The Upper Monophonic Hull Number of a Graph

V. Mary Gleeta
Assistant Professor, Department of Mathematics
T.D.M.N.S College ,T.Kallikulam,627113,India

Abstract

For a connected graph $G=(V, E)$, the monophonic hull number $\operatorname{mh}(G)$ of a graph G is the minimum cardinality of a set of vertices whose monophonic convex hull contains all vertices of G. A monophonic hull set S in a connected graph G is called a minimal monophonic hull set of G if no proper subset of S is a monophonic monophonic hull set of G. The upper monophonic hull number of certain classes of graphs are determined. Connected graphs of order p with upper monophonic hull number p or p-1 are characterized. It is shown that for every integer $a \geq 2$, there exists a connected graph G with $\operatorname{mh}(G)=\mathrm{a}$ and $\mathrm{mh}^{+}(G)=2 a$

Keywords - hull number, monophonic hull number, upper monophonic hull number.

I. INTRODUCTION

By a graph $G=(V, E)$, we mean a finite undirected connected graph without loops or multiple edges. The order and size of G are denoted by p and q respectively. For basic graph theoretic terminology, we refer to Harary [1,9]. A convexity on a finite set V is a family C of subsets of V, convex sets which is closed under intersection and which contains both V and the empty set. The pair (V, E) is called a convexity space. A finite graph convexity space is a pair (V, E), formed by a finite connected graph $G=(V, E)$ and a convexity C on V such that (V, E) is a convexity space satisfying that every member of C induces a connected sub graph of G. Thus, classical convexity can be extended to graphs in a natural way. We know that a set X of R^{n} is convex if every segment joining two points of X is entirely contained in it. Similarly a vertex set W of a finite connected graph is said to be convex set of G if it contains all the vertices lying in a certain kind of path connecting vertices of $W[2,8]$. The distance $d(u, v)$ between two vertices u and v in a connected graph G is the length of a shortest $u-v$ path in G. An $u-v$ path of length $d(u, v)$ is called an $u-v$ geodesic. A vertex x is said to lie on a u-v geodesic P if x is a vertex of P including the vertices u and v. For two vertices u and v, let $\mathrm{I}[u, v]$ denotes the set of all vertices which lie on $u-v$ geodesic. For a set S of vertices, let $\mathrm{I}[\mathrm{S}]=\mathrm{U} u, v \in \mathrm{I}[u, v]$. The set S is convex if $I[S]=S$. Clearly if $S=\{\mathrm{v}\}$ or $S=V$, then S is convex. The convexity number, denoted by $C(G)$, is the cardinality of a maximum proper convex subset of V . The smallest convex set containing S is denoted by $I_{h}(S)$ and called the convex hull of S. Since the intersection of two convex sets is convex, the convex hull is well defined. Note that $S \subseteq I[S] \subseteq I_{h}(S) \subseteq V$. A subset $S \subseteq V$ is called a geodetic set if $I[S]=V$ and a hull set if $I_{h}(S)=$ V. The geodetic number $g(G)$ of G is the minimum order of its geodetic sets and any geodetic set of order $g(G)$ is a minimum geodetic set or simply a g- set of G. Similarly, the hull number $h(G)$ of G is the minimum order of its hull sets and any hull set of order $h(G)$ is a minimum hull set or simply a h- set of G. The geodetic number of a graph is studied in $[1,4,10]$ and the hull number of a graph is studied in [1,6]. A chord of a path $u_{o}, u_{1}, u_{2}, \ldots$, u_{n} is an edge $u_{i} u_{j}$ with $j \geq i+2$. $(0 \leq i, j \leq n)$. A $u-v$ path P is called monophonic path if it is a chordless path. A vertex x is said to lie on a $u-v$ monophonic path P if x is a vertex of P including the vertices u and v. For two vertices u and v, let $\mathrm{J}[u, v]$ denotes the set of all vertices which lie on a $u-v$ monophonic path. For a set M of vertices, let $\mathrm{J}[M]=\mathrm{U} u, v \in \mathrm{~J}[u, v]$. The set M is monophonic convex or m-convex if $J[M]=M$. Clearly if $M=$ $\{\mathrm{v}\}$ or $M=V$, then M is m-convex. The m-convexity number, denoted by $C_{m}(G)$, is the cardinality of a maximum proper m-convex subset of V . The smallest m-convex set containing M is denoted by $J_{h}(M)$ and called the monophonic convex hull or m-convex hull of M. Since the intersection of two m-convex set is mconvex, the m-convex hull is well defined. Note that $M \subseteq J[M] \subseteq J_{h}(M) \subseteq V$. A subset $M \subseteq V$ is called a monophonic set if $J[M]=V$ and a m-hull set if $J_{h}(M)=V$. The monophonic number $m(G)$ of G is the minimum order of its monophonic sets and any monophonic set of order $m(G)$ is a minimum monophonic set or simply a m - set of G. Similarly, the monophonic hull number $m h(G)$ of G is the minimum order of its m -hull sets and any m-hull set of order $m_{h}(G)$ is a minimum monophonic set or simply a $m h$ - set of G. The monophonic number of a graph is studied in $[5,7,11,13]$ and the monophonic hull number of a graph is studied in [12,13]. A vertex v of G is said to be a monophonic vertex of a graph G if v belongs to every minimum monophonic set of G. A vertex v is an extreme vertex of a graph G if the sub graph induced by its neighbours is complete.. Throughout the following G denotes a connected graph with at least two vertices.

Theorem 1.1.[12] Let G be a connected graph. Then each extreme vertex of G belongs to every monophonic hull set of G.

Theorem 1.2.[12] For a connected graph $G, m h(G)=p$ if and only if $G=K_{p}$
Theorem 1.3. [12] For a connected graph $G, m h(G)=p-1$ if and only if $G=K_{l}+U m_{j} k_{j}$, where $\sum m_{j} \geq 2$

II. THE UPPER MONOPHONIC HULL NUMBER

Definition 2.1. A monophonic hull set S in a connected graph G is called a minimal monophonic hull set of G if no proper subset of S is a monophonic hull set of G. The upper monophonic hull number $m h^{+}(G)$ of G is the maximum cardinality of a minimal monophonic hull set of G.
Example 2.2. For the graph G given in Figure 2.1, $S_{1}=\left\{v_{1}, v_{7}\right\}, S_{2}=\left\{v_{3}, v_{7}\right\}, S_{3}=\left\{v_{4}, v_{7}\right\}$ are the only three $m h$-sets of G so that $m h(G)=2$. Also the set $M=\left\{v_{2}, v_{5}, v_{7}\right\}$ is a monophonic hull set of G. Since no proper subsets of M is a monophonic hull set of G, M is a minimal monophonic hull set of G so that $m h^{+}(G) \geq 3$. It is easily verified that there is no minimal monophonic hull sets S of G with $|S| \geq 4$. Hence $m h^{+}(G)=3$.

G
Figure 2.1

Remark 2.3. Every minimum monophonic hull set of G is a minimal monophonic hull set of G and the converse is not true. For the graph G given in Figure 2.1, $M=\left\{v_{2}, v_{5}, v_{7}\right\}$ is a minimal monophonic hull set but not a minimum monophonic hull set of G.
Theorem 2.4. Each extreme vertex of G belongs to every minimal monophonic hull set of G.
Proof. Let S be a minimal monophonic hull set of G and v be an extreme vertex of G. Suppose that $v \notin S$. Then v is an internal vertex of a monophonic path, which is a contradiction to v an extreme vertex of G.
Theorem 2.5. Let G be a connected graph with cut-vertices and let S be a minimal monophonic hull set of G. If v is a cut-vertex of G, then every component of $G-v$ contains an element of S.
Proof. Suppose that there is a component B of $G-v$ such that B contains no vertex of S. Let $u \in V(B)$. Since S is a minimal monophonic hull set, there exists a pair of vertices x and y in S such that u lies on some $J^{k}[x, y] ; k$ ≥ 1. Let $x-y$ be a monophonic path $P: x=u_{0}, u_{1}, \ldots, u, \ldots, u_{n}=y$ in G. Since v is a cut-vertex of G, the $x-u$ sub path of P and the $u-y$ sub path of P both contain v, it follows that P is not a path, contrary to assumption.

The proof of the following theorem is straight forward so we omit it.
Theorem 2.6. For any connected graph G, no cut-vertex of G belongs to any minimal monophonic hull set of G.
Proof. Let v be any cut-vertex of G and let $G_{1}, G_{2}, \ldots, G_{r}(r \geq 2)$ be the components of $G-v$. Let S be any minimal monophonic hull set of G. Then by Theorem $2.5, \quad S$ contains at least one element from each $G_{i}(1 \leq i \leq r)$. Since $\langle S\rangle$ is connected, it follows that $v \notin S$.

Corollary 2.7. For any non-trivial tree $T, m h^{+}(T)=k$, where k is the number of end vertices of T.
Proof. Since all the vertices of T is either a cut vertex or an extreme vertex, the result follows from Theorems 2.4 and 2.6.

Corollary 2.8. For a complete graph $K_{p}, p \geq 2, m h^{+}\left(K_{p}\right)=p$.
Proof. Since all the vertices of G are extreme vertices, the result follows from Theorem 2.4.
Theorem 2.9. For a complete bipartite graph $G=K_{m, n}(m, n \geq 2), m h^{+}(G)=2$.
Proof. Let $U=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ and $W=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ be a bipartition of G. Let $S=\{x, y\}$, where x and y are two independent vertices of G. Then S is a monophonic hull set of G, so that $m h(G)=2$. We prove that $m h^{+}(G)$ $=2$. If not, let S_{1} be a minimal monophonic hull set of G. with $\left|S_{1}\right| \geq 3$. Then S_{1} consists of at least two independent vertices of G, it follows that $S \subset S_{1}$, which is a contradiction. Hence $m h^{+}(G)=2$.

Theorem 2.10. For a connected $\operatorname{graph} G, 2 \leq m h(G) \leq m h^{+}(G) \leq p$.
Proof. Any monophonic hull set needs at least two vertices and so $m h(G) \geq 2$. Since every minimal monophonic hull set is a monophonic hull set, $m h(G) \leq m h^{+}(G)$. Also, since $V(G)$ is a monophonic hull set of G, it is clear that $m h^{+}(G) \leq p$. Thus $2 \leq m h(G) \leq m h^{+}(G) \leq p$.
$■$ Remark 2.11. The bounds in Theorem 2.10 are sharp. For the graph G given in Figure 2.1, $m h(G)=2$. For any non-trivial tree $T, m h(T)=m h^{+}(T)$ and for the complete graph $G=K_{p}, m h^{+}(G)=p$. Also, all the inequalities in Theorem 2.10 are strict. For the graph G given in Figure 2.2, $S_{1}=\left\{v_{1}, v_{6}, v_{7}\right\}, S_{2}=\left\{v_{2}, v_{6}, v_{7}\right\}, S_{3}$ $=\left\{v_{8}, v_{6}, v_{7}\right\}, S_{4}=\left\{v_{9}, v_{6}, v_{7}\right\}$ and are the only four $m h$-sets of G so that $m h(G)=3$. Also $M=\left\{v_{3}, v_{5}, v_{6}, v_{7}\right\}$ is a minimal monophonic hull set of G and so $\mathrm{mh}^{+}(G) \geq 4$. It is easily verified that there is no minimal hull set S of G with $|S| \geq 5$ and hence $m h^{+}(G)=4$. Thus $2<m h(G)<m h^{+}(G)<p$.

Figure 2.2

Theorem 2.12. For a connected $\operatorname{graph} G, m h(G)=p$ if and only if $m h^{+}(G)=p$.
Proof. Let $m h^{+}(G)=p$. Then $S=V(G)$ is the unique minimal monophonic hull set of G. Since no proper subset of S is a monophonic hull set, it is clear that S is the unique minimum monophonic hull set of G and so $m h(G)$ $=p$. The converse follows from Theorem 2.10.
Corollary 2. 13. For a connected graph G of order p, the following are equivalent:
(i)

$$
m h(G)=p
$$

(ii) $m h^{+}(G)=p$
(iii) $G=K_{p}$

Proof. This follows from Theorem 2.12 and Theorem 1.2.
Theorem 2.14. Let G be a non complete connected graph without cut vertices. Then $m h^{+}(G) \leq p-2$.
Proof. Suppose that $m h^{+}(G) \geq p-1$. Then by Corollary 2.13, $m h^{+}(G)=p-1$. Let v be a vertex of G and let $S=$ $V(G)-\{v\}$ be a minimal monophonic hull set of G. By Theorem 2.4, vis not an extreme vertex of G. Then there exist $x, y \in N(v)$ such that $x y \notin E(G)$. Since v is not a cut vertex of $G,\langle G-v\rangle$ is connected and also $<G-v>$ contains a monophonic path of length at least two. Let $x, x_{1}, x_{2}, \ldots, x_{n}, y$ be a monophonic path in $<G-v>$ of length at least two. Then $S_{1}=S-\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is a monophonic hull set of G. Since $S_{1} \subset S, S_{1}$ is not a minimal monophonic hull set of G, which is a contradiction. Therefore $m h^{+}(G) \leq p-2$.

Theorem 2.15. For a connected $\operatorname{graph} G, m h(G)=p-1$ if and only if $m h^{+}(G)=p-1$.
Proof. Let $m h(G)=p-1$. Then it follows from Theorem $2.10, m h^{+}(G)=p$ or $p-1$. If $m h^{+}(G)=p$, then by Theorem 2.12, $m h(G)=p$, which is a contradiction. Hence $m h^{+}(G)=p-1$. Conversely, let $m h^{+}(G)=p-1$. Then it follows from Corollary 2.13 that G is non-complete. Hence by Theorem $2.14, G$ contains a cut vertex, say v. Since $m h^{+}(G)=p-1$, it follows from Theorem 2.5 that $S=V(G)-\{v\}$ is the unique minimal monophonic hull set of G. Therefore $m h(G)=p-1$.
Corollary 2. 16. For a connected graph G of order p, the following are equivalent:
(i)

$$
m h(G)=p-1
$$

(ii) $\quad m h^{+}(G)=p-1$

$$
\begin{equation*}
G=K_{1}+\cup m_{j} K_{j}, \text { where } \sum m_{j} \geq 2 \tag{iii}
\end{equation*}
$$

Proof. This follows from Theorem 2.15 and Theorem 1.3.
In view of Theorem 2.10, we have the following realization result.
Theorem 2.17. For any positive integer $a \geq 2$, there exists a connected graph G such that $m h(G)=a$ and $m h^{+}(G)=2 a$.
Proof. Let $Q_{i}: u_{i}, v_{i}, x_{i}, y_{i}, w_{i}, u_{i}(1 \leq i \leq a)$ be a copy of cycle C_{5}. Let G be the graph given in Figure 2.3 is obtained from Q_{i} by adding a new vertex x and joining the edges $x v_{i}$ and $x w_{i}(1 \leq i \leq a)$. Let $H_{\mathrm{i}}=\left\{x_{\mathrm{i}}, y_{\mathrm{i}}, u_{\mathrm{i}}\right\}$. Since x is a cut vertex of G, by Theorem 2.5 every monophonic hull set of G contain at least one vertex from each component of $G-x$ so that $\operatorname{mh}(G) \geq a$. Let $M_{1}=\left\{x_{1}, x_{2}, x_{3}, \ldots x_{a}\right\}$. Then $J_{h}\left[M_{1}\right]=V(G)$ and so M_{1} is a monophonic hull set of G so that $m h(G)=a$. Now, $S=\left\{w_{1}, w_{2}, \ldots, w_{a}, v_{1}, v_{2}, \ldots, v_{a}\right\}$ is a monophonic hull set of G. We show that S is a minimal monophonic hull set of G. Let M be any proper subset of S. Then there exist at least one vertex, say $u \in S$ such that $u \notin M$. First assume that $u=w_{i}$ for some $i(1 \leq i \leq a)$. Then J_{h} $[M] \neq V(G)$ and so M is not a monophonic hull set of G. Next assume that $u=v_{j}$ for some $j(2 \leq j \leq a)$. Then also $J_{h}[M] \neq V(G)$ and so M is not a monophonic hull set of G. Hence S is a minimal monophonic hull set of G so that $m h^{+}(G) \geq 2 a$. Since every minimum monophonic hull set contains exactly one vertex from each $H_{i}(1 \leq i \leq a)$, it follows that there is no minimal monophonic hull set X of G with $|X| \geq 2 a+1$. Thus $m h^{+}(G)=2 a$.

Figure 2.3

III. CONCLUSIONS

In this paper, the upper monophonic hull number of certain classes of graphs are determined. Connected graphs of order p with upper monophonic hull number p or $\mathrm{p}-1$ are characterized. The bounds for certain graphs are also determined. The upper bounds for certain graphs can also be reduced in the future.

ACKNOWLEDGEMENT

The author express sincere thanks to Prof.J.John for his splended support and her daughter F.Ann Santra Pereira for her concen and support.

REFERENCES

11] F.Buckley and F. Harary, Distance in Graphs, Addison-Wesley, Redwood City, CA, 1990.
[2] G.Chartrand and Ping Zhang, Convex sets in graphs, Congressess Numerantium 136(1999), pp.19-32.
[3] G.Chartrand and P. Zhang, The forcing hull number of a graph,J. Combin Math. Comput. 36(2001), 81-94.
[4] G.Chartrand, F. Harary and P. Zhang, On the geodetic number of a graph, Networks, (2002) 1-6.
[5] Carmen Hernando, Tao Jiang, Merce Mora, Ignacio. M. Pelayo and Carlos Seara, On the Steiner, geodetic and hull number of graphs, Discrete Mathematics 293 (2005) 139-154
[6] M.G.Evertt, S. B. Seidman, The hull number of a graph, Mathematics, 57 (19850 217-223.
[7] Esamel M. paluga, Sergio R. Canoy, Jr, Monophonic numbers of the join and Composition of connected graphs, Discrete Mathematics 307 (2007) 1146-1154
[8] M.Faber, R.E. Jamison, Convexity in graphs and hypergraphs, SIAM Journal Algebraic Discrete Methods 7(1986) $433-444$.
[9] F.Harary, Graph Theory, Addison-Wesley,1969
[10] F.Harary, E. Loukakis and C. Tsouros, The geodetic number of a graph, Math. Comput Modeling 17(11)(1993) 89-95.
[11] J.John and S.Panchali, The Upper Monophonic number of a graph, International J.Math.Combin 4(2010),46-52.
[12] J.John and V.Mary Gleeta,Monophonic hull sets in graphs (submitted)
[13] Mitre C. Dourado, Fabio protti and Jayme. L. Szwarcfiter, Algorithmic Aspects of Monophonic Convexity, Electronic Notes in Discrete Mathematics 30(2008) 177-182.
[14] L-D. Tong, The forcing hull and forcing geodetic numbers of graphs Discrete Applied Math.157(2009)1159-1163.

