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Abstract 
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INTRODUCTION 

  In this paper we present a new formulations of bipolar-valued fuzzy rings based on the notion of 

bipolar-valued fuzzy space. A relation between bipolar-valued fuzzy ring based on bipolar-valued fuzzy space 

and ordinary rings is obtained in terms of induction and correspondences. M .Z. Alma [4] introduced the 

concept of fuzzy ring and established the notion of fuzzy ideal and quotient ring. The author Mohammed F. 

Marashdeh [5] introduced the bipolar-valued fuzzy rings based on the notion of fuzzy space to the case of 

bipolar-valued fuzzy set. Won Kyun Jeong [12] introduced the notions of the extensions of bipolar-valued fuzzy 

ideals, bipolar-valued fuzzy prime ideals and bipolar-valued fuzzy commutative ideals in 𝐵𝐶𝐾-algebras are 

introduced and several properties are investigated. P. K. Sharma [6] attempt has been made to study some 

algebraic nature of bipolar-valued fuzzy ideals of near ring and their properties. K. Meena [3] in this we study 

some generalized properties of bipolar-valued 𝐿-fuzzy subrings. In this direction the concept of image and 

inverse image of an bipolar-valued 𝐿-fuzzy set under ring homomorphism are discussed. Further the concept of 

bipolar-valued 𝐿-fuzzy quotient subring and bipolar-valued  𝐿-fuzzy ideal of an bipolar-valued 𝐿-fuzzy subring 

are studied. 

I. PRELIMINARIES 

1.1 Definition [2] 

     A ring is a set 𝑅 together with two operations on 𝑅 addition and multiplication such that  

1. Addition is associative, for all 𝑎, 𝑏, 𝑐 ∈ 𝑅, 𝑎 +  𝑏 + 𝑐 =  𝑎 + 𝑏 + 𝑐. 
2. Addition is commutative, that is 𝑎, 𝑏 ∈ 𝑅, 𝑎 + 𝑏 = 𝑏 + 𝑎. 
3. 𝑅 has a zero element that is, there is an element 0 in 𝑅 such that, for all 𝑎 ∈ 𝑅, 𝑎 + 0 = 𝑎. 
4. For every 𝑎 ∈ 𝑅, there is an element −𝑎 in 𝑅 such that 𝑎 +  −𝑎 = 0. 
5. Multiplication is associative, that is for all 𝑎, 𝑏, 𝑐 ∈ 𝑅, 𝑎 𝑏𝑐 =  𝑎𝑏 𝑐. 
6. Multiplication is distributive over addition, that is for all 𝑧, 𝑏, 𝑐 ∈ 𝑅,  𝑎 + 𝑏 𝑐 = 𝑎𝑐 + 𝑏𝑐 and 

𝑎 𝑏 + 𝑐 = 𝑎𝑏 + 𝑎𝑐. 
7. Multiplication is commutative, that is for all 𝑎, 𝑏 ∈ 𝑅, 𝑎𝑏 = 𝑏𝑎. 
8. 𝑅 has a multiplicative identity, that is there is an element 1 in 𝑅 such that for all 𝑎 ∈ 𝑅, 𝑎 ∙ 1 = 𝑎. 

1.2 Definition [2] 

       A subset 𝑆 of a ring 𝑅 is a subring of 𝑅 if 𝑆 is closed under the addition and multiplication operation of 𝑅 

contain additive inverse and contains the multiplicative identity of 𝑅. 

1.3 Definition [1] 

      Let 𝑅 be a ring. A non-empty subset 𝐼 of 𝑅 is called a left ideal of 𝑅 if  

i. 𝑎, 𝑏 ∈ 𝐼 ⟹ 𝑎 − 𝑏 ∈ 𝐼 
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ii. 𝑎 ∈ 𝐼 and 𝑟 ∈ 𝑅 ⟹ 𝑟𝑎 ∈ 𝐼 

If 𝐼 is called a right ideal then  

i. 𝑎, 𝑏 ∈ 𝐼 ⟹ 𝑎 − 𝑏 ∈ 𝐼 
ii. 𝑎 ∈ 𝐼 and 𝑟 ∈ 𝑅 ⟹ 𝑎𝑟 ∈ 𝐼. 

 𝐼 is called an ideal of 𝑅 if  𝐼 is both left and right ideal of 𝑅. 

1.4 Definition [1] 

      A ring 𝑅 is called commutative ring if multiplication is commutative, that is, 𝑎𝑏 = 𝑏𝑎 for all 𝑎, 𝑏 ∈ 𝑅. 

1.5 Definition [1] 

        Let 𝑅 be any ring and 𝐼 be an ideal of 𝑅 we have two well defined binary operations in 𝑅 𝐼  given by 
 𝐼 + 𝑎 +  𝐼 + 𝑏 = 𝐼 + (𝑎 + 𝑏) and  𝐼 + 𝑎  𝐼 + 𝑏 = 𝐼 + 𝑎𝑏. It is easy to verify that 𝑅 𝐼  is a ring under these 

operations. The ring 𝑅 𝐼  is called the quotient ring of 𝑅 modulo 𝐼. 

1.6 Definition [1] 

      Let 𝑅 and 𝑅′  be rings. A function 𝑓: 𝑅 ⟶ 𝑅′  is called a homomorphism if  

i. 𝑓 𝑎 + 𝑏 = 𝑓 𝑎 + 𝑓 𝑏  
ii. 𝑓 𝑎𝑏 = 𝑓 𝑎 𝑓 𝑏 , for all 𝑎, 𝑏 ∈ 𝑅. 

1.7 Definition [1] 

       Let 𝑅 be a commutative ring. An ideal 𝑃 ≠ 𝑅 is called a prime ideal if 𝑎𝑏 ∈ 𝑃 ⟹ either 𝑎 ∈ 𝑃 or 𝑏 ∈ 𝑃. 

1.8 Definition [1] 

       A subset 𝐼 of a commutative ring 𝑅 is said to be an ideal if  

1) 0 ∈ 𝐼 and 𝑎, 𝑏 ∈ 𝐼 ⟹ 𝑎 + 𝑏, −𝑎 ∈ 𝐼 (so 𝐼 is an additive subgroup) 

2) 𝑎 ∈ 𝐼, 𝑥 ∈ 𝑅 ⟹ 𝑥𝑎 ∈ 𝐼. 

1.9 Definition [2] 

         A field consists of a set 𝐹 and two binary operation " + " (addition) and " ∙ " (multiplication), defined on 𝑅, 
for which the following conditions are satisfied 

1) (𝐹, +,∙) is a ring 

2) Multiplicative commutative: For any 𝑎, 𝑏 ∈ 𝐹, 𝑎 ∙ 𝑏 = 𝑏 ∙ 𝑎 

3) Multiplicative identity: There exists 1 ∈ 𝐹 such that 𝑎 ∙ 1 = 1 ∙ 𝑎 = 𝑎 for all 𝑎 ∈ 𝐹. 
4) Multiplicative inverse: If 𝑎 ∈ 𝐹 and 𝑎 ≠ 0, there exists 𝑏 ∈ 𝐹 such that 𝑎 ∙ 𝑏 = 𝑏 ∙ 𝑎 = 1. 

1.10 Definition [1] 

       Let 𝐼 be an ideal in the commutative ring 𝑅. Then quotient ring 𝑅 𝐼  is defined as follows  

Set= 𝑥 + 𝐼 𝑥 ∈ 𝑅 , 0 = 𝐼, 1 = 1 + 𝐼, − 𝑥 + 𝐼 =  −𝑥 + 𝐼,  𝑥 + 𝐼 +  𝑦 + 𝐼 =  𝑥 + 𝑦 + 𝐼,  𝑥 + 𝐼  𝑦 + 𝐼 =
 𝑥𝑦 + 𝐼. 

1.11 Definition [1]  

        A subring of a commutative ring 𝑅 is a subset 𝑆 of 𝑅 such that  

1) 0,1 ∈ 𝑆 

2) 𝑎 ∈ 𝑆 ⟹ −𝑎 ∈ 𝑆 

3) 𝑎, 𝑏 ∈ 𝑆 ⟹ 𝑎 + 𝑏 ∈ 𝑆 

4) 𝑎, 𝑏 ∈ 𝑆 ⟹ 𝑎𝑏 ∈ 𝑆. 
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1.12 Definition [12] 

       Algebra (𝑋,∗ ,0) of type (2,0) is called a 𝐵𝐶𝐾-algebra if it satisfies the following conditions 

1)   𝑥 ∗ 𝑦 ∗  𝑥 ∗ 𝑧  ∗  𝑧 ∗ 𝑦 = 0 

2)   𝑥 ∗  𝑥 ∗ 𝑦  ∗ 𝑦 = 0 

3)  𝑥 ∗ 𝑥 = 0 

4) 𝑥 ∗ 𝑦 = 0, 𝑦 ∗ 𝑥 = 0 ⟹ 𝑥 = 𝑦 

5)  0 ∗ 𝑥 = 0 for all 𝑥, 𝑦, 𝑧 ∈ 𝑋. 

II. FUZZY IDEAL OVER A FUZZY RING 

2.1 Definition [9] 

        Let 𝑅 be a ring and 𝜇 be a fuzzy subset in 𝑅. Then 𝜇 is called a fuzzy ring of 𝑅 if for every 𝑥, 𝑦 ∈ 𝑅 the 

following conditions are satisfied 

i. 𝜇 𝑥 + 𝑦 ≥ min 𝜇 𝑥 , 𝜇 𝑦   

ii. 𝜇 −𝑥 ≥ 𝜇 𝑥  
iii. 𝜇 𝑥𝑦 ≥ min 𝜇 𝑥 , 𝜇 𝑦  . 

2.2 Definition [9] 

       Let 𝑅 be a ring and 𝜇 be a fuzzy subset in 𝑅. Then is called fuzzy ideal over a fuzzy ring 𝑅 for every 

𝑥, 𝑦 ∈ 𝑅 the following conditions are satisfied 

i. 𝜇 𝑥 + 𝑦 ≥ min 𝜇 𝑥 , 𝜇 𝑦   

ii. 𝜇 −𝑥 ≥ 𝜇 𝑥  

iii. 𝜇 𝑥𝑦 ≤ max 𝜇 𝑥 , 𝜇 𝑦  . 

2.3 Definition [4] 

      Let 𝑅 be a ring, a fuzzy set 𝐴 of 𝑅 is called a fuzzy ring of 𝑅 if  

i. 𝐴 𝑥 − 𝑦 ≥ min 𝐴 𝑥 , 𝐴 𝑦   

ii. 𝐴 𝑥𝑦 ≥ min 𝐴 𝑥 , 𝐴 𝑦  , for all 𝑥, 𝑦 ∈ 𝑅. 

2.4 Definition [4] 

        Let 𝑅 be a ring, a fuzzy ring 𝜇 of 𝑅 is called a ring with operator if and only if for any 𝑡 ∈  0,1 , 𝜇𝑡  is a 

ring with operator of 𝑅, where 𝜇𝑡 ≠ ∅, where 𝜇𝑡 =  𝑥 ∈ 𝑅, 𝜇 𝑥 ≥ 𝑡 . 

2.5 Definition [4] 

      Let 𝜇 be a fuzzy subset of ring 𝑅. Then 𝜇 is called a fuzzy subring of 𝑅 if for all 𝑥, 𝑦 ∈ 𝑅 

1) 𝜇 𝑥 − 𝑦 ≥ min 𝜇 𝑥 , 𝜇 𝑦   

2) 𝜇 𝑥𝑦 ≥ min 𝜇 𝑥 , 𝜇 𝑦  . 

2.6 Proposition  

      If {𝐴𝑖}𝑖∈𝐼 are fuzzy (left, right) ideals of 𝑅, then ⋂ 𝐴𝑖𝑖∈𝐼  is (left, right) ideal of 𝑅 

Proof: If 𝐴 is a fuzzy ring in 𝑅. Let {𝐴𝑖}𝑖∈𝐼 be a family of fuzzy ideal over a fuzzy ring 𝑅, let 𝐴 = ⋂ 𝐴𝑖𝑖∈𝐼  then 

for all 𝑥, 𝑦 ∈ 𝑅 

 𝐴 𝑥 + 𝑦 = inf𝑖∈𝐼 𝐴𝑖(𝑥 + 𝑦) 

                 ≥ inf𝑖∈𝐼 min 𝐴𝑖 𝑥 , 𝐴𝑖 𝑦   

                 ≥ min⁡[inf𝑖∈𝐴 𝐴𝑖 𝑥 , inf𝑖∈𝐴 𝐴𝑖 (𝑦)] 
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                 ≥ min 𝐴 𝑥 , 𝐴 𝑦  . 

 𝐴 −𝑥 = inf𝑖∈𝐼 𝐴𝑖  −𝑥 ≥ inf𝑖∈𝐼 𝐴𝑖 𝑥 ≥ 𝐴 𝑥 . 

 𝐴 𝑥𝑦 = inf𝑖∈𝐼 𝐴𝑖  𝑥𝑦 ≥ inf𝑖∈𝐼 max 𝐴𝑖 𝑥 , 𝐴𝑖 𝑦    

             ≥ max⁡[inf𝑖∈𝐼 𝐴𝑖 𝑥 , inf𝑖∈𝐼 𝐴𝑖(𝑦)] 

             ≥ max 𝐴 𝑥 , 𝐴 𝑦  . Hence 𝐴 is a fuzzy ideal in 𝑅. 

2.7 Proposition [4] 

      If {𝐴𝑖}𝑖∈𝐼 are fuzzy (left, right) ideal of 𝑅, then ⋃ 𝐴𝑖𝑖∈𝐼  is a (left, right) ideal of 𝑅. 

Proof: If 𝐴 is a fuzzy ring 𝑅. Let {𝐴𝑖}𝑖∈𝐼 be a family of fuzzy ideal over a fuzzy ring 𝑅, let 𝐴 = ⋃ 𝐴𝑖𝑖∈𝐼  then for 

all 𝑥, 𝑦 ∈ 𝑅 

 𝐴 𝑥 + 𝑦 = sup𝑖∈𝐼 𝐴𝑖(𝑥 + 𝑦) ≥ sup𝑖∈𝐼 min 𝐴𝑖 𝑥 , 𝐴𝑖 𝑦   

                 ≥ min⁡[sup𝑖∈𝐼 𝐴𝑖 𝑥 , sup𝑖∈𝐼 𝐴𝑖 (𝑦)] 

                 ≥ min 𝐴 𝑥 , 𝐴 𝑦  . 

 𝐴 −𝑥 = sup𝑖∈𝐼 𝐴𝑖(−𝑥) ≥ sup𝑖∈𝐼 𝐴𝑖 𝑥 ≥ 𝐴 𝑥 . 

 𝐴 𝑥𝑦 = sup𝑖∈𝐼 𝐴𝑖(𝑥𝑦) ≥ sup𝑖∈𝐼 max 𝐴𝑖 𝑥 , 𝐴𝑖 𝑦   

             ≥ max⁡[sup𝑖∈𝐼 𝐴𝑖 𝑥 , sup𝑖∈𝐼 𝐴𝑖(𝑦)] 

             ≥ max 𝐴 𝑥 , 𝐴 𝑦  . 

2.8 Proposition [9] 

          Let 𝑅1, 𝑅2 be ring 𝑓: 𝑅1 ⟶ 𝑅2 be a ring homomorphism. 𝐴 be a fuzzy ring on 𝑅1 and 𝐵 be a fuzzy ring on 

𝑅2. Then 𝑓(𝐴) is a fuzzy ring on 𝑅2 and 𝑓−1(𝐵) is a fuzzy ring on 𝑅1. 

Proof: Assume that 𝐵 is an fuzzy ring on 𝑅2 and let 𝑥, 𝑦 ∈ 𝑅.  

Then 𝑓−1 𝐵  𝑥 − 𝑦 = 𝐵 𝑓 𝑥 − 𝑦  = 𝐵 𝑓 𝑥 − 𝑓 𝑦   

                                   ≥ min 𝐵 𝑓 𝑥  , 𝐵 𝑓 𝑦    

                                   = min 𝑓−1 𝐵 𝑥  , 𝑓−1 𝐵 𝑦   . 

 𝑓−1 𝐵  𝑥𝑦 = 𝐵 𝑓 𝑥𝑦  = 𝐵 𝑓 𝑥 𝑓 𝑦   

                      ≥ 𝐵 min 𝑓 𝑥 , 𝑓 𝑦   = min 𝑓−1 𝐵 𝑥  , 𝑓−1 𝐵 𝑦   . 

Therefore 𝑓−1(𝐵) is a fuzzy ring of 𝑅1 . 

Assume that 𝐴 is a fuzzy ring of 𝑅1, we have to prove that 𝑓(𝐴) is a fuzzy ring on 𝑅2 and let 𝑥, 𝑦 ∈ 𝑅,  

Then 𝑓 𝐴  𝑥 − 𝑦 = 𝐴 𝑓−1 𝑥 − 𝑦  = 𝐴 𝑓−1 𝑥 − 𝑓−1 𝑦   

                               ≥ min 𝐴 𝑓−1 𝑥  , 𝐴 𝑓−1 𝑦   = min 𝑓 𝐴 𝑥  , 𝑓 𝐴 𝑦   . 

 𝑓 𝐴  𝑥𝑦 = 𝐴 𝑓−1 𝑥𝑦  = 𝐴 𝑓−1 𝑥 𝑓−1 𝑦   

                  ≥ min 𝐴 𝑓−1 𝑥  , 𝐴 𝑓−1 𝑦   = min 𝑓 𝐴 𝑥  , 𝑓 𝐴 𝑦   . 

Therefore 𝑓(𝐴) is a fuzzy ring on 𝑅2. 
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2.9 Definition [11] 

         Let 𝐴 be a non-constant fuzzy left (right) ideal of 𝑅. Then 𝐴 is called a fuzzy maximal left (right) ideal of 𝑅 

if for any fuzzy left (right) ideal 𝐵 of 𝑅 . 𝐴 ⊂ 𝐵 ⟹ 𝐴0 = 𝐵0. 

2.10 Proposition  

       If 𝐴 is a fuzzy ideal of 𝑅, then 

i.  𝐴(0) ≥ 𝐴(𝑥) and 𝐴 −𝑥 = 𝐴 𝑥 , ∀𝑥 ∈ 𝑅 

ii. If 𝑅 has multiplicative identity 1, then 𝐴 1 ≤ 𝐴 𝑥 , ∀𝑥 ∈ 𝑅. 
iii. For 𝑥, 𝑦 ∈ 𝑅, 𝐴 𝑥 − 𝑦 = 𝐴 0 ⟹ 𝐴 𝑥 = 𝐴 𝑦 . 

Proof: i) we have for any 𝑥 ∈ 𝑅, 𝐴 0 = 𝐴 𝑥 − 𝑥 ≥ min 𝐴 𝑥 , 𝐴 𝑥  = 𝐴(𝑥) 

And 𝐴 −𝑥 = 𝐴 0 − 𝑥 ≥ min 𝐴 0 , 𝐴 −𝑥  = 𝐴 𝑥 . 

ii) If 𝑅 has multiplicative identity 1, then 𝐴 1 = 𝐴 𝑥𝑥−1 ≤ max 𝐴 𝑥 , 𝐴 𝑥−1  = 𝐴 𝑥 ∀𝑥 ∈ 𝑅. 

iii) Let 𝑥, 𝑦 ∈ 𝑅 be such that 𝐴 𝑥 − 𝑦 = 𝐴 0 . Then  

 𝐴 𝑥 = 𝐴 𝑥 − 𝑦 + 𝑦 ≥ min 𝐴 𝑥 − 𝑦 , 𝐴 𝑦  = 𝐴 𝑦 . Similarly 𝐴(𝑦) ≥ 𝐴(𝑥) and so 𝐴 𝑥 = 𝐴 𝑦 . 

2.11 Theorem [11] 

     Let 𝐼 be a prime ideal of 𝑅 and 𝛼 a prime element in 𝐿. Let 𝑃 be the fuzzy subset of 𝑅 defined by 𝑃 𝑥 =

 
1       𝑖𝑓    𝑥 ∈ 𝐼
𝛼     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  Then 𝑃 is a fuzzy prime ideal. 

Proof: By corollary “ Let 𝐼 be any ideal of 𝑅 and let 𝛼 ≤ 𝛽 ≠ 0 be elements in 𝐿. Then fuzzy subset 𝐴 defined 

by 𝐴 𝑥 =  
𝛽       𝑖𝑓     𝑥 ∈ 𝐼
𝛼     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  is a fuzzy ideal” from this 𝑃 is clearly a non-constant fuzzy ideal. Let 𝐴 and 𝐵 be 

any fuzzy ideals and let 𝐴 ≤ 𝑃, 𝐵 ≤ 𝑃. Then there exist 𝑥, 𝑦 in 𝑅, such that 𝐴 𝑥 ≮ 𝑃 𝑥 , 𝐵 𝑥 ≰ 𝑃 𝑥 . This 

implies that 𝑃 𝑥 = 𝛼 = 𝑃(𝑦) and hence 𝑥 ∉ 𝐼 and 𝑦 ∉ 𝐼. Since 𝐼 is prime, there exists an element 𝑟 in 𝑅 such 

that 𝑥𝑟𝑦 ∈ 𝐼. Now we have 𝐴(𝑥) ≰ 𝛼 and 𝐵(𝑟𝑦) ≰ 𝛼 (0 otherwise 𝐵(𝑦) ≰ 𝛼) and since 𝛼 is prime, 

𝐴(𝑥)⋀𝐵(𝑟𝑦) ≰ 𝛼 and hence  𝐴 ∘ 𝐵  𝑥𝑟𝑦 ≰ 𝛼 = 𝑃(𝑥𝑟𝑦) so that 𝐴 ∘ 𝐵 ≰ 𝑃. Hence 𝑃 is fuzzy prime ideal. 

III. MAIN RESULTS 

 3.1 Definition  

      Let 𝑋 be a nonempty set. A bipolar-valued fuzzy set 𝐴 in 𝑋 is defined as an object of the form 𝐴 =

  𝑥, 𝐴+ 𝑥 , 𝐴− 𝑥  𝑥 ∈ 𝑋 , where 𝐴+: 𝑋 ⟶ [0,1] and 𝐴−: 𝑋 ⟶  −1,0 . 

3.2 Definition 

     Let  𝑅 be a ring. An bipolar-valued fuzzy set 𝐴 =   𝑥, 𝜇𝐴
+ 𝑥 , 𝜇𝐴

− 𝑥  𝑥 ∈ 𝑋  of 𝑅 is said to be bipolar-

valued fuzzy ring of 𝑅 if  

i. 𝜇𝐴
+ 𝑥 + 𝑦 ≥ min 𝜇𝐴

+ 𝑥 , 𝜇𝐴
+ 𝑦  , 

ii. 𝜇𝐴
− 𝑥 + 𝑦 ≤ max 𝜇𝐴

− 𝑥 , 𝜇𝐴
− 𝑦  , 

iii. 𝜇𝐴
+(−𝑥) ≥ 𝜇𝐴

+(𝑥) and 𝜇𝐴
− −𝑥 ≤ 𝜇𝐴

− 𝑥 , 

iv. 𝜇𝐴
+ 𝑥𝑦 ≥ min 𝜇𝐴

+ 𝑥 , 𝜇𝐴
+ 𝑦   and 𝜇𝐴

− 𝑥𝑦 ≤ max 𝜇𝐴
− 𝑥 , 𝜇𝐴

− 𝑦  . 

3.3 Definition 

       An bipolar-valued fuzzy set 𝐴 =   𝑥, 𝜇𝐴
+ 𝑥 , 𝜇𝐴

− 𝑥  𝑥 ∈ 𝑋  of a ring 𝑅 is said to be an bipolar-valued left 

ideal if  

i. 𝜇𝐴
+(𝑥 − 𝑦) ≥ min⁡(𝜇𝐴

+ 𝑥 , 𝜇𝐴
+ 𝑦 , 

ii. 𝜇𝐴
+ 𝑥𝑦 ≥ 𝜇𝐴

+ 𝑥 , 
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iii. 𝜇𝐴
− 𝑥 − 𝑦 ≤ max 𝜇𝐴

− 𝑥 , 𝜇𝐴
− 𝑦  , 

iv. 𝜇𝐴
− 𝑥𝑦 ≤ 𝜇𝐴

− 𝑥 , ∀𝑥, 𝑦 ∈ 𝑅. 

3.4 Definition 

     An bipolar-valued fuzzy set 𝐴 = (𝜇𝐴
+, 𝜇𝐴

−) of a ring 𝑅 is said to be an bipolar-valued fuzzy right ideal if  

i. 𝜇𝐴
+ 𝑥 − 𝑦 ≥ min 𝜇𝐴

+ 𝑥 , 𝜇𝐴
+ 𝑦  , 

ii. 𝜇𝐴
+ 𝑥𝑦 ≥ 𝜇𝐴

+ 𝑦 , 
iii. 𝜇𝐴

− 𝑥 − 𝑦 ≤ max 𝜇𝐴
− 𝑥 , 𝜇𝐴

− 𝑦  , 

iv. 𝜇𝐴
− 𝑥𝑦 ≤ 𝜇𝐴

− 𝑦 , ∀𝑥, 𝑦 ∈ 𝑅. 

3.5 Definition 

      An bipolar-valued fuzzy set 𝐴 = (𝜇𝐴
+, 𝜇𝐴

−) of a ring 𝑅 is said to be an bipolar-valued fuzzy ideal if  

i. 𝜇𝐴
+ 𝑥 − 𝑦 ≥ min 𝜇𝐴

+ 𝑥 , 𝜇𝐴
+ 𝑦  , 

ii. 𝜇𝐴
+ 𝑥𝑦 ≥ min 𝜇𝐴

+ 𝑥 , 𝜇𝐴
+ 𝑦  , 

iii. 𝜇𝐴
− 𝑥 − 𝑦 ≤ max 𝜇𝐴

− 𝑥 , 𝜇𝐴
− 𝑦  , 

iv. 𝜇𝐴
− 𝑥𝑦 ≤ max 𝜇𝐴

− 𝑥 , 𝜇𝐴
− 𝑦  . 

3.6 Theorem 

       Let 𝐴 and 𝐵 be two bipolar-valued fuzzy ideals of 𝑅. Then 𝐴⋂𝐵 is also an bipolar-valued fuzzy ideal of 𝑅. 

Proof: Let 𝐴⋂𝐵 =   𝑥, 𝜇𝐴
+ 𝑥 ⋀𝜇𝐵

+ 𝑥 , 𝜇𝐴
− 𝑥 ⋁𝜇𝐵

− 𝑥  𝑥 ∈ 𝑋 . For any 𝑥, 𝑦 ∈ 𝑅, we have that  

  𝜇𝐴
+⋀𝜇𝐵

+  𝑥 − 𝑦 = 𝜇𝐴
+(𝑥 − 𝑦)⋀𝜇𝐵

+(𝑥 − 𝑦) 

                              ≥  𝜇𝐴
+ 𝑥 ⋀𝜇𝐴

+ 𝑦  ⋀ 𝜇𝐵
+ 𝑥 ⋀𝜇𝐵

+ 𝑦   

                              ≥  𝜇𝐴
+⋀𝜇𝐵

+  𝑥 ⋀ 𝜇𝐴
+⋀𝜇𝐵

+  𝑦 . 

  𝜇𝐴
−⋁𝜇𝐵

−  𝑥 − 𝑦 = 𝜇𝐴
−(𝑥 − 𝑦)⋁𝜇𝐵

−(𝑥 − 𝑦) 

                              ≤  𝜇𝐴
− 𝑥 ⋁𝜇𝐴

− 𝑦  ⋁ 𝜇𝐵
− 𝑥 ⋁𝜇𝐵

− 𝑦   

                              ≤  𝜇𝐴
−⋁𝜇𝐵

−  𝑥 ⋁ 𝜇𝐴
−⋁𝜇𝐵

−  𝑦 . 

And  𝜇𝐴
+⋀𝜇𝐵

+  𝑥𝑦 = 𝜇𝐴
+ 𝑥𝑦 ⋀𝜇𝐵

+ 𝑥𝑦  

                                 ≥  𝜇𝐴
+ 𝑥 ⋀𝜇𝐴

+ 𝑦  ⋀ 𝜇𝐵
+ 𝑥 ⋀𝜇𝐵

+ 𝑦   

                                 ≥  𝜇𝐴
+⋀𝜇𝐵

+  𝑥 ⋀ 𝜇𝐴
+⋀𝜇𝐵

+  𝑦 .  

  𝜇𝐴
−⋁𝜇𝐵

−  𝑥𝑦 = 𝜇𝐴
−(𝑥𝑦)⋁𝜇𝐵

−(𝑥𝑦) 

                          ≤  𝜇𝐴
− 𝑥 ⋁𝜇𝐴

− 𝑦  ⋁ 𝜇𝐵
− 𝑥 ⋁𝜇𝐵

− 𝑦       ≤  𝜇𝐴
−⋁𝜇𝐵

−  𝑥 ⋁ 𝜇𝐴
−⋁𝜇𝐵

−  𝑦 . 

Hence 𝐴⋂𝐵 is a bipolar-valued fuzzy ideal of 𝑅. 

3.7 Theorem 

      If 𝐴 =   𝑥, 𝜇𝐴
+ 𝑥 , 𝜇𝐴

− 𝑥  𝑥 ∈ 𝑋  be bipolar-valued fuzzy ideal of 𝑅. Then  

i. 𝜇𝐴
+(0) ≥ 𝜇𝐴

+(𝑥) and 𝜇𝐴
− 0 ≤ 𝜇𝐴

− 𝑥 , 
ii. 𝜇𝐴

+ −𝑥 = 𝜇𝐴
+(𝑥) and 𝜇𝐴

− −𝑥 = 𝜇𝐴
− 𝑥 , ∀𝑥 ∈ 𝑅, 

iii. If 𝑅 is ring with unity 1, then 𝜇𝐴
+(1) ≤ 𝜇𝐴

+(𝑥) and 𝜇𝐴
− 1 ≥ 𝜇𝐴

− 𝑥 , ∀𝑥 ∈ 𝑅. 
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Proof: i) We have that for every 𝑥 ∈ 𝑅, 𝜇𝐴
+ 0 = 𝜇𝐴

+ 𝑥 − 𝑥 ≥ min 𝜇𝐴
+ 𝑥 , 𝜇𝐴

+ 𝑥  = 𝜇𝐴
+ 𝑥  and 𝜇𝐴

− 0 =

𝜇𝐴
+ 𝑥 − 𝑥 ≤ max 𝜇𝐴

− 𝑥 , 𝜇𝐴
− 𝑥  = 𝜇𝐴

− 𝑥 . Therefore 𝜇𝐴
+ 0 ≥ 𝜇𝐴

+ 𝑥  and 𝜇𝐴
− 0 ≤ 𝜇𝐴

− 𝑥 . 

ii) By using (i), we get 𝜇𝐴
+ −𝑥 = 𝜇𝐴

+ 0 − 𝑥 ≥ min 𝜇𝐴
+ 0 , 𝜇𝐴

+ 𝑥  = 𝜇𝐴
+(𝑥) 

 𝜇𝐴
− −𝑥 = 𝜇𝐴

− 0 − 𝑥 ≤ max 𝜇𝐴
− 0 , 𝜇𝐴

− 𝑥  = 𝜇𝐴
− 𝑥 . 

iii) If 𝑅 is a ring with unity 1, we get 𝜇𝐴
+ 1 = 𝜇𝐴

+ 𝑥𝑥−1 ≤ max 𝜇𝐴
+ 𝑥 , 𝜇𝐴

+ 𝑥−1   

 = max 𝜇𝐴
+ 𝑥 , 𝜇𝐴

+ 𝑥  = 𝜇𝐴
+(𝑥) and 𝜇𝐴

− 1 = 𝜇𝐴
− 𝑥𝑥−1 ≥ min 𝜇𝐴

− 𝑥 , 𝜇𝐴
− 𝑥−1  = 𝜇𝐴

− 𝑥 . Therefore 

𝜇𝐴
+(1) ≤ 𝜇𝐴

+(𝑥) and 𝜇𝐴
− 1 ≥ 𝜇𝐴

− 𝑥 . 

3.8 Definition [13] 

     Let 𝑋 be a set and let 𝐴 ∈ 𝑋 is a bipolar-valued fuzzy subring. Then 𝐴 is said to have the sub property if for 

each 𝑌 ∈ 𝑃 𝑥 , there exists 𝑦0 ∈ 𝑌 such that  

𝐴 𝑦0 =   𝜇𝐴
+ 𝑥 

𝑥∈𝑌

,  𝜇𝐴
− 𝑥 

𝑥∈𝑌

 , 

Where 𝑃(𝑌) denoted the proper set of 𝑋. 

3.9 Definition [13] 

      Let 𝑋 be a set, let 𝐴 ∈ 𝑋 is a bipolar-valued fuzzy subring and let (𝜆, 𝜇) ∈ 𝐼 × 𝐼 with 𝜆 + 𝜇 ≤ 1 

1) The set 𝐴(𝜆,𝜇) =  𝑥 ∈ 𝑋: 𝜇𝐴
+ 𝑥 ≥ 𝜆, 𝜇𝐴

− 𝑥 ≤ 𝜇  is called a (𝜆, 𝜇)-level subset of 𝐴 

2) The set 𝐴(𝜆,𝜇) =  𝑥 ∈ 𝑋: 𝜇𝐴
+ 𝑥 > 𝜆, 𝜇𝐴

− 𝑥 < 𝜇  is called a strong  (𝜆, 𝜇)-level s-1ubset of 𝐴. 

3.10 Theorem  

    If 𝐴 = (𝐴+, 𝐴−) is a bipolar-valued fuzzy subring of a ring   𝑅, then 𝐻 =  𝑥 ∈ 𝑅 𝐴+ 𝑥  = 1, 𝐴− 𝑥 = −1  is 

either empty or is a subring. 

Proof: If no element satisfies this condition, then 𝐻 is empty. If 𝑥 and 𝑦 in 𝐻 then 

𝐴+ 𝑥𝑦1 ≥ min 𝐴+ 𝑥 , 𝐴+ 𝑦−1  = min 1,1 = 1. Therefore 𝐴+ 𝑥𝑦−1 = 1. And 

𝐴− 𝑥𝑦−1 ≤ max 𝐴− 𝑥 , 𝐴− 𝑦−1  = max −1, −1 = −1 Therefore 𝐴− 𝑥𝑦−1 = −1. That is 𝑥𝑦−1 ∈ 𝐻. 

Hence 𝐻 is a subring of 𝑅. Hence 𝐻 is either empty or is a subring of 𝑅. 

3.11 Theorem 

       If 𝐴 = (𝐴+, 𝐴−) is a bipolar-valued fuzzy subring of 𝑅, then 𝐻 =  𝑥 ∈ 𝑅 𝐴+ 𝑥  = 𝐴+ 𝑒 , 𝐴− 𝑥 = 𝐴− 𝑒   
is a subring of 𝑅 

Proof: Here 𝐻 =  𝑥 ∈ 𝑅 𝐴+ 𝑥  = 𝐴+ 𝑒 , 𝐴− 𝑥 = 𝐴− 𝑒  , By theorem “ Let 𝐴 = (𝐴+, 𝐴−) be a bipolar-

valued fuzzy subring of a ring 𝑅. Then 𝐴+ −𝑥 = 𝐴+(𝑥) and 𝐴− −𝑥 = 𝐴− 𝑥 , 𝐴+(𝑥) ≤ 𝐴+(𝑒) and 𝐴−(𝑥) ≥
𝐴−(𝑒) for all 𝑥 in 𝑅 and identity 𝑒 ∈ 𝑅.” We have 𝐴+ 𝑥−1 = 𝐴+ 𝑥 = 𝐴+(𝑒) and 𝐴− 𝑥−1 = 𝐴− 𝑥 = 𝐴− 𝑒 . 

Therefore 𝑥−1 ∈ 𝐻. Now 𝐴+ 𝑥𝑦−1 ≥ min 𝐴+ 𝑥 , 𝐴+ 𝑦−1  = min 𝐴+ 𝑒 , 𝐴+ 𝑒  = 𝐴+(𝑒) and 𝐴+ 𝑒 =

𝐴+  𝑥𝑦−1  𝑥𝑦−1 −1 ≥ min 𝐴+ 𝑥𝑦−1 , 𝐴+ 𝑥𝑦−1  = 𝐴+ 𝑥𝑦−1 .  Hence 𝐴+ 𝑒 = 𝐴+ 𝑥𝑦−1 . Also 𝐴− 𝑒 =

𝐴− 𝑥𝑦−1 . Hence 𝐴+ 𝑒 = 𝐴+(𝑥𝑦−1) and 𝐴− 𝑒 = 𝐴− 𝑥𝑦−1 , therefore 𝑥𝑦−1 ∈ 𝐻. Hence 𝐻 is a subring of 𝑅. 

3.12 Definition 

      Let 𝑅 be a ring. An bipolar-valued fuzzy set 𝐴 =   𝑥, 𝜇𝐴
+ 𝑥 , 𝜇𝐴

− 𝑥  𝑥 ∈ 𝑅  of 𝑅 is said to be bipolar-

valued fuzzy subring of 𝑅 if  

i.  𝜇𝐴
+ 𝑥 − 𝑦 ≥ min 𝜇𝐴

+ 𝑥 , 𝜇𝐴
+ 𝑦  , 

ii. 𝜇𝐴
+ 𝑥𝑦 ≥ min 𝜇𝐴

+ 𝑥 , 𝜇𝐴
+ 𝑦  , 

iii. 𝜇𝐴
− 𝑥 − 𝑦 ≤ max 𝜇𝐴

− 𝑥 , 𝜇𝐴
− 𝑦  , 
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iv. 𝜇𝐴
− 𝑥𝑦 ≤ max 𝜇𝐴

− 𝑥 , 𝜇𝐴
− 𝑦  . 

 3.13 Definition 

      An bipolar-valued fuzzy left ideal 𝐴 = (𝐴+, 𝐴−) is called an bipolar-valued fuzzy left 𝑘-ideal of a subring 𝑆 

if for all 𝑥, 𝑦, 𝑧 ∈ 𝑆, 𝑥 + 𝑦 = 𝑧 implies 

1) 𝐴+ 𝑥 ≥ min 𝐴+ 𝑦 , 𝐴+ 𝑧   

2) 𝐴− 𝑥 ≤ max 𝐴− 𝑦 , 𝐴− 𝑧  . 

3.15 Definition 

    An bipolar-valued fuzzy ideal 𝐴 = (𝐴+, 𝐴−) of a subring 𝑆 is called a bipolar-valued fuzzy completely prime 

ideal of 𝑆 if  

i. 𝐴+ 𝑥𝑦 = max 𝐴+ 𝑥 , 𝐴+ 𝑦  , 

ii. 𝐴− 𝑥𝑦 = min 𝐴− 𝑥 , 𝐴− 𝑦  , ∀𝑥, 𝑦 ∈ 𝑆. 

3.16 Definition 

     Let 𝑆 be a subring 𝐴 = (𝐴+, 𝐴−) be an bipolar-valued fuzzy subset of a set 𝑆 and 𝑥 ∈ 𝑆. The bipolar-valued 

fuzzy subset  𝑥, 𝐴 =   𝑥, 𝐴+ ,  𝑥, 𝐴−   where   𝑥, 𝐴+ : 𝑆 ⟶ [0,1] and  𝑥, 𝐴− : 𝑆 ⟶  0,1  defined by 

 𝑥, 𝐴+  𝑦 = 𝐴+(𝑥𝑦) and  𝑥, 𝐴−  𝑦 = 𝐴−(𝑥𝑦) is called the bipolar-valued fuzzy extension of 𝐴 = (𝐴+, 𝐴−) by 

𝑥 

3.17 Example 

     Let 𝑆 = 𝑍0
+ let 𝐴 = (𝐴+, 𝐴−) be an bipolar-valued fuzzy subset of 𝑆, defined as follows 

 𝐴+ 0 = 1, 𝐴− 0 = 0, 𝐴+ 𝑛 =  
0.5  𝑖𝑓  𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛
0.3  𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑   

  and 𝐴− 𝑛 =  
0.5  𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛
0.5  𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑  

  Then the bipolar-valued 

fuzzy extension of 𝐴 is given by  2, 𝐴+ =  
1  𝑖𝑓  𝑛 = 0

0.5  𝑖𝑓 𝑛 ≠ 0
  and  2, 𝐴− =  

0  𝑖𝑓 𝑛 = 0
0.5  𝑖𝑓 𝑛 ≠ 0

  

3.18 Definition 

    Let 𝐴 and 𝐵 be two bipolar-valued fuzzy sets of a set 𝑋 Then the following expressions holds  

i. 𝐴 ⊂ 𝐵 if and only if  𝑥, 𝐴 ≤ (𝑥, 𝐵) 

ii.  𝑥, 𝐴𝑐 = (𝑥, 𝐴)𝑐  

iii.  𝑥, 𝐴 ∩ 𝐵 =  𝑥, 𝐴 ∩ (𝑥, 𝐵) 

iv.  𝑥, 𝐴 ∪ 𝐵 =  𝑥, 𝐴 ∪ (𝑥, 𝐵) 

v. (𝑥, 𝐴)𝛽𝛼

𝑐 =  𝑥, 𝐴𝛽𝛼

𝑐  . 

3.19 Proposition 

       Let 𝐴 = (𝐴+, 𝐴−) be a bipolar-valued fuzzy ideal of a commutative subring 𝑆 and 𝑥 ∈ 𝑆. Then (𝑥, 𝐴) is an 

𝐵𝑉𝐹𝐼 of 𝑆 

Proof: Obviously (𝑥, 𝐴) is an bipolar-valued fuzzy subsets of 𝑆. Let 𝑦, 𝑧 ∈ 𝑆, then  𝑥, 𝐴+ =  𝑦 + 𝑧 =

𝐴+ 𝑥 𝑦 + 𝑧  = 𝐴+ 𝑥𝑦 + 𝑥𝑧 ≥ min 𝐴+ 𝑥𝑦 , 𝐴+ 𝑥𝑧  = min  𝑥, 𝐴+  𝑦 ,  𝑥, 𝐴+  𝑧  . Again  𝑥, 𝐴−  𝑦 +

𝑧 = 𝐴− 𝑥 𝑦 + 𝑧  = 𝐴− 𝑥𝑦 + 𝑥𝑧 ≤ max 𝐴− 𝑥𝑦 , 𝐴− 𝑥𝑧  = min  𝑥, 𝐴−  𝑦 ,  𝑥, 𝐴−  𝑧  . Also 

 𝑥, 𝐴  𝑦𝑧 = 𝐴 𝑥𝑦𝑧 = 𝐴 𝑥𝑦 =  𝑥, 𝐴 (𝑦) and  𝑥, 𝐴 =  𝑥, 𝐴  𝑧 . Hence (𝑥, 𝐴) is an bipolar-valued fuzzy 

ideal of 𝑆. 

3.20 Proposition 

    Let 𝐴 = (𝐴+, 𝐴−) be an bipolar-valued fuzzy 𝑘 –ideal of a commutative subring 𝑆 and 𝑥 ∈ 𝑆. Then (𝑥, 𝐴) is 

an bipolar-valued fuzzy 𝑘-ideal of 𝑆. 
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Proof: Clearly (𝑥, 𝐴) is a bipolar-valued fuzzy ideal of 𝑆. Since 𝐴 is an bipolar-valued fuzzy 𝑘-ideal of 

𝑆, 𝐴+ 𝑥𝑦 ≥ min 𝐴+ 𝑥𝑦 + 𝑥𝑧  , 𝐴+(𝑥𝑧)) for all 𝑦, 𝑧 ∈ 𝑆. Then  𝑥, 𝐴+  𝑦 ≥ min  𝑥, 𝐴+  𝑦 + 𝑧 ,  𝑥, 𝐴+  𝑧   

again 𝐴− 𝑥𝑦 ≤ max 𝐴− 𝑥𝑦 + 𝑥𝑧 , 𝐴− 𝑥𝑧  , ∀𝑦, 𝑧 ∈ 𝑆. Then  𝑥, 𝐴−  𝑦 ≤ max  𝑥, 𝐴−  𝑦 + 𝑧 ,  𝑥, 𝐴−  𝑧  . 
Thus (𝑥, 𝐴) is a bipolar-valued fuzzy 𝑘-ideal of 𝑆. Here also the converse may not be true. 

IV. CONCLUSION 
   
        In this paper we present the concept of fuzzy subgroupoid to the bipolar-valued fuzzy subgroupoid and 

bipolar-valued fuzzy normal subgroup we investigate some results related to the topic 
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