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Abstract 

          The study gives some properties of compact operators between Banach-Koordinat (BK) spaces. Further the 

study looks at the vector sequence spaces associated with these spaces. Finally,  we characterize compact operators 

through a BK space is studied and also characterizes the spaces of compact linear maps from locally convex spaces 

into BK spaces in terms of certain subspaces of the generalized sequence spaces. These characterizations are vital 

in the proofs of representations of the BK spaces used in the generalizations of the classical results on Spaces of 

Compact operators and their Dual spaces. 
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I. INTRODUCTION AND NOTATION 

          The theory of operator ideals is playing an increasingly important role in the theory of locally convex spaces. 

At present, a good deal of research in Functional Analysis, a branch of mathematical analysis concerned with the 

study of spaces of functions and operators acting on them, is devoted to a classification problem: what is the relation 

between a different types of locally convex spaces which occur in Functional Analysis? The answers to such and 

related questions usually lead to a clear understanding of the structures of the spaces under considerations, and in 

this paper operator ideal are important tools. 

The theory of operator ideals has been developed in [8, 17]. In [2] the importance of this theory to nuclear spaces 

was pointed out by the author in a statement: ‘I like to consider the theory of nuclear spaces to be to a large extent of 

a beautiful application of the theory of ideals of operators between Banach spaces’. Nuclear spaces can be 

characterized as dense subspaces of projective limits of Banach spaces with nuclear linking mapping. In a similar 

manner, Schwartz spaces can be characterized as dense subspaces of projective limits of Banach spaces with 

compact linking mapping. 

In the present paper vector sequence spaces and representation of operators which factor compactly through BK 

spaces are studied and characterized. The results are applied to the study of locally convex spaces which are 

subspaces of projective limits of BK spaces with compact linking mapping; and to the study of locally convex 

spaces which are subspaces of projective limits of subspaces of BK spaces with compact linking mapping.  

Important objects of study in this paper are the continuous linear operators defined on Banach and Hilbert spaces. 

These lead naturally to the definition of C*-algebras and other operators algebras.  

Let  be an ideal of operators on the family of all Banach spaces. The concept of locally convex  -space is 

introduced in section 1. We refer to [1] and [2] for more details concerning these spaces. In these references it is 

clearly shown how the permanence properties of these spaces depend on the properties of . Let 
1N  and K denote 

the ideals of all nuclear and compact operators between Banach spaces, respectively. The family of all operators 

which factor compactly through a given BK space lies between these two ideals. It is known that the 
1N spaces are 

the nuclear spaces and the K spaces are the Schwartz spaces. The motivation for our study is guided by the need to 

seek to know which spaces are defined by the family of all operators which factor compactly through a given BK 

space, and what is the relation between these spaces and other known locally convex spaces. To answer this, a study 

of the operators themselves is necessary, and as these operators turn out to be very interesting and important, this 

family of operators finally became the main object this paper. 

 

Unless otherwise stated, we shall use E, F, G, etc, to denote locally convex spaces and X, Y, Z to denote Banach 

spaces (B-spaces). As far as locally convex spaces and duality theory are concerned, we shall adhere to the notations 

of [2] and [13]. 
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All vector spaces under consideration will be vector spaces with respect to  ,K   , where  and  denote 

the fields of real and complex numbers, respectively. 

All locally convex spaces will tacitly be assumed to be separated. The family of all these spaces will be denoted by 

LCS.    , . and , .
X Y

X Y to denote the B-spaces X and Y with norms . and .
X Y

respectively.  

For any  ,E LCS  the base of neighbourhoods of the origin (0-neighbourhood base) consisting of all 

absolutely convex closed neighbourhoods of the origin is denoted by  ,E  . Consider a B-space  , .
X

X . 

The closed unit ball in X will be denoted by XB . Let E be a vector pace. By A we denote the absolutely convex 

hull of a set A E . Consider absolutely convex subsets A and B in E. If A is absorbed by B, we write A B . By 

Aq we denote the seminorm on the vector subspace 
1

A
n

E nA




   of E, defined by 

 ( ) : inf 0 |Aq X x A    for all Ax E .  

II. VECTOR SEQUENCE SPACES AND MATRIX MAPS OF BK SPACES 

We define the following vector sequence spaces where  is a normal BK space with AK: 

      ': | ,N

n n n
E x E a x for all a E            (2.1) 

      ' ': | ,N

n n n
E a E a x for all x E            (2.2) 

Here 
'N NE and E denote the set of all sequences in E and 

'E respectively. These vector sequence spaces are of 

fundamental importance.  

Theorem 2.1. Let    'na E .Then  

   
1

, : | , 1n i

i

W a B x x E i a x for all B x 


 



 
      
 

      (2.3) 

is a barrel in E.  

Proof. Clearly  ,nW a B x is absolutely convex. Let  
________________

,nx W a B x



 , the  ',E E -closure of 

 ,nW a B x . If 
  v

v
x is a net in  ,nW a B x , which converges to x, then 

    
1 1

, lim , 1
k k

v

i i

i i

i a x i a x 
 

       for every ,B x k   . Hence  ,nW a B x is  ',E E -

closed. Further, let y E . For any B x  holds      
1

, , ,i n n
i

i a y a y M say





    . Hence

 ,ny M W a B x , which proves that  ,nW a B x is absorbing.       

   □ 
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Theorem 2.2. Let E be a barreled space. If B is a bounded set in E and    'na E is given, there exists a 

0  such that  
1

,i

i

i a x 




   for all x B and B x  .  □ 

Proof: Consider  ,nW a B x  as defined in (3.1) .Clearly  ,nW a B x is 0-neighborhood in E.       

          □ 

In connection with the AK-property for the vector sequence spaces    'andE E  , it is natural to consider the 

following subspaces of these two spaces, respectively: 

           ,| 0 ,c n U i i n
E x E x if n for all U U E 

         (2.4) 

           ' '

,| 0 ,c n B i i n
E a E a if n for all B B E 

         (2.5) 

 E  will have AK if and only if    'cE E  . 

Similarly, if ,B  defines a seminorm on  'E  for all  B B E  when E is a barreled space, for instance then

 'E  has AK if and only if    ' '

cE E  . 

Extending this principles to BK space, we recall that a Banach Space E is a BK space if it is  a vector subspace   

and 
'

0. and np E for all n c l  , with their usual meaning, are BK spaces. Let ,x y   and 

 , , 1n k n k
A a




  be an infinite array of scalars. We write  y A x if ,

1

n n k k

k

y a x




  for every n . If E and 

F are BK spaces and  A x E  for every x F , then A defines a continuous linear map from F to E and we call 

A a matrix map from F into E. If  FA B is relatively compact in E, we say that A is a compact map. 

If  , , 1n k n k
A a




  defines a matrix map from F into E, we let  k ka A e denote the kth column of A. Noting that 

E and F denote BK spaces and A denote the array  , , 1n k n k
a




 we state an important lemma. 

Lemma 2.3. Suppose A defines a matrix map from l into E. if A is weakely compact, then 

1

k

k

a




 is 

unconditionally convergent in E. 

Proof. We show that 

1

k

k

a




 is weakly subseries convergent and hence, via the Orlicz-Pettis theorem, 

unconditionally convergent.  

Let  k  be an arbitrary sequence of 0’s and 1’s, and consider
1

k

k

k

a




 .  

For observe that 
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1

1

:

:

n
k

k

k

n
k

k

k

C A e n

a n









  
   

  

 
  
 









      (2.6) 

is a relatively weakly compact set in E since 

1

:
n

k

k

k

e n


 
 

 
  is bounded in l . Since E is a BK space, we have 

that E’s weak topology and the topology of coordinatewise convergence inherited from   are equivalent on the 

weak closure of C: this follows from the fact that comparable Hausdorff topologies on a compact set are equal. We 

claim that the coordinatewise limit point, hence the limit point, of C is  A  . Observe that 

1

k

k

k

x a






coordinatewise if and only if ,

1

limn k n k

k

x a


 


  for all n since   ,

k

n n kp a a . 

Now since    , 1
, k n k n

l A a  


 
   is an element of E and   , ,

1 1

lim k n k k n kn
k k

A a a


  


 

    it 

follow that  A   is the coordinatewise, hence weak, limit point of C. Observe that C can only have one 

coordinatewise limit point. Since   was arbitrary, we now have that 

1

k

k

a




 is weakly subseries convergent and 

hence unconditionally convergent.     □ 

Lemma 2.4. If 

1

k

k

a




 is unconditionally convergent in E, then A defines a matrix map from l  into E and 

 
1

k

k

k

A a 




  for every  
1

.k k
l 




   

Proof. Let  k l    . First we observe that 
k

ka  converges since 
ka  is unconditionally convergent, 

and note that 

   ,

1 1

k

n k n k k n

k k

p a a p A for every n  
 

 

 
   

 
   .  (2.7) 

Now, since  
1n n

p



 is total over E , it follows that   .k

kA a   

Since   was arbitrary, we have that  A E   for every l  , hence A defines a matrix map from l into E.  

         □ 

Theorem 2.5. If :A l E   is a weakly compact matrix map, then A is compact.  

Proof.  Here, it suffices to show that, for every 0  there is a compact set 

 in Esuch that l EK A B K B  

  . Let  k l     and recall that, for every 0  , there is an N  

such that  
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 supk

k k
kk n E

a  




       (2.8) 

For all n N , since 

1

k

k

a




 I unconditionally convergent.  

Now suppose that   , 0l EA B MB M

  , and

1M   . Select N such that (3.8) is satisfied and let NF be the 

linear span of  
1

N
k

k
a


. Note that N EK F MB    is compact since NF  is finite dimensional and that  

 

   
1

1

:k

l k k l

k

E

E

A B a B

K M B

K B





 





 







 
  
 

 

 



 

which completes the proof since   was arbitrary.       □ 

Rosenthal [18] has shown that any continuous linear operator from l  into a Banach space that does not contin an 

isomorphic copy of l  must be weakly compact. This in tandem with theorem 3.1.5 yields the following corollary. 

Corollary 2.6. Let E be a BK space that does not contain an isomorphic copy of l . If A is a matrix map from l
into E, then A is compact. 

III. CHARACTERIZATION OF COMPACT OPERATORS THROUGH A BK SPACE 

       In this chapter we characterize some classes of compact operators on the space      0 ,c c and c   . 

This is most efficiently achieved by applying the Hausdorff measure of noncompactness. We also give a view of the 

results concerning general bounded linear operators and their compactness as introduced by Eberhard Malkowsky . 

We embrace notations and results as used by [1, 5, 15]. If X and Y are infinite-dimensional complex Banach spaces, 

then a linear operator :L X Y  is said to be compact if the domain of L is all of X and Y, for every bounded 

sequence  nx in X, the sequence   nL x has a convergent subsequence. We write  ,C X Y for the class of all 

compact operators form X into Y. we recall that a set in a topological space is said to be precompact or relatively 

compact if its closure is compact. The first measure of of noncompactness, the function  , was defined and studied 

by Kuratowski in 1930. In 1955, Darbo was the first who continued to use the function  . He proved that if T is  

continuous self-mapping of a non-empty, bounded, closed and convex subset C of a Banach space X such that there 

exists a constant  0,1K such that     T Q K Q  for all subsets Q of C, then T has at least one fixed 

point in the set C. Darbo’s fixed point  theorem is a very important generalization of Schauder’s fixed point theorem, 

and included the existence part of Banach’s fixed point theorem.  

Other measures of noncompactness were introduced and studied by Gohberg, Goldenstein and Markus in 1957 , the 

ball or Hausdorff measure of noncomapactness, and by Istratesku in 1972. 

The following result due to Gohberg, Goldenstein and Markus gives an explicit estimate for the Hausdorff measure 

of noncompactness of any bounded set in a Banach space with a Schauder basis. 
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Theorem 3.1. Let X be a Banach space with a Schauder basis  
1
, :n nn

b P X X



 be the projector onto the 

linear span,   1 2 1 2, ,..., , ,..., ,n n n nspan b b b of b b b R I P  , where I is the identity on X, and XQ M . 

Then we have, writing    sup 1,2,...,n x Q nQ R x for n    

     
1

.limsup limsup limsup .n n n
n n n

Q Q Q where a R
a

  
  

       (3.1) 

We obtain an explicit formula for the Hausdorff measure of noncompactness of bounded subsets of special BK 

spaces, and of c. We say that a norm . on a sequence space X is monotonous, if 
',x x X with 

'

k kx x for all 

k implies 
'x x , and call such a space X monotonous.  

Theorem 3.2. Let X be a monotonous BK space with AK and :nP X X be the projectors onto 

       1 2
, ,...,

n
span e e e for n .Then we have 

    lim n X
n

Q Q for all Q M 


       (3.2) 

Corollary 3.3. :nP c c be the projector onto the linear span of 
      1 2

, ,...,
n

e e e . Then the limit of (4.2) exists 

for all cQ M , and  

 lim 2.n
n

a R


         (3.3) 

In a general sense, we state some properties of .
X

. 

Theorem 3.4.  Let X and Y be Banach spaces and  ,L B X Y . Then: 

a.   XX
L L B  

b. .
X

is a seminorm of  ,B X Y , and  0      ,
X

L if and only if L C X Y   

If X is a BK space with AK and  ,L B X Y , let  ,A X Y denote the matrix with  Ax L x for all x X

also let  ,L B X c and A be the matrix with the row    
1

1,2,...n n k k
A A n




   , where limk nk

n
a


 for 

every k and  
1k k

X 



 .  

Then we have  

* *1
.lim sup lim sup

2
n nXX Xr rn r n r

A L A
  

   
    

   
  . 

Similarly, if  0,L B X c , then we have 

*

lim sup nX Xr n r

L A
 

 
  

 
 . 

One of the most important results in the theory of sequence spaces states that matrix transformations between BK 

spaces are continuous.  

The spaces      0 , andc c c    were defined a studied explicitly by [17] for exponentially bounded 

sequences . 
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A nondecreasing  sequence  
1n





  of positive reals to be exponentially bounded sequences if there exists an 

integer 2m  such that for each 0v there is at least one n in the interval 1,v vm m  . The following result is 

a useful characterization of exponentially bounded sequences.  

Theorem 3.5.  Let  
1n





  be an exponentially bounded sequence and   

0
n v

v





  be an associated 

subsequence. 

a. Then            0 0 , andc c c c c c            . Where the sets are defined as 

     
 

 

     
 

 

 

0 0

1 1

1 1

1 1
: lim . 0 , : lim . 0 ,

1 1
: sup . , : sup . ,

: .

n

k kvn v
kn n v

n

k kv
n vkn n v

c x x c x x

c x x c x x

c x x e

 


 


 

 
 

 

 

       
                          

       
                            

    

 

 





        0 0for some , and : . for somec c x x e c             

 

b. The block and sectional norms . and .
b s

defined by 

 

   
11

1 1
sup . and sup .

n

k kb sv
v n knn v

x x x x
 

     


  are equivalent on 

     0 , andc c c   , more precisely  , .
b s b

x x K s t x  . 

c. Each of the spaces      0 , andc c c    is a BK space,  0c  is a closed subspace of  c  , 

 c  is a closed subspace of  c  ,  0c  has AK, and every sequence    
1k k

x x c



   has a 

unique representation    

1

.
k

k

k

x e x e 




   . 

d. The space  c  has no Schauder basis. 

If X is a normed sequence space and a  then we write 
*

1

sup :k k XX
k

a a a x x S




 
   

 
 provided the 

last term exist and is finite which is the case whether X  is a BK space and a X  . 

Theorem 3.6. We have               0 1 0c c c and c c
    

             . We 

put        1 1
0 0

: max and write max
j j

v vn v n vC
v j k v j kj j

a a
C a a  

 

   

 
   

  
      

  
    . 
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Theorem 3.7.  Let   ,A c c  . Then we have 

   
1 1

1
lim lim

2
k n k n

C Cn n
k k

A A A


   
 

  
 

   
        

   
   , where limk nk

n
a


 for each 

1

, lim nk
n

k

k a





   and  
1n n k k

A A 



   for all .n  

Proof.  This is an immediate consequence to theorem 6.0 of [15] with 0nb  for 1,2,...n  and the fact that for

     0, ,A c c c c    , we have  
 A n Cn

L A


 for all n, so we get  , 1K s t  and equality in 

[22].□ 

Corollary 3.8. Let   0,L B c c  . Then we have 

    
  lim , .limn n n nC Cn n

b A L K s t b A
  

    . 

Proof.  This is an immediate consequence of theorem 4.1.11 with 0 0kand   for all k. □ 

It turns out that a strongly regular matrix cannot be compact; that is analogous to the classical result by Aywa and 

Fourie  which strongly indicates that a regular matrix cannot be compact. Importantly we point out that the spaces 

     0 , andc c c   have the block norm.  

IV. CONCLUSION 

      In this paper we have established some new results on vector sequence spaces and matrix maps of BK spaces. 

The approach we have envisaged is via the spaces of convergent and bounded sequences and characterization of 

compact operators through a BK space. The result helps us to see how vital the compact bounded operators and 

vector sequence spaces are to the BK spaces. 
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