrm{A}^{\theta}\right)^{*}$
$\left(\mathrm{A}^{*}\right)^{*}(\mathrm{~A})^{*}=\left(\mathrm{A}^{*}\right)(\mathrm{A} *)^{*} \&\left(\mathrm{~A}^{\theta}\right)^{*}(\mathrm{~A})^{*}=\left(\mathrm{A}^{*}\right)\left(\mathrm{A}^{*}\right)^{\theta}$
A^{*} is bi-normal. Hence it is proved.

Theorem: 2.4

Any non-singular matrix $\mathrm{A} \in \mathrm{C}^{\mathrm{n} \times \mathrm{n}}$ is bi-normal if and only if A^{-1} is bi-normal.

Proof:

$$
\begin{gathered}
\text { A is bi-normal } \square \mathrm{AA}^{*}=\mathrm{A}^{*} \mathrm{~A} \& \mathrm{AA}^{\theta}=\mathrm{A}^{\theta} \mathrm{A} . \\
\left(\mathrm{AA} \mathrm{~A}^{*}\right)^{-1} \square=\left(\mathrm{A}^{*} \mathrm{~A}\right)^{-1} \square \&\left(\mathrm{AA}^{\theta}\right)^{-1} \square=\left(\mathrm{A}^{\theta} \mathrm{A}\right)^{-1} \square \square \square \square(\text { Taking inverses) } \\
\left(\mathrm{A}^{*}\right)^{-1}(\mathrm{~A})^{-1}=\left(\mathrm{A}^{-1}\right)\left(\mathrm{A}^{*}\right)^{-1} \&\left(\mathrm{~A}^{\theta}\right)^{-1}(\mathrm{~A})^{-1}=\left(\mathrm{A}^{-1}\right)\left(\mathrm{A}^{\theta}\right)^{-1}
\end{gathered}
$$

$$
\left(\mathrm{A}^{-1}\right)^{*}(\mathrm{~A})^{-1}=\left(\mathrm{A}^{-1}\right)\left(\mathrm{A}^{-1}\right)^{*} \&\left(\mathrm{~A}^{-1}\right)^{\theta}(\mathrm{A})^{-1}=\left(\mathrm{A}^{-1}\right)\left(\mathrm{A}^{-1}\right)^{\theta} \square
$$

A^{-1} is bi-normal. Hence it is proved.

Theorem: 2.5

$$
\text { If } \mathrm{A} \in \mathrm{C}^{\mathrm{n} \times \mathrm{n}} \text { is bi-normal matrix then }(\mathrm{iA}) \text { is bi-normal. }
$$

Proof:

A is bi-normal implies $A A^{*}=A^{*} A$ and $A A^{\theta}=A^{\theta} A$.
Now, $(i \mathrm{~A})(i \mathrm{~A})^{*}=(i \mathrm{~A})\left(-i \mathrm{~A}^{*}\right)$

$$
\begin{aligned}
& =i(-i) \mathrm{AA}^{*} \\
& =i(-i) \mathrm{A}^{*} \mathrm{~A} \quad(\text { since } \mathrm{A} \text { is normal }) \\
& =(i \mathrm{~A})^{*}(i \mathrm{~A})
\end{aligned}
$$

Also, $(i \mathrm{~A})(i \mathrm{~A})^{\theta}=(i \mathrm{~A})\left(-i \mathrm{~A}^{\theta}\right)$

$$
\begin{aligned}
& =i(-i) \mathrm{AA}^{\theta} \\
& =i(-i) \mathrm{A}^{\theta} \mathrm{A} \quad(\text { since } \mathrm{A} \text { is s-normal }) \\
& =(i \mathrm{~A})^{\theta}(i \mathrm{~A})
\end{aligned}
$$

Hence (iA) is bi-normal.
In general sum and product of bi-normal matrices is not a bi-normal matrix. In the following theorem, we shall see that sum and product of bi-normal matrices is a bi-normal matrix under certain conditions.

Proof:

Since A is bi-normal implies, $A A^{*}=A * A \& A A^{\theta}=A^{\theta} A$ and
B is bi-normal implies, $B^{*}=B * B \& B B^{\theta}=B^{\theta} B$.
Now, $(\mathrm{A}+\mathrm{B})(\mathrm{A}+\mathrm{B})^{*}=(\mathrm{A}+\mathrm{B})(\mathrm{A}+\mathrm{B})^{*}$

$$
\begin{aligned}
& =(A+B)\left(A^{*}+B^{*}\right) \\
& =A A^{*}+\mathrm{AB}^{*}+\mathrm{BA}^{*}+\mathrm{BB}^{*} \\
& =\mathrm{AB}^{*}+\mathrm{BB}^{*}+\mathrm{AA} A^{*}+\mathrm{BA}^{*} \\
& =\mathrm{B}^{*} \mathrm{~A}+\mathrm{B}^{*} \mathrm{~B}+\mathrm{A}^{*} \mathrm{~A}+\mathrm{A}^{*} \mathrm{~B} \\
& =\mathrm{B}^{*}(\mathrm{~A}+\mathrm{B})+\mathrm{A}^{*}(\mathrm{~A}+\mathrm{B}) \\
& =\left(\mathrm{B}^{*}+\mathrm{A}^{*}\right)(\mathrm{A}+\mathrm{B}) \\
& =\left(\mathrm{A}^{*}+\mathrm{B}^{*}\right)(\mathrm{A}+\mathrm{B}) \\
& =(\mathrm{A}+\mathrm{B}) *(\mathrm{~A}+\mathrm{B}) \\
& \theta^{\theta}=(\mathrm{A}+\mathrm{B})(\mathrm{A}+\mathrm{B})^{\theta} \\
& =(\mathrm{A}+\mathrm{B})\left(\mathrm{A}^{\theta}+\mathrm{B}^{\theta}\right) \\
& =\mathrm{AA}+\mathrm{AB}^{\theta}+\mathrm{BA}^{\theta}+\mathrm{BB}^{\theta} \\
& =\mathrm{AB}+\mathrm{BB}^{\theta}+\mathrm{AA}^{\theta}+\mathrm{BA}^{\theta} \\
& =\mathrm{B}^{\theta} \mathrm{A}+\mathrm{B}^{\theta} \mathrm{B}^{\theta}+\mathrm{A}^{\theta} \mathrm{A}+\mathrm{A}^{\theta} \mathrm{B} \\
& =\mathrm{B}^{\theta}(\mathrm{A}+\mathrm{B})+\mathrm{A}^{\theta}(\mathrm{A}+\mathrm{B}) \\
& =\left(\mathrm{B}^{\theta}+\mathrm{A}^{\theta}\right)(\mathrm{A}+\mathrm{B}) \\
& =\left(\mathrm{A}^{\theta}+\mathrm{B}^{\theta}\right)(\mathrm{A}+\mathrm{B}) \\
& =(\mathrm{A}+\mathrm{B})^{\theta}(\mathrm{A}+\mathrm{B}) .
\end{aligned}
$$

$$
\text { Also, }(\mathrm{A}+\mathrm{B})(\mathrm{A}+\mathrm{B})^{\theta}=(\mathrm{A}+\mathrm{B})(\mathrm{A}+\mathrm{B})^{\theta}
$$

Hence $(A+B)$ is binormal.

Theorem: 2.6

Let $A \& B \in C^{n \times n}$ be bi-normal. If $A B^{*}=B^{*} A$ and $A B^{\theta}=B^{\theta} A$, then $A B$ is bi-normal.

Proof:

Since A is bi-normal implies, $A A^{*}=A * A \& A A^{\theta}=A^{\theta} A$ and
B is bi-normal implies, $B B^{*}=B * B \& B B^{\theta}=B^{\theta} B$.
Now, $(A B)(A B)^{*}=A B B^{*} A^{*}=A B * B A *\left(\right.$ since $\left.B B^{*}=B * B\right)$

$$
\begin{aligned}
& =B^{*} A A^{*} * B \\
& =B^{*} A^{*} A B \\
& =(A B)^{* A B}
\end{aligned}
$$

Also, $(\mathrm{AB})(\mathrm{AB})^{\theta}=\mathrm{ABB}^{\theta} \mathrm{A}^{\theta}$

$$
\begin{aligned}
& =\mathrm{ABB}^{\circ} \mathrm{A}^{\circ} \quad\left(\text { since } \mathrm{BB}^{\theta}=\mathrm{B}^{\theta} \mathrm{B}\right) \\
& =\mathrm{AB}^{\theta} \mathrm{BA}^{\theta} \quad \\
& =\mathrm{B}^{\theta} \mathrm{AA}^{\theta} \mathrm{B} \\
& =\mathrm{B}^{\theta} \mathrm{A}^{\theta} \mathrm{AB}
\end{aligned}
$$

Hence (AB) is binormal.
Now we shall define polynomial s-normla matrices with an example.

Definition: 2.7

A polynomial s-normal matrices is a polynomial matrix whose coefficient matrix are s-normal matrices.

Example:

$$
\begin{aligned}
& \mathrm{A} \lambda=\left[\begin{array}{cc}
i \lambda^{2}+i \lambda+\lambda & \lambda i+i \\
i \lambda+i & i \lambda^{2}+i \lambda+\lambda
\end{array}\right] \\
& =\lambda^{2}\left[\begin{array}{cc}
i & 0 \\
0 & i
\end{array}\right]+\lambda\left[\begin{array}{cc}
i+1 & i \\
i & i+1
\end{array}\right]+\left[\begin{array}{ll}
0 & i \\
i & 0
\end{array}\right] \\
& =\mathrm{A}_{2} \lambda^{2}+\mathrm{A}_{1} \lambda+\mathrm{A}_{0}
\end{aligned}
$$

Where $\mathrm{A}_{0}, \mathrm{~A}_{1}, \mathrm{~A}_{2}$ are s-normal matrices some results on polynomial s-normal matrices.
In general product of polynomial s-normal matrices need not be polynomial s-normal matrices. In the following it is shown that product of polynomial s-normal matrices is a polynomial s-normal matrix when they are commuting.

Theorem: 2.8

If $\mathrm{A}(\lambda)$ and $\mathrm{B}(\lambda)$ are polynomial s-normal matrices and $\mathrm{A}(\lambda) \mathrm{B}(\lambda)=\mathrm{B}(\lambda) \mathrm{A}(\lambda)$. then $\mathrm{A}(\lambda) \mathrm{B}(\lambda)$ is a polynomial s-normal matrix.

Proof:

$$
\begin{aligned}
\text { Let } \mathrm{A}(\lambda)= & \mathrm{A}_{0}+\mathrm{A}_{1} \lambda+\ldots+\mathrm{A}_{\mathrm{n}} \lambda^{\mathrm{n}} \text { and } \\
\mathrm{B}(\lambda)= & \mathrm{B}_{0}+\mathrm{B}_{1} \lambda+\ldots+\mathrm{B}_{\mathrm{n}} \lambda^{\mathrm{n}} \text { be polynomial s-normal matrices, } \\
\mathrm{A}(\lambda) \mathrm{B}(\lambda)= & \mathrm{B}(\lambda) \mathrm{A}(\lambda) \\
\mathrm{A}(\lambda) \mathrm{B}(\lambda)= & \left(\mathrm{A}_{0}+\mathrm{A}_{1} \lambda+\ldots \ldots \ldots+\mathrm{A}_{\mathrm{n}} \lambda^{\mathrm{n}}\right)\left(\mathrm{B}_{0}+\mathrm{B}_{1} \lambda+\ldots \ldots \ldots+\mathrm{B}_{\mathrm{n}} \lambda^{\mathrm{n}}\right) \\
& =\left(\mathrm{A}_{0} \mathrm{~B}_{0}+\mathrm{A}_{0} \mathrm{~B}_{1} \lambda+\ldots \ldots+\mathrm{A}_{0} \mathrm{~B}_{\mathrm{n}} \lambda^{\mathrm{n}}\right)+\left(\mathrm{A}_{1} \mathrm{~B}_{0} \lambda+\mathrm{A}_{1} \mathrm{~B}_{1} \lambda^{2}+\ldots \ldots .+\mathrm{A}_{1} \mathrm{~B}_{\mathrm{n}} \lambda^{\mathrm{n+1}}\right) \\
& +\ldots \ldots \ldots \ldots .+\left(\mathrm{A}_{\mathrm{n}} \mathrm{~B}_{0} \lambda^{\mathrm{n}}+\mathrm{A}_{\mathrm{n}} \mathrm{~B}_{1} \lambda^{\mathrm{n}+1}+\ldots \ldots+\mathrm{A}_{\mathrm{n}} \mathrm{~B}_{n} \lambda^{2 \mathrm{n}}\right) \\
& =\left(\mathrm{A}_{0}+\mathrm{B}_{0}\right)+\left(\mathrm{A}_{0} \mathrm{~B}_{1}+\mathrm{A}_{1} \mathrm{~B}_{0}\right) \lambda+\ldots \ldots \ldots .+\left(\mathrm{A}_{0} \mathrm{~B}_{\mathrm{n}}+\mathrm{A}_{1} \mathrm{~B}_{\mathrm{n}-1}+\ldots \ldots .+\mathrm{A}_{\mathrm{n}} \mathrm{~B}_{0} \lambda^{\mathrm{n}}\right. \\
& \\
\mathrm{B}(\lambda) \mathrm{A}(\lambda)= & \mathrm{B}_{0} \mathrm{~A}_{0}+\left(\mathrm{B}_{0} \mathrm{~A}_{1}+\mathrm{B}_{1} \mathrm{~A}_{0}\right) \lambda+\ldots \ldots \ldots \ldots+\left(\mathrm{B}_{0} \mathrm{~A}_{\mathrm{n}}+\mathrm{B}_{1} \mathrm{~A}_{\mathrm{n}-1}+\ldots+\mathrm{B}_{\mathrm{n}} \mathrm{~A}_{0}\right) \lambda^{2}
\end{aligned}
$$

Here each coefficient of λ and constants terms are equal.
(i.e) $\mathrm{A}_{0} \mathrm{~B}_{0}=\mathrm{B}_{0} \mathrm{~A}_{0}$

$$
\begin{aligned}
& \mathrm{A}_{0} \mathrm{~B}_{1}+\mathrm{A}_{1} \mathrm{~B}_{0}=\mathrm{B}_{0} \mathrm{~A}_{1}+\mathrm{B}_{1} \mathrm{~A}_{0} \\
& \Rightarrow \quad \mathrm{~A}_{0} \mathrm{~B}_{1}=\mathrm{B}_{0} \mathrm{~A}_{1} \& \mathrm{~A}_{1} \mathrm{~B}_{0}=\mathrm{B}_{1} \mathrm{~A}_{0} \\
& \mathrm{~A}_{\mathrm{n}} \mathrm{~B}_{0}=\mathrm{B}_{0} \mathrm{~A}_{\mathrm{n}}, \mathrm{~A}_{1} \mathrm{~B}_{\mathrm{n}-1}=\mathrm{B}_{1} \mathrm{~A}_{\mathrm{n}-1}, \ldots \ldots \ldots, \mathrm{~A}_{0} \mathrm{~B}_{\mathrm{n}}=\mathrm{B}_{\mathrm{n}} \mathrm{~A}_{0}
\end{aligned}
$$

Now we have to prove $A(\lambda) B(\lambda)$ is s-normal.

$$
\begin{aligned}
& \mathrm{A}(\lambda) \mathrm{B}(\lambda)[\mathrm{A}(\lambda) \mathrm{B}(\lambda)]^{\theta}=\mathrm{A}(\lambda) \mathrm{B}(\lambda)[\mathrm{B}(\lambda) \mathrm{A}(\lambda)]^{\theta} \\
&=\mathrm{A}(\lambda) \mathrm{B}(\lambda) \mathrm{A}(\lambda)^{\theta} \mathrm{B}(\lambda)^{\theta} \\
&=\mathrm{A}(\lambda) \mathrm{A}(\lambda)^{\theta} \mathrm{B}(\lambda) \mathrm{B}(\lambda)^{\theta} \\
&=\mathrm{A}(\lambda)^{\theta} \mathrm{A}(\lambda) \mathrm{B}(\lambda)^{\theta} \mathrm{B}(\lambda) \\
&=\mathrm{A}(\lambda)^{\theta} \mathrm{B}(\lambda)^{\theta} \mathrm{A}(\lambda) \mathrm{B}(\lambda) \\
&=[\mathrm{B}(\lambda) \mathrm{A}(\lambda)]^{\theta}[\mathrm{A}(\lambda) \mathrm{B}(\lambda)] \\
&=[\mathrm{A}(\lambda) \mathrm{B}(\lambda)]^{\theta}[\mathrm{A}(\lambda) \mathrm{B}(\lambda)]
\end{aligned}
$$

Hence $\mathrm{A}(\lambda) \mathrm{B}(\lambda)$ is s-normal.

Definition: 2.9

A polynomial s-unitary matrix is a polynomial matrix whose coefficients matrices are sunitary matrices.

Definition: 2.10

Let $\mathrm{A}(\lambda), \mathrm{B}(\lambda) \in \mathrm{C}^{\mathrm{n} \times \mathrm{n}}(\lambda)$, set of all $\mathrm{n} \times \mathrm{n}$ polynomial matrices. where $\mathrm{A}_{i}{ }^{\prime} \mathrm{s}, \mathrm{B}_{i}{ }^{\prime} \mathrm{s} \in \mathrm{C}^{\mathrm{n} \times \mathrm{n}}, i=1,2,3, \ldots \mathrm{~m}$. The polynomial matrix $B(\lambda)$ is said to be s-unitarily equivalent to $A(\lambda)$. If there exists a polynomial s-unitary matrix $U(\lambda)$ such that $B(\lambda)=U(\lambda)^{\theta} A(\lambda) U(\lambda)$.

Theorem: 2.11

If $A(\lambda)$ is a polynomial s-normal matrix if and only if every polynomial s-unitarily equivalent to $A(\lambda)$ is polynomial s-normal matrix.

Proof:

Suppose $A(\lambda)$ is polynomial s-normal matrix and $B(\lambda)=U(\lambda)^{\theta} A(\lambda) U(\lambda)$, where $U(\lambda)$ is polynomial sunitary matrix.
Now we show $\mathrm{B}(\lambda)$ is polynomial s-normal matrix.

$$
\begin{aligned}
\mathrm{B}(\lambda)^{\theta} \mathrm{B}(\lambda) & =\left[\mathrm{U}(\lambda)^{\theta} \mathrm{A}(\lambda) \mathrm{U}(\lambda)\right]^{\theta}\left[\mathrm{U}(\lambda)^{\theta} \mathrm{A}(\lambda) \mathrm{U}(\lambda)\right] \\
& =\mathrm{U}(\lambda)^{\theta} \mathrm{A}(\lambda)^{\theta} \mathrm{U}(\lambda) \mathrm{U}(\lambda)^{\theta} \mathrm{A}(\lambda) \mathrm{U}(\lambda) \quad(\text { since } \mathrm{U}(\lambda) \text { is s-unitary matrix) } \\
& =\mathrm{U}(\lambda)^{\theta} \mathrm{A}(\lambda)^{\theta} \mathrm{A}(\lambda) \mathrm{U}(\lambda) \\
& =\mathrm{U}(\lambda)^{\theta} \mathrm{A}(\lambda) \mathrm{A}(\lambda)^{\theta} \mathrm{U}(\lambda) \\
& =\left[\mathrm{U}(\lambda)^{\theta} \mathrm{A}(\lambda) \mathrm{U}(\lambda)\right]\left[\mathrm{U}(\lambda)^{\theta} \mathrm{A}(\lambda)^{\theta} \mathrm{U}(\lambda)\right] \\
& =\mathrm{B}(\lambda) \mathrm{B}(\lambda)^{\theta}
\end{aligned}
$$

Hence $B(\lambda)$ is polynomial s-normal matrix.
Conversely, assume $B(\lambda)$ is polynomial s-normal matrix.
We shall show that $A(\lambda)$ is polynomial s-normal matrix.

$$
\mathrm{B}(\lambda)=\mathrm{U}(\lambda)^{\theta} \mathrm{A}(\lambda) \mathrm{U}(\lambda) \text { is s-normal matrix. }
$$

Now,

$$
\begin{aligned}
& \mathrm{B}(\lambda) \mathrm{B}(\lambda)^{\theta}=\mathrm{B}(\lambda)^{\theta} \mathrm{B}(\lambda) \\
& \Rightarrow {\left[\mathrm{U}(\lambda)^{\theta} \mathrm{A}(\lambda) \mathrm{U}(\lambda)\right]\left[\mathrm{U}(\lambda)^{\theta} \mathrm{A}(\lambda)^{\theta} \mathrm{U}(\lambda)\right]=\left[\mathrm{U}(\lambda)^{\theta} \mathrm{A}(\lambda)^{\theta} \mathrm{U}(\lambda)\right]\left[\mathrm{U}(\lambda)^{\theta} \mathrm{A}(\lambda) \mathrm{U}(\lambda)\right] } \\
&=>\mathrm{U}(\lambda)^{\theta} \mathrm{A}(\lambda)\left[\mathrm{U}(\lambda) \mathrm{U}(\lambda)^{\theta}\right] \mathrm{A}(\lambda)^{\theta} \mathrm{U}(\lambda)=\mathrm{U}(\lambda)^{\theta} \mathrm{A}(\lambda){ }^{\theta}\left[\mathrm{U}(\lambda) \mathrm{U}(\lambda)^{\theta}\right] \mathrm{A}(\lambda) \mathrm{U}(\lambda) \\
& \Rightarrow \mathrm{U}(\lambda)^{\theta} \mathrm{A}(\lambda) \mathrm{A}(\lambda)^{\theta} \mathrm{U}(\lambda)=\mathrm{U}(\lambda)^{\theta} \mathrm{A}(\lambda)^{\theta} \mathrm{A}(\lambda) \mathrm{U}(\lambda)
\end{aligned}
$$

Pre and post multiply by $U(\lambda)$ and $U(\lambda)^{\theta}$, we get

$$
\Rightarrow \mathrm{A}(\lambda) \mathrm{A}(\lambda)^{\theta}=\mathrm{A}(\lambda)^{\theta} \mathrm{A}(\lambda)
$$

Hence $A(\lambda)$ is a polynomial s-normal matrix.

Theorem: $\mathbf{2 . 1 2}$

Let $\mathrm{A}(\lambda)=\mathrm{A}_{0}+\mathrm{A}_{1} \lambda+\ldots \ldots+\mathrm{A}_{\mathrm{m}} \lambda^{\mathrm{m}}$ and $\mathrm{B}(\lambda)=\mathrm{B}_{0}+\mathrm{B}_{1} \lambda+\ldots \ldots . .+\mathrm{B}_{\mathrm{m}} \lambda^{\mathrm{m}}$ be polynomial matrix , where A_{i} 's B_{i} 's $\in C^{n \times n}, i=0,1,2, \ldots \ldots . m$ are s-normal matrices and $\mathrm{A}_{0} \mathrm{~B}_{0}=\mathrm{A}_{1} \mathrm{~B}_{1}=\ldots \ldots \mathrm{A}_{\mathrm{m}} \mathrm{B}_{\mathrm{m}}=0$. Then $\mathrm{A}_{0}{ }^{\theta} \mathrm{B}_{0}=\mathrm{A}_{1}{ }^{\theta} \mathrm{B}_{1}=\ldots \ldots=\mathrm{A}_{\mathrm{m}}{ }^{\theta} \mathrm{B}_{\mathrm{m}}=0$.

Proof:

Let $A(\lambda)=A_{0} A_{1} \lambda+A_{2} \lambda^{2}+\ldots \ldots+A_{m} \lambda^{m}$ is polynomial s-normal matrix.
Where $A_{0}, A_{1, \ldots \ldots .} A_{m}$ are s-normal matrices and $B(\lambda)=B_{0} B_{1} \lambda+B_{2} \lambda^{2}+\ldots \ldots+B_{m} \lambda^{m}$ is a polynomial matrix and Also given $\mathrm{A}_{0} \mathrm{~B}_{0}=\mathrm{A}_{1} \mathrm{~B}_{1}=\ldots \ldots . .=\mathrm{A}_{\mathrm{m}} \mathrm{B}_{\mathrm{m}}=0$.
We know that " If A is s-normal and $A B=0$ then $A^{\theta} B=0$ "
Thus $\mathrm{A}_{0}{ }^{\theta} \mathrm{B}_{0}=\mathrm{A}_{1}{ }^{\theta} \mathrm{B}_{1}=\ldots \ldots . .=\mathrm{A}_{\mathrm{m}}{ }^{\theta} \mathrm{B}_{\mathrm{m}}=0$.

III. CONCLUSION

In this paper, we have proved the bi-normal matrices and bi-unitary matrices for normal, s-normal and sunitary matrices. Similarly, the polynomial S- normal and polynomial matrices are also discussed.

REFERENCES

[1] Krishnamoorthy. S and Vijayakumar. R, Some equivalent conditions on s-normal matrices, Int.J.contemp.math.science, 4, 1449-1454, 2009.
[2] Krishnamoorthy. S and Govindarasu. A, On secondary unitary matrices, International Journal of contemp.math.science, vol. 2 number 3, 247-253, 2010.

