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Abstract
In this paper, we study a pair of a general class of fractional integral operators whose kernel involves the product of a generalized laguerre function,
and  - generalized associated Legendre function. We have given four images about the multivariable Gimel-function, the  -function and the
Aleph function. At the end we shall see two applications.
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1. Introduction.

The paper deals with special function, generalized Laguerre function [17,p.532,eq(2.1)] defined for 
and  by serie and in terms of H-function representation of of  generalized Laguerre function which is used in this
paper is in the following form

 

                                                                                                                       (1.1)

provided :  is not integer,  and  are such that 

 are finite when .

The contour representation of -generalized associated Legendre function of first kind  which is used in this paper 
is in the following form

                                                  (1.2)

 We consider a generalized transcendental function called Gimel function of several complex variables.

 =        (1.3)
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with  

The following quantities    and   are defined by Ayant
[2].

The Aleph- function , introduced by Südland et al. [15,16], however the notation and complete definition is presented
here in the following manner in terms of the Mellin-Barnes type integral  :

    z =                          (1.4)

for all  different to  and 

         =                                               (1.5)

with      where  , 

For convergence conditions and other details of Aleph-function , see Südland et al [15,16].

Inayat Hussain[6] has studied the  -function which is a new generalization of familial Fox-function [4,11]. The  -
function contains polylogarithm, Riemann Zeta function.  -function will be represented as follows 

                                                        (1.6)

where

                                                                                            (1.7)

The following sufficient condition for the absolute convergence of the defining integral for the  -function given by the
equation (1.6) have been given by Buschman and Srivastava [3], Rathie [10] introduced the I-function of one variable,
it’s a generalization of -function.
   

                                                                                      (1.8)

and

                                                                                                                                                              (1.7)

2. Fractional integral operators

Throughout this paper  will denote the class of functions  for which

 

In this paper we study the following two unified fractional integral  operators involving the product of generalized
Laguerre function and  generalized associated Legendre function having general arguments.
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               (2.1)

where , provided that

 (not all simultaneously zero)

                 (2.2)

provided

 or  and 

,  (not all simultaneously zero).

3. Images formulae.

In this section , we shall use the following notations

                                 (3.1)

                                                                                                     (3.2)

We have

Theorem 1.

    

 (3.3)

                                                          (3.4)

                                                                 (3.5)

Provided that

 and

 or  and 

,  (not all simultaneously zero).
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  where  is defined by Ayant [2].

Proof
To prove the theorem 1, first we express the I-operator involved in its left hand side in the integral form with the help of
(2.1).  Then we express  the generalized Laguerre function,  -generalized  associated  Legendre function and the
multivariable Gimel-function having general arguments  of multiple Mellin-Barnes type  integrals contour with the help
of (1.1), (1.2) and (1.3) respectively. Then we interchange the order of  (i = 1, 2, ..., r + 3)-integral and t-integral,
(which is permissible under the condition stated). Finally, on evaluating the t-integral and reinterpreting the result thus
obtained in terms of multivariable Gimel-function, we arrive at the required result after algebraic manipulations.

Theorem 2.
 

      

(3.6)

             
 where

                                                     (3.7)

  
                                                                       (3.8)

The validity condtions are the same that (3.5) and 

  

The proof of (3.8) is similar that (3.5)

The multivariable Gimel function reduces to -function defined in (1.6), we obtain

Corollary 1.

    

                               (3.9) 

where

             (3.10)
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   :              (3.11)

The validity condtions are the same that (3.5) and 

   is defined by (1.8).

The multivariable Gimel-function reduces in Aleph-function of one variable [16,17] ,we have

Corollary 2. 

              

                                 (3.12)

where

     (3.13)

 

  :                                (3.14)

  
The validity condtions are the same that (3.5) and 

   is defined by (1.5).

4. Application (see Kumawat [7])

In  (3.5)  let   and  reduce  generalized  Laguerre  function to  Laguerre  function,  -generalized  associated
function  to  -generalized  associated  Legendre  function  [18,p.241,  eq.(5.4)]  and  multivariable  Gimel-function  to
generalized Krätzel function [5 p. 610, eq.(420)], we obtain the following integral under the same validity conditions

                      (4.1)
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where

                                                                     (4.2)

On  taking   and  reduce   -generalized  associated  function  to   associated  Legendre  function  and
generalized Laguerre function to Laguerre function, The multivariable Gimel function to generalized Hurwitz-Lerch
zeta function [14, p.491, eq.(1.20)], we obtain the following integral

 

                               (4.3)

where

                                                         (4.4)

Remarks
We obtain the same formulae concerning the multivariable Aleph- function defined by Ayant [1],  the multivariable I-
function  defined by Prathima et al. [9], the multivariable I-function  defined by Prasad [8] and the  multivariable H-
function  defined by Srivastava and Panda [12,13], see Kumawat [7] for more details concerning the multivariable H-
function

5. Conclusion.

Firstly, the pair of fractional integral operators presented in this document are quite nature. Therefore, on specializing
the parameters of these functions involving in this paper, we obtain various other results as its special cases. Secondly,
by specializing the various parameters as well as variables in the generalized multivariable Gimel-function , we obtain a
large number of formulae  involving remarkably wide variety of useful functions or product of such functions) which
are expressible in terms of E, F, G, H, I, Aleph-function of one and several variables and simpler special functions of
one and several variables. Hence the formulae derived in this paper are most general in character and may prove to be
useful in several interesting cases appearing in literature of Pure and Applied Mathematics and Mathematical Physics.
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