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Abstract  

 In this paper we introduce some weak separation axioms by utilizing the notions of  pre- I-open 

sets and the pre- I-closure operator. Also we define Spaces,  spaces and  

 symmetric spaces and show that  and   spaces are equivalent. 
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I. INTRODUCTION AND PRELIMINARIES 

 By a space  we always mean a topological space  with no separation properties assumed. 

If   ,   and   will, respectively, denote the closure and interior of A in . An ideal I 

[4] on a topological  is a non empty collection of subsets of which satisfies (i)  and  

implies   and (ii)  and  implies . Given a space    with  an ideal I on X  and if 

 is  the set of all subsets of X, a set operator , called a local function [4] of A with 

respect to  is defined as follows: for  , , for every  

 where  . A Kuratowski  closure operator  for a topology 

, called the *-topology, finer than is defined by   when there is no 

chance  for confusion, we will simply write  for  and  for  If I is an ideal on X, then 

 is called an ideal space. A subset A of a topological space  is said to be preopen[1]  if 

A subset A of an ideal space   is said to be pre-I-open[2]  if   

The complement of  pre-I-open  set is called pre-I-closed.  

 

The family of all pre-I-open sets in   is denoted by PIO  or simply  PIO(X). Clearly 

 The largest pre- I-open set contained in A, denoted by pIint(A), called the pre-I-interior of A. 

The smallest pre-I-closed set containing A , denoted by pIcl(A), is called the pre-I-closure of A.  

A subset A of an ideal space  is said to be R-I-open set [6] if   

A subset A of X is said to be  R-I-closed if its complement is R-I-open. Let   be an ideal space,  A  be a 

subset of  X and  x  be a point of  X. A point   is called a  point of A if  

for every  regular-I-open set V containing  x. The set of all cluster point of A is called the 

closure of A and is denoted by  but we denote it by . If , then A is  

closed. The complement of a   closed set is said to be open.  

 

II.  

Definition 2.1.  A subset A of an ideal space is said to be open  if       

 is the family of all cluster point of A. The complement of a  open set is 

said to be closed. The family of all open (resp. closed) sets 

in a topological space X is denoted by resp.  The intersection of all 

closed sets containing A is called the closure of A and is denoted by 
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Definition 2.2.  A subset U of an ideal space   is called a neighbourhood of a point 

 if there exists a open set V such that  

 

Lemma 2.3.  For the closure subsets of A and B in an ideal topological space        

the  following properties hold: 

(a) A is  closed in  if and only if  

(b) If  , then  

(c)  is closed, that is    

(d)   if and only if  for every  containing  x. 

 

Lemma 2.4. For a family  of subsets in an ideal space , the following properties hold: 

(a)  

(b)  

Proof.  (a) Since   for each  by Lemma 2.3, we have  

 for each and hence   

                                                                                                              

                   (b) Since   for each  by Lemma 2.3 we have  
      and hence 

  

Lemma 2.5.  Let A be an ideal space   .  If A is open in X, then it  is open . 

 

Lemma  2.6. Let   be an ideal space. For each point open or     

closed. 

 

III.  
*

pI
D


- SETS AND ASSOCIATED SEPARATION AXIOMS 

 

Definition 3.1. A subset  A of an ideal space    is called a  
*

pI
D


-set if there are two  

open sets   U, V such that   and  .  If  A= U and             Then it 

follows that every open set U different from   X  is a 
*

pI
D


-set. 

Definition 3.2. An ideal space    is called   -
*

0
D  if every pair of distinct  

points  x and  y  of  X, there exists a 
*

pI
D


-set of  X  containing  y but not  x or a 

*

pI
D


-set of  X  

containing   x but not  y. 

Definition 3.3. An ideal space    is called   -
*

1
D  if every pair of distinct points x and y of  X, 

there exists a 
*

pI
D


-set of X containing  x  but not  y  and  a 

*

pI
D


-set of  X   

containing   y  but not  x. 

Definition 3.4. An ideal space    is called   -
*

2
D  if every pair of distinct points x and y of X, 

there exists a 
*

pI
D


-set of   X containing G and E of X containing x and y respectively. 

Definition 3.5. An ideal space    is called   -
*

0
T  if  for every pair of distinct points  of  X, there 

is  a open set containing one of the points but not the other. 

Definition 3.6. An ideal space    is called   -
*

1
T  if  for every pair of distinct points  of  X, there 

is  a open set  U in X containing  x  but not  y  and a  open set  V in X 

containing  y  but not  x. 
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Definition 3.7. An ideal space    is called   -
*

2
T  if  for every pair of distinct points  x and  y  of  

X, there is  a open set  U and  V  in  X containing  x and  y  respectively such that  

Remark 3.8.    (a) If    is   -
*

i
T , then it is  -

*

1i
T   , i= 1,2. 

(b) If    is   -
*

i
T , then it is  -

*

i
D   , i = 0,1,2. 

(c) If    is   -
*

i
D , then it is  -

*

1i
D   , i = 1,2. 

Theorem 3.9 An ideal space    is   -
*

1
D  if and only if it is  -

*

2
D  . 

Proof.    Let    is   -
*

1
D .  Let x, y  such that  . Since X is   -

*

1
D , there exist a 

*

pI
D


-set  and  such that   and  and   and   

Let    and   From  we have either  

or  and  . We discuss the two cases separately. 

(1) Suppose . From  we obtain the following two sub cases. (a)  

From  we have  and  we have 

 it is easy to see that  

(b)  and  , we have  and    

(2)  and , we have ,  and  Hence  X is 

 - .
*

2
D

     

Conversely, Suppose X is  -
*

2
D

 
Let x, y  such that  . Since   X  is   - ,

*

2
D there exist 

a 
*

pI
D


-set  U and  V containing   x and  y  respectively such that Hence  X is   -

*

1
D  

Definition 3.10.  A point   which has only X as the -neighbourhood is called a -neat 

point. 

Theorem 3.11. For the ideal space  the following are equivalent. 

(a)   is   -
*

1
D

. 
 

(b)   has  no -neat point. 

 

Proof.   Since X is   -
*

1
D

 
So each point  X  is contained in a 

*

pI
D


-set  and  

 This implies that   x  is not a -neat point. 

 By Lemma 2.6, for each pair of points x, y  at least one of them say  x has a 

neighbourhood  U containing  x and not  y . Thus U which is different from X   is a 
*

pI
D


-set, If  X  

has  no  -neat point, then y is not a  -neat point. This means that there exists   -

neighbourhood  V of  y such that   Thus  but not  x and  (  is a 
*

pI
D


-set. Hence 

 -
*

1
D

 

 Definition 3.12.  An ideal space  is said to be - symmetric if for each point  

})({
*

ypclx
I

  implies }).({
*

xpcly
I

  

Theorem 3.13. For the ideal space , the following are equivalent. 

      

(a)   is  - symmetric. 

(b)  For each  {x} is closed. 

(c)   is   -
*

1
T  

Proof.    Let x be any point of   X. Let  y  by any distinct point from   x. By Lemma 2.6,  
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           {y} is   or closed in . 

(i) In case when {y} is , let  Then    

(ii) In case when {y} is , .  

By (a) , }).({
*

xpcly
I

  Now put }).({
*

xpcl
I

 Then   ,    and 

  Hence    This shows 

that {x} is  . 

           Suppose {p} is  for every  Let x, y  with  

Now  implies that  Hence   is a    setcontaining   y  but 

not   x. Similarly  set containing   x   but not     containing   y. 

Accordingly    is   -
*

1
T  

 Suppose that }).({
*

xpcly
I

 Since   by (c ), there exists a     

set U  containing   x such that  and hence . 

This shows that  is  - symmetric. 

Definition  3.14. A function  is said to be  if for 

each   and each   set  U  in X  containing  x  such that  

Theorem  3. 15.   If   is a   surjective function and 

E  is a   
*

pI
D


-set in Y, then the inverse image of E is a  

*

pI
D


-set in X. 

Proof.  Let   E  is a   
*

pI
D


-set in Y. Then there exists a  sets  and  

in Y such that  and   By the  of  

 and   are  sets in X . Since  we have 

Hence   is a 
*

pI
D


-set. 

Theorem  3. 16.  If   is a   -
*

1
D

 
and   is a  

 bijective function, then   is   -
*

1
D

. 

Proof.  Suppose   is a   -
*

1
D

 
space . Let  x, y  be any pair of distinct points in X. Since f   is 

injective and Y is   -
*

1
D

 
there exist a 

*

pI
D


-sets  and  of Y containing (y) respectively, 

such that  and  Therefore, by Theorem 3.15,  and  

  are  
*

pI
D


-sets in X containing  x and  y respectively, such that  and . 

Hence   X  is   -
*

1
D

. 

Theorem 3.17.  An ideal space  is   -
*

1
D

 
if and only if for each pair of distinct points  

 there exists a  surjective function  

  such  that  and  are distinct where   is a   -
*

1
D

 
space. 

 

Proof.  For every pair of distinct points of   X, it suffices to take the identity function on  X. 

 

 Conversely, let   x, y be distinct points in X. By hypothesis, there is a  

  surjective function   of a space X onto a    -
*

1
D

 
space Y such that 

By Theorem 3.9, there exist disjoint 
*

pI
D


-sets  and   in Y such that  and  

 Since  is   surjective, by Theorem 3.15, 
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 are disjoint 
*

pI
D


-sets in X containing  x and  y  respectively. Hence again by 

Theorem 3.9,   -
*

1
D

 
space. 

 

IV.   -
*

0
R

 
SPACE AND  -

*

1
R

 
SPACES 

 

Definition 4.1. Let A be a subset of an ideal space  The   of  A, denoted by 

  is defined to be the set  

Theorem  4.2. Let    be an ideal space and    

          Then  

 Let  and  .  Now   Hence  

 which is a  set containing  A. This is absurd, 

since . Consequently . 

Let  x be such that    and suppose that  Then  there exists a  

 set U containing  A and   Let  Hence, U is a 

 neighbourhood of y which does not contains  x. This is a contradiction to . Hence  

 

Definition  4.3. An ideal space   is said to be  -
*

0
R

 
if every  set 

contains the  closure of each of its singletons. 

Theorem 4.4. An ideal space   is   -
*

0
R

 
if and only if it is  -

*

1
T  

Proof.  Let  x and   y be two distinct points of  X. For  {x} is  or 

closed by lemma 2.6. (i)  When {x} is   let V = {x}, then 

 and  Moreover, since   is   -
*

0
R  

We have  Hence   and  

(i) When {x} is closed,   and  

        Hence   since   is   -
*

0
R

 
. 

       Now, let   , then    and   Then, we obtain     

       is  -
*

1
T Conversely, Let V be any   set of  X  and    

       For   each  , there exists  such that   and   

      Therefore, we have   Since  ,  and  hence    

        This implies that   

        Hence   is   -  
*

0
R

. 

 

      Theorem 4.5. For an ideal space    the following are equivalent. 

(a)  is   -
*

0
R  

(b)  is   -
*

1
T  

(c)  is    

Proof. The proof follows from Theorems 3.13 and 4.4. 

 

Theorem 4.6. For an ideal space    the following are equivalent. 

(a)     is   -
*

0
R

 
space. 

(b)   For any nonempty set  A and     such that    there exist 

  such  that  and  

                         For any     ,  
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                      For any   . 

 

                      For any   

 

Proof.   Let A be any non empty subset of X and   such that   

Which implies  Since X   is   -
*

0
R every   contains 

the closure of each of its singletons.   

Therefore, Set  Then  and  

  Let  then  Let x  be any point     

of  G. Then there exists  such that  and   Therefore, we have    

 

 

 

 . The proof is clear. 

  Let   x be any point of  X  and  Then there exists      

such  and   and  hence   By (d),     

 and there exists  such that  and  .  

Therefore,  and   thus  by Lemma 1.2,  (c) and  (d),    

. Consequently,  

 . The proof is clear. 

Theorem 4.7. For an ideal space the following properties are equivalent, 

(a)  is   -
*

0
R

 
space. 

(b) If  F   is   and   then   

(c) If   then  

Proof.   Let F  be  and  . Then   which implies that  

 By (a), it follows from Theorem 4.6,   

 Thus . 

 Since  and  is  by (b) 

 

. Let  then  By (c),   Therefore,  

  implies that  Hence by Theorem 4.5,   is   -
*

0
R

 
. 

Definition 4.8. An ideal space   is said to be  -
*

1
R

  
space if  for  each    

, there exists disjoint   sets U and  V such that  

  is a subset of  U and  is a subset of  V. 

 

Theorem 4.9. An ideal space   is   -
*

1
R

  
space if and only  if  X  is   -

*

2
T

 
Proof.  Let  x and   y be any distinct points of  X. By Lemma 2.5, each point x  of  X  is  

or  closed. 

(i) When {x} is , since     and 

hence  

(ii) 
When {x} is ,  and 

hence . Since X is  -
*

1
R

 ,
 there exists disjoint  

 sets U and   V such that  and 

. This shows that  X  is  -
*

2
T

      

Conversely,  let x  and  y  be any points of  X  such that  By Remark 3.8, 
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 every  -
*

2
T

  
space is  -

*

1
T

  .
Therefore, by Theorem 3.13,  

and   and hence  Since X   is   -
*

2
T

  
there exists disjoint 

  set U and V such that  and   

This shows that    is   -
*

1
R

 
 

CONCUSION 
 

         In this paper, we define a new class of sets 
 set and  set and 

some weak separation axiom by utilizing the notion of   set and   set. 

Also we define   -
*

0
R

 
space,  -

*

1
T    -

*

2
T

  
space,   -

*

1
R

             
We characterize these sets and study some of their fundamental properties.
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