Application of $\delta-$ Pre $-\mathrm{I}-$ Open Sets in Ideal Topological Spaces

R. Sajuntha
Associate Professor in Mathematics, Ponjesly College of Engineering , Nagercoil. Tamil Nadu, India.

Abstract

In this paper we introduce some weak separation axioms by utilizing the notions of δ-pre- I-open sets and the δ-pre- I-closure operator. Also we define $(\delta, p I)-T_{1}{ }^{*}$ Spaces, $(\delta, p I)-R_{0}{ }^{*}$ spaces and $(\delta, p I)$ - symmetric spaces and show that $(\delta, p I)-T_{1}{ }^{*}$ and $(\delta, p I)-R_{0}{ }^{*}$ spaces are equivalent.

Keywords - ideal spaces, δ-pre- I-open, δ-pre- I-closed set, $(\delta, p I)-T_{1}{ }^{*}(\delta, p I)-R_{0}{ }^{*}$ space and $(\delta, p I)$ - symmetric space.

I. INTRODUCTION AND PRELIMINARIES

By a space (X, τ), we always mean a topological space (X, τ) with no separation properties assumed. If $A \subseteq X, \operatorname{cl}(A)$ and $\operatorname{int}(A)$ will, respectively, denote the closure and interior of A in (X, τ). An ideal I [4] on a topological (X, τ) is a non empty collection of subsets of X which satisfies (i) $A \in I$ and $B \subseteq A$ implies $B \in I$ and (ii) $A \in I$ and $B \in I$ implies $A \cup B \in I$. Given a space (X, τ) with an ideal I on X and if $\wp(X)$ is the set of all subsets of X, a set operator (. $)^{*}: \wp(X) \rightarrow \wp(X)$, called a local function [4] of A with respect to τ and I_{s} is defined as follows: for $A \subseteq X, A^{*}(\tau, I)=\{x \in X / U \cap A \notin I\}$, for every $\{U \in \tau(x)\}$ where $\tau(x)=\{U \in \tau / x \in U\}$. A Kuratowski closure operator $c l^{*}(A)$ for a topology $\tau^{*}(X, \tau)$, called the *-topology, finer than τ is defined by $c l^{*}(A)=A \cup A^{*}(I, \tau)[5]$ when there is no chance for confusion, we will simply write A^{*} for $A^{*}(\tau, I)$ and τ^{*} for $\tau^{*}(I, \tau)$. If I is an ideal on X, then (X, τ, I) is called an ideal space. A subset A of a topological space (X, τ) is said to be δ-preopen[1] if $A \subset \operatorname{int}\left(c l_{\delta}(A)\right)$. A subset A of an ideal space (X, τ, I) is said to be pre-I-open[2] if $A \subset \operatorname{int}\left(c l^{*}(A)\right)$. The complement of pre-I-open set is called pre-I-closed.

The family of all pre-I-open sets in (X, τ, I) is denoted by $\operatorname{PIO}(X, \tau, I)$ or simply $\operatorname{PIO}(X)$. Clearly $\tau \subset P I O(X)$. The largest pre- I-open set contained in A, denoted by $\operatorname{pIint}(A)$, called the pre-I-interior of A. The smallest pre- I-closed set containing A, denoted by $\operatorname{pIcl}(A)$, is called the pre-I-closure of A.
A subset A of an ideal space (X, τ, I) is said to be R-I-open set [6] if $\operatorname{int}\left(c l^{*}(A)\right)=A$.
A subset A of X is said to be R-I-closed if its complement is R-I-open. Let (X, τ, I) be an ideal space, A be a subset of X and x be a point of X. A point $x \in X$ is called a $\delta-I-$ cluster point of A if $A \cap V \neq \emptyset$ for every regular-I-open set V containing $\quad x$. The set of all $\delta-I-$ cluster point of A is called the $\delta-I$-closure of A and is denoted by $[A]_{\delta-I}$ but we denote it $\operatorname{bycl}_{\delta I}{ }^{*}(A)$. If $A=c l_{\delta I}{ }^{*}(A)$, then A is $\delta-I$-closed. The complement of a $\delta-I$-closed set is said to be $\delta-I$-open.

II. δ-pre-I-open sets

Definition 2.1. A subset A of an ideal space is said to be $\delta-p r e-I-$ open if $A \subset \operatorname{int}\left(c l_{\delta I}{ }^{*}(A)\right)$, $c l_{\delta I}^{*}(A)$ is the family of all $\delta-I$-cluster point of A. The complement of a $\delta-p r e-I$-open set is said to be δ-pre $-I$-closed. The family of all δ-pre $-I$-open (resp. $\delta-$ pre $-I$-closed) sets in a topological space X is denoted by $\delta I P O(X, \tau, I)$ (resp. $\delta I P C(X, \tau, I)$). The intersection of all δ-pre $-I$ - closed sets containing A is called the δ-pre $-I$ - closure of A and is denoted by $p^{\prime 2} l_{\delta I}^{*}(A)$.

Definition 2.2. A subset U of an ideal space (X, τ, I) is called a $\left(\delta, P I^{*}\right)$-neighbourhood of a point $x \in X$ if there exists a δ-pre $-I-$ open set V such that $x \in V \subset U$.

Lemma 2.3. For the δ - pre $-I$-closure subsets of A and B in an ideal topological space (X, τ, I) the following properties hold:
(a) A is $\delta-$ pre $-I$-closed in (X, τ, I) if and only if $A=p c l_{\delta I}{ }^{*}(A)$.
(b) If $A \subset B$, then $p c l_{\delta I}{ }^{*}(A) \subset p c l_{\overline{\delta I}}{ }^{*}(B)$.
(c) $p c l_{\delta I}{ }^{*}(A)$ is $\delta-p r e-I-c l o s e d$, that is $p c l_{\delta I}{ }^{*}\left(p c l_{\delta I}{ }^{*}(A)\right)=p c l_{\delta I}{ }^{*}(A)$.
(d) $x \in p c l_{\delta I}^{*}(A)$ if and only if $A \cap V \neq \emptyset$ for every $V \in \delta I P O(X, \tau, I)$ containing x.

Lemma 2.4. For a family $\left\{A_{\alpha} \| \alpha \in \Delta\right\}$ of subsets in an ideal space (X, τ, I), the following properties hold:
(a) $p c l_{\delta I}^{*}\left(\cap\left\{A_{\alpha} \mid \alpha \in \Delta\right\}\right) \subset \cap\left\{p c l_{\delta I}^{*}\left(A_{\alpha}\right) \mid \alpha \in \Delta\right\}$.
(b) $p c l_{\delta I}^{*}\left(\cup\left\{A_{\alpha} \mid \alpha \in \Delta\right\}\right) \supset \cup\left\{p c l_{\delta I}^{*}\left(A_{\alpha}\right) \| \alpha \in \Delta\right\}$.

Proof. (a) Since $\cap_{\alpha \in \Delta}\left\{A_{\alpha}\right\} \subset A_{\alpha}$ for each $\alpha \in \Delta$ by Lemma 2.3, we have
$p c l_{\delta I}{ }^{*}\left(\cap\left\{A_{\alpha} \mid \alpha \in \Delta\right\}\right) \subset p c l_{\delta I}^{*}\left(A_{\alpha}\right)$ for each $\alpha \in \Delta$ and hence
$p c l_{\delta I}{ }^{*}\left(\cap\left\{A_{\alpha} \mid \alpha \in \Delta\right\}\right) \subset \cap\left\{p c l_{\delta I}{ }^{*}\left(A_{\alpha}\right) \mid \alpha \in \Delta\right\}$

> (b) Since $A_{\alpha} \subset \mathrm{U}_{\alpha \in \Delta}\left\{A_{\alpha \alpha}\right\}$ for each $\alpha \in \Delta$ by Lemma 2.3 we have $p c l_{\delta I}^{*}\left(A_{\alpha}\right) \subset p c l_{\delta I}^{*}\left(\mathrm{U}_{\alpha \in \Delta}\left(A_{\alpha}\right)\right)$ and hence
> $p c l_{\delta I}^{*}\left(\mathrm{U}\left\{A_{\alpha} \mid \alpha \in \Delta\right\}\right) \supset \cup\left\{p c l_{\delta I}^{*}\left(A_{\alpha}\right) \mid \alpha \in \Delta\right\}$.

Lemma 2.5. Let A be an ideal space (X, τ, I). If A is $\delta-p r e_{\text {open }}$ in X, then it is $\delta-p r e-I-$ open .
Lemma 2.6. Let (X, τ, I) be an ideal space. For each point $x \in X,\{x\}$ is $\delta-p r e-I-$ open or $\delta-p r e-I$-closed.

III. $D^{*}{ }_{\delta p l}$ - SETS AND ASSOCIATED SEPARATION AXIOMS

Definition 3.1. A subset A of an ideal space (X, τ, I) is called a $D_{\delta_{p I} I}^{*}$-set if there are two $\delta-$ pre $-I$-open sets U, V such that $U \neq X$ and $A=U-V$. If $A=U$ and $V=\emptyset, \quad$ Then it follows that every δ-pre $-I$-open set U different from X is a $D_{\delta p I}^{*}$-set.
Definition 3.2. An ideal space (X, τ, I) is called $(\delta, p I)-D_{0}^{*}$ if every pair of distinct points x and y of X, there exists a $D_{\delta p l}^{*}$-set of X containing y but not x or a $D_{\delta p l}^{*}$-set of X containing x but not y.
Definition 3.3. An ideal space (X, τ, I) is called $(\delta, p I)-D_{1}^{*}$ if every pair of distinct points x and y of X, there exists a $D_{\delta p l}^{*}$-set of X containing x but not y and a $D_{\delta_{p l}}^{*}$-set of X containing y but not x.
Definition 3.4. An ideal space (X, τ, I) is called $(\delta, p I)-D_{2}^{*}$ if every pair of distinct points x and y of X, there exists a $D_{\delta_{p l}}^{*}$-set of X containing G and E of X containing x and y respectively.
Definition 3.5. An ideal space (X, τ, I) is called $(\delta, p I)-T_{0}{ }^{*}$ if for every pair of distinct points of X, there is a δ-pre $-I-$ open set containing one of the points but not the other.
Definition 3.6. An ideal space (X, τ, I) is called $(\delta, p I)-T_{1}{ }^{*}$ if for every pair of distinct points of X, there is a δ-pre-I-open set U in X containing x but not y and a $\delta-p r e-I$-open set V in X containing y but not x.

Definition 3.7. An ideal space (X, τ, I) is called $(\delta, p I)-T_{2}^{*}$ if for every pair of distinct points x and y of X, there is a $\delta-p r e-I$-open set U and V in X containing x and y respectively such that $U \cap V=\emptyset$.
Remark 3.8. (a) If (X, τ, I) is $(\delta, p I)-T_{i}^{*}$, then it is $(\delta, p I)-T_{i-1}^{*}, \mathrm{i}=1,2$.
(b) If (X, τ, I) is $(\delta, p I)-T_{i}^{*}$, then it is $(\delta, p I)-D_{i}^{*}, \mathrm{i}=0,1,2$.
(c) If (X, τ, I) is $(\delta, p I)-D_{i}^{*}$, then it is $(\delta, p I)-D_{i-1}^{*}, \mathrm{i}=1,2$.

Theorem 3.9 An ideal space (X, τ, I) is $(\delta, p I)-D_{1}^{*}$ if and only if it is $(\delta, p I)-D_{2}^{*}$.
Proof. Let (X, τ, I) is $(\delta, p I)-D_{1}^{*}$. Let $x, y \in X$ such that $x \neq y$. Since X is $(\delta, p I)-D_{1}^{*}$, there exist a $D_{\delta p l}^{*}-\operatorname{set} G_{1}$ and G_{2} such that $x \in G_{1}$ and $y \notin G_{1}$ and $y \in G_{2}$ and $x \notin G_{2}$.
Let $G_{1}=\left(U_{1}-U_{2}\right)$ and $G_{2}=\left(U_{3}-U_{4}\right)$. From $x \notin G_{2}$, we have either $x \notin G_{3}$ or $x \in G_{3}$ and $x \in G_{4}$. We discuss the two cases separately.
(1) Suppose $x \notin G_{3}$. From $y \notin G_{1}$, we obtain the following two sub cases. (a) $y \notin U_{1}$

From $\quad x \in\left(U_{1}-U_{2}\right)$ we have $x \in U_{1}-\left(U_{2} \cup U_{3}\right) \quad$ and $\quad y \in\left(U_{3}-U_{4}\right) \quad$ we have $y \in U_{3}-\left(U_{1} \cup U_{4}\right)$ it is easy to see that $\left(U_{1}-\left(U_{2} \cup U_{3}\right)\right) \cap\left(U_{3}-\left(U_{1} \cup U_{4}\right)\right)=\emptyset$.
(b) $y \in U_{1}$ and $\in U_{2}$, we have $x \in\left(U_{1}-U_{2}\right)$ and $y \in U_{2},\left(U_{1}-U_{2}\right) \cap U_{2}=\emptyset$.
(2) $x \in U_{3}$ and $x \in U_{4}$, we have $y \in\left(U_{3}-U_{4}\right), x \in U_{4}$ and $\left(U_{3}-U_{4}\right) \cap U_{4}=\emptyset$. Hence X is $(\delta, p l)-D_{2}^{*}$.
Conversely, Suppose X is $(\delta, p I)-D_{2}^{*}$ Let $x, y \in X$ such that $x \neq y$. Since X is $(\delta, p I)-D_{2}^{*}$, there exist a $D_{\delta p l}^{*}$-set U and V containing x and y respectively such that $U \cap V=\emptyset$. Hence X is $(\delta, p I)-D_{1}^{*}$
Definition 3.10. A point $x \in X$ which has only X as the $\left(\delta, p I^{*}\right)$-neighbourhood is called a $\left(\delta, p I^{*}\right)$-neat point.
Theorem 3.11. For the ideal space (X, τ, I) the following are equivalent.
(a) (X, τ, I) is $(\delta, p I)-D_{1}^{*}$
(b) (X, τ, I) has no $\left(\delta, p I^{*}\right)$-neat point.

Proof. $(a) \Rightarrow(b)$. Since X is $(\delta, p I)-D_{1}^{*}$ So each point X is contained in a $D_{\delta_{p l}}^{*}-\operatorname{set} O=U-V$ and $U \neq X$. This implies that x is not a $\left(\delta, p I^{*}\right)$-neat point.
(b) $\Rightarrow(a)$. By Lemma 2.6, for each pair of points $\mathrm{x}, \mathrm{y} \in X_{,}$at least one of them say x has a $\left(\delta, p I^{*}\right)$-neighbourhood U containing x and not y. Thus U which is different from X is a $D_{\delta p l}^{*}$-set, If X has no $\left(\delta, p I^{*}\right)$-neat point, then y is not a $\left(\delta, p I^{*}\right)$-neat point. This means that there exists $\left(\delta, p I^{*}\right)$ neighbourhood V of y such that $V \neq X$. Thus $y \in(U-V)$ but not x and $(V-U)$ is a $D_{\delta p I}^{*}$-set. Hence $(\delta, p I)-D_{1}^{*}$

Definition 3.12. An ideal space (X, τ, I) is said to be $\left(\delta, p I^{*}\right)$ - symmetric if for each point $x, y \in X$ $x \in p c l{ }_{\delta I}^{*}(\{y\})$ implies $y \in \operatorname{pcl}_{\delta I}^{*}(\{x\})$.
Theorem 3.13. For the ideal space (X, τ, I), the following are equivalent.
(a) (X, τ, I) is $\left(\delta, p I^{*}\right)$-symmetric.
(b) For each $x \in X_{,}\{\mathrm{x}\}$ is $\delta-$ pre $-I$-closed.
(c) (X, τ, I) is $(\delta, p I)-T_{1}{ }^{*}$

Proof. $(a) \Rightarrow(b)$. Let x be any point of X. Let y by any distinct point from x. By Lemma 2.6,
$\{\mathrm{y}\}$ is $\delta-$ pre $-I-$ open $^{\text {or } \delta} \delta-$ pre $-I-$ closed in (X, τ, I).
(i) In case when $\{\mathrm{y}\}$ is $\delta-$ pre $-I$ - open, let $V_{y}=\{y\}$. Then $V_{y} \in \delta I P O(X, \tau, I)$.
(ii) In case when $\{\mathrm{y}\}$ is $\delta-$ pre $-I-$ closed, $x \notin\{y\}=p c l_{\vec{i}(}^{*}(\{y\})$.

By (a), $y \notin p c l_{s l}^{*}(\{x\})$. Now put $V_{y}=X-p c l_{s l}^{*}(\{x\})$. Then $x \notin V_{y}, \quad y \in V_{y}$ and $V_{y} \in \delta I P O(X, \tau, I)$. Hence $X-\{x\}=\cup V_{y} \in \delta I P O(X, \tau, I), y \in X-\{x\}$. This shows that $\{\mathrm{x}\}$ is - pre $-I-$ closed (X, τ, I).
$(b) \Rightarrow(c)$. Suppose $\{\mathrm{p}\}$ is $\delta-$ pre $-I-$ closed for every $p \in X$. Let $\mathrm{x}, \mathrm{y} \in X$ with $x \neq y$.
Now $x \neq y$ implies that $y \in X-\{x\}$. Hence $X-\{x\}$ is a δ-pre $-I$-open setcontaining y but not $\quad x$. Similarly $X-\{y\}$ is $a \delta-$ pre $-I-$ open set containing x but not containing y. Accordingly (X, τ, I) is $(\delta, p I)-T_{1}{ }^{*}$
$(c) \Rightarrow(a)$. Suppose that $y \notin p c l^{\circ}{ }_{\delta I}(\{x\})$. Since $x \neq y$, by (c), there exists a $\delta-$ pre $-I$-open set U containing x such that $y \notin U$ and hence $x \notin p c l_{\vec{*}}^{*}(\{y\})$.
This shows that (X, τ, I) is $\left(\delta, p I^{*}\right)$-symmetric.
Definition 3.14. A function $f:(X, \tau, I) \rightarrow(Y, \sigma)$ is said to be $\delta-$ pre $-I$-continuous if for each $x \in X$ and each $\delta-$ pre $-I$ - open set U in X containing x such that $f(u) \subset V$.
Theorem 3. 15. If $f:(X, \tau, I) \rightarrow(Y, \sigma)$ is a $\delta-$ pre $-I$ - continuous surjective function and E is a $D_{\delta_{p l}}^{*}$-set in Y, then the inverse image of E is a $D_{\delta_{p l}}^{*}$-set in X.
Proof. Let E is a $D_{\delta p l}^{*}$-set in Y. Then there exists a δ-pre $-I$-open sets U_{1} and U_{2}
in Y such that $E=U_{1}-U_{2}$ and $U_{1} \neq Y$. By the $\delta-$ pre $-I-$ continuity of f,
$f^{-1}\left(U_{1}\right)$ and $f^{-1}\left(U_{2}\right)$ are $\delta-$ pre $-I$-open sets in X. Since $U_{1} \neq Y$, we have $f^{-1}\left(U_{1}\right) \neq X$. Hence $f^{-1}\left(U_{1}\right)-f^{-1}\left(U_{2}\right)$ is a $D_{\delta p l}^{*}$-set.
Theorem 3. 16. If (Y, σ) is a $(\delta, p l)-D_{1}^{*}$ and $f:(X, \tau, I) \rightarrow(Y, \sigma)$ is a $\delta-$ pre $-I$ - continuous bijective function, then (X, τ, I) is $(\delta, p I)-D_{1}^{*}$.
Proof. Suppose (Y, σ) is a $(\delta, p I)-D_{1}^{*}$ space. Let x, y be any pair of distinct points in X. Since f is injective and Y is $(\delta, p I)-D_{1}^{*}$ there exist a $D_{\delta p l}^{*}$-sets G_{x} and G_{y} of Y containing $f(x), f(\mathrm{y})$ respectively, such that $f(y) \notin G_{x}$ and $f(x) \notin G_{y}$. Therefore, by Theorem 3.15, $f^{-1}\left(G_{x}\right)$ and
$f^{-1}\left(G_{y}\right)$ are $D_{\delta_{p l}}^{*}$-sets in X containing x and y respectively, such that $y \notin f^{-1}\left(G_{x}\right)$ and $x \notin f^{-1}(y)$. Hence X is $(\delta, p I)-D_{1}^{*}$.
Theorem 3.17. An ideal space (X, τ, I) is $(\delta, p I)-D_{1}^{*}$ if and only if for each pair of distinct points $x, y \in X$, there exists a $\delta-$ pre $-I-$ continuous surjective function
$f:(X, \tau, I) \rightarrow(Y, \sigma)$ such that $f(x)$ and $f(y)$ are distinct where (Y, σ) is a $(\delta, p l)-D_{1}^{*}$ space.
Proof. For every pair of distinct points of X, it suffices to take the identity function on X.
Conversely, let x, y be distinct points in X. By hypothesis, there is a
$\delta-$ pre $-I$ - continuous surjective function f of a space X onto a $(\delta, p I)-D_{1}^{*}$ space Y such that $f(x) \neq f(y)$. By Theorem 3.9, there exist disjoint $D_{\delta_{p} \mid}^{*}$-sets G_{x} and G_{y} in Y such that $f(x) \in G_{x}$ and $f(y) \in G_{y^{*}}$ Since f is $\delta-$ pre $-I$-continuous surjective, by Theorem 3.15,
$f^{-1}\left(G_{x}\right)$ and $f^{-1}\left(G_{y}\right)$ are disjoint $D_{\delta_{p l}}^{*}$-sets in X containing x and y respectively. Hence again by Theorem 3.9, $(\delta, p l)-D_{1}^{*}$ space.

Iv. $(\boldsymbol{\delta}, \boldsymbol{p} \boldsymbol{I})-R_{0}^{*}$ SPACE AND $(\boldsymbol{\delta}, \boldsymbol{p} \boldsymbol{I})-R_{1}^{*}$ SPACES

Definition 4.1. Let A be a subset of an ideal space (X, τ, I). The $\delta-$ pre $-I-$ kernel of A, denoted by $\operatorname{pIker}_{\delta}(A)$, is defined to be the set $\operatorname{pIker}_{\delta}(A)=\cap\{U \in \delta I P O(X, \tau, I) \mid A \subset U\}$.
Theorem 4.2. Let (X, τ, I) be an ideal space and $A \subset X$.
Then $\operatorname{pIker}_{\delta}(A)=\left\{x \in X \mid \delta c l_{p I}{ }^{*}(\{x\}) \cap A \neq \emptyset\right\}$.
Proof. Let $x \in \operatorname{pIker}_{\delta}(A)$ and $\delta c l_{p I}{ }^{*}(\{x\}) \cap A \neq \emptyset$. Now $\{x\} \subset \delta c l_{p I}^{*}(\{x\})$. Hence
$\{x\} \notin\left(X-\delta c l_{p I}^{*}(\{x\})\right)$ which is a δ-pre $-I$-open set containing A. This is absurd, since $x \in \operatorname{pIker}_{\delta}(A)$. Consequently $p c l_{\delta I}{ }^{*}(\{x\}) \cap A \neq \emptyset$.
Let x be such that $p c l_{\delta I}{ }^{*}(\{X\}) \cap A \neq \emptyset$ and suppose that $X \notin \operatorname{pIker}_{\delta}(A)$. Then there exists a $\delta-$ pre $-I$-open set U containing A and $x \notin U$. Let $y \in \operatorname{pcl}_{\delta I}{ }^{*}(\{X\}) \cap A$. Hence, U is a $\left(\delta, p I^{*}\right)-$ neighbourhood of y which does not contains x. This is a contradiction to $x \in \operatorname{pIker}_{\delta}(A)$. Hence $\operatorname{plker}_{\delta}(A)=\left\{x \in X \mid \delta c l_{p I}^{*}(\{x\}) \cap A \neq \emptyset\right\}$.
Definition 4.3. An ideal space (X, τ, I) is said to be ($\delta, p I$) $-R_{0}^{*}$ if every δ-pre $-I$-open set contains the $\delta-$ pre $-I-$ closure of each of its singletons.
Theorem 4.4. An ideal space (X, τ, I) is $(\delta, p l)-R_{0}{ }^{*}$ if and only if it is $(\delta, p l)-T_{1}{ }^{*}$
Proof. Let x and y be two distinct points of X. For $x \in X,\{\mathrm{x}\}$ is δ-pre-I-open or $\delta-$ pre $-I$ - closed by lemma 2.6. (i) When $\{\mathrm{x}\}$ is $\delta-$ pre $-I$-open, let $\mathrm{V}=\{\mathrm{x}\}$, then $x \in V, y \notin V$ and $V \in \delta I P O(X, \tau, I)$. Moreover, since (X, τ, I) is $(\delta, p I)-R_{0}^{*}$
We have $p c l_{\delta I}^{*}(\{x\}) \subset V$. Hence $x \notin X-V, \quad y \in X-V$ and $X-V \in \delta I P O(X, \tau, I)$.
(i) When $\{\mathrm{x}\}$ is $\delta-$ pre $-I$-closed, $y \in X-\{x\}$ and $X-\{x\} \in \delta I P O(X, \tau, I)$.

Hence $p c l_{\delta I}^{*}(\{y\}) \subset X-\{x\}$, since (X, τ, I) is $(\delta, p I)-R_{0}^{*}$.
Now, let $V=X-\operatorname{pl}_{\delta I}{ }^{*}(\{y\})$, then $x \in V, y \notin V$ and $V \in \delta I P O(X, \tau, I)$. Then, we obtain
(X, τ, I) is $(\delta, p I)-T_{1}{ }^{*}$ Conversely, Let V be any $\delta-$ pre $-I$-open set of X and $x \in V$.
For each $y \in X-V$, there exists $V_{y} \in \delta I P O(X, \tau, I)$ such that $x \notin V_{y}$ and $y \in V_{y}$.
Therefore, we have $p c l_{\delta I}{ }^{*}(\{x\}) \cap\left(\cup V_{y}\right)=\emptyset$. Since $\in V_{y}, X-V \subset\left(\cup V_{y}\right)$ and hence
$p c l_{\delta I}{ }^{*}(\{x\}) \cap(X-V)=\emptyset$. This implies that $p c l_{\delta I}{ }^{*}(\{x\}) \subset V$.
Hence (X, τ, I) is $(\delta, p I)-R_{0}^{*}$
Theorem 4.5. For an ideal space (X, τ, I) the following are equivalent.
(a) (X, τ, I) is $(\delta, p l)-R_{0}^{*}$
(b) (X, τ, I) is $(\delta, p l)-T_{1}{ }^{*}$
(c) (X, τ, I) is $\left(\delta, p I^{*}\right)$-symmetric.

Proof. The proof follows from Theorems 3.13 and 4.4.
Theorem 4.6. For an ideal space (X, τ, I) the following are equivalent.
(a) (X, τ, I) is $(\delta, p I)-R_{0}^{*}$ space.
(b) For any nonempty set A and $G \in \delta I P O(X, \tau, I)$ such that $A \cap G \neq \emptyset$, there exist $F \in \delta I P C(X, \tau, I)$ such that $A \cap F \neq \emptyset$ and $F \subset G$.
(c) For any $G \in \delta I P O(X, \tau, I), G=U\{F \in \delta I P C(X, \tau, I) \mid F \subset G\}$.
(d) For any $F \in \delta I P C(X, \tau, I), F=\cap\{G \in \delta I P O(X, \tau, I) \mid F \subset G\}$.
(e) For any $x \in X, p c l_{\delta I}{ }^{*}(\{x\}) \subset$ plker $_{\delta}(\{\mathrm{x}\})$.

Proof. (a) $\Rightarrow(b)$. Let A be any non empty subset of X and $G \in \delta I P O(X, \tau, I)$ such that $A \cap G \neq \emptyset$. Which implies $x \in G \in \delta I P O(X, \tau, I)$. Since X is $(\delta, p I)-R_{0}^{*}$ every $\delta-$ pre $-I$-open contains the closure of each of its singletons.
Therefore, $p c l_{\delta I}{ }^{*}(\{x\}) \subset G$. Set $F=p c l_{\overline{\delta I}}{ }^{*}(\{x\})$. Then $A \cap F \neq \emptyset$ and $F \subset G$.
(b) $\Rightarrow(c)$ Let $G \in \delta I P O(X, \tau, I)$ then $G \supset \cup\{F \in \delta I P C(X, \tau, I) \mid F \subset G\}$. Let x be any point of G. Then there exists $F \in \delta \operatorname{IPC}(X, \tau, I)$ such that $x \in F$ and $F \subset G$. Therefore, we have $x \in F \subset \cup\{F \in \delta \operatorname{IPC}(X, \tau, I) \mid F \subset G\}$.
(c) $\Rightarrow(d)$. The proof is clear.
$(d) \Rightarrow(e)$ Let x be any point of X and $y \notin$ pIker $_{\delta}(\{x\})$. Then there exists $V \in \delta I P O(X, \tau, I)$
such $x \in V$ and $y \notin V$ and hence $p c l_{\delta I}{ }^{*}(\{y\}) \cap V=\emptyset$. By (d), $\operatorname{pIker}_{\delta}\left(p c l_{\delta I}(\{y\}) \cap V\right)=\emptyset$ and there exists $G \in \delta I P O(X, \tau, I)$ such that $x \notin G$ and $p c l_{\delta I}{ }^{*}(\{y\}) \subset G$.
Therefore, $p c l_{\delta I}^{*}(\{x\}) \cap G=\emptyset$ and thus by Lemma 1.2, (c) and (d),
$y \notin p c l_{\delta I}{ }^{*}\left(p c l_{\delta I}^{*}(\{x\})\right)=p c l_{\delta I}^{*}(\{x\})$. Consequently, $p c l_{\delta I}^{*}(\{x\}) \subset \operatorname{pIker}_{\delta}(\{x\})$.
$(d) \Rightarrow(e)$. The proof is clear.
Theorem 4.7. For an ideal space the following properties are equivalent,
(a) (X, τ, I) is $(\delta, p I)-R_{0}^{*}$ space.
(b) If F is $\delta-$ pre $-I-$ closed and $x \in F$, then $\operatorname{plker}_{\delta}(\{x\}) \subset F$.
(c) If $x \in X$, then pIker $_{\delta}(\{x\}) \subset p c l_{\delta I}^{*}(\{x\})$.

Proof. $(a) \Rightarrow(b)$. Let F be $\delta-$ pre $-I-$ closed and $x \in F$. Then $\{x\} \subset F$ which implies that pIker $_{\delta}(\{x\}) \subset$ pIker $_{\delta}(F)$. By (a), it follows from Theorem 4.6, plker $_{\delta}(F)=F$.
Thus plker $_{\delta}(\{x\}) \subset F$.
(b) $\Rightarrow(c)$. Since $x \in \operatorname{pcl}_{\delta I}{ }^{*}(\{x\})$ and $\operatorname{pcl}_{\delta I}{ }^{*}(\{x\})$ is $\delta-p r e-I$-closed, by (b) plker $_{\delta}(\{x\}) \subset p c l_{\delta I}^{*}(\{x\})$.
$(c) \Rightarrow(a)$. Let $x \in p c l_{\delta I}^{*}(\{y\})$. then $y \in \operatorname{pIker}_{\delta}(\{x\})$. By (c), $y \in p c l_{\delta I}^{*}(\{x\})$. Therefore, $x \in p c l_{\delta I}^{*}(\{y\})$ implies that $y \in \operatorname{pcl}_{\delta I}^{*}(\{x\})$. Hence by Theorem 4.5, (X, τ, I) is $(\delta, p I)-R_{0}^{*}$.
Definition 4.8. An ideal space (X, τ, I) is said to be $(\delta, p I)-R_{1}^{*}$ space if for each $x, y \in X$ $p c l_{\delta I}{ }^{*}(\{x\}) \neq p c l_{\delta I}^{*}(\{y\})$, there exists disjoint $\delta-p r e-I-$ open sets U and V such that $p c l_{\bar{\delta} I}{ }^{*}(\{x\})$ is a subset of U and $p c l_{\delta I}{ }^{*}(\{y\})$ is a subset of V.

Theorem 4.9. An ideal space (X, τ, I) is $(\delta, p I)-R_{1}^{*}$ space if and only if X is $(\delta, p I)-T_{2}{ }^{*}$
Proof. Let x and y be any distinct points of X. By Lemma 2.5 , each point x of X is $\delta-$ pre $-I$-open or $\delta-$ pre $-I$-closed.
(i) When $\{\mathrm{x}\}$ is $\delta-$ pre $-I$-open, since $\{x\} \cap\{y\}=\emptyset, \quad\{x\} \cap p c l_{\delta I}{ }^{*}(\{y\}) \subset \emptyset$, and hence $p c l_{\delta I}{ }^{*}(\{x\}) \neq p c l_{\delta I}{ }^{*}(\{y\})$.
(ii) When $\{\mathrm{x}\}$ is $\delta-$ pre $-I$-closed, $\operatorname{pcl}_{\delta I}{ }^{*}(\{x\} \cap\{y\}) \subset p c l_{\delta I}{ }^{*}(\{x\}) \cap\{y\} \subset \emptyset$, and hence $p c l_{\delta I}{ }^{*}(\{x\}) \neq p c l_{\delta I}{ }^{*}(\{y\})$. Since X is $(\delta, p I)-R_{1}^{*}$, there exists disjoint δ-pre $-I$-open sets U and $\quad V$ such that $x \in p c l_{\delta I}^{*}(\{y\}) \subset U$ and $y \in p c l_{\overline{\delta I}}{ }^{*}(\{y\}) \subset V$. This shows that X is $(\delta, p I)-T_{2}{ }^{*}$

Conversely, let x and y be any points of X such that $p c l_{\delta I}{ }^{*}(\{x\}) \neq p c l_{\delta I}{ }^{*}(\{y\})$. By Remark 3.8,
every $(\delta, p I)-T_{2}{ }^{*}$ space is $(\delta, p I)-T_{1}{ }^{*}$.Therefore, by Theorem 3.13, $p c l_{\delta I}{ }^{*}(\{x\})=\{x\}$ and $p c l_{\delta I}{ }^{*}(\{y\})=\{y\}$ and hence $x \neq y$. Since X is $(\delta, p I)-T_{2}{ }^{*}$ there exists disjoint $\delta-$ pre $-I-$ open set U and V such that $p c l_{\delta I}^{*}(\{x\})=\{x\} \subset U_{\text {and }} p c l_{\delta I}^{*}(\{y\})=\{y\} \subset V$. This shows that (X, τ, I) is $(\delta, p l)-R_{1}^{*}$

CONCUSION

In this paper, we define a new class of sets $\delta-$ pre $-I$-open set and $\delta-$ pre $-I-$ closed set and some weak separation axiom by utilizing the notion of $\delta-$ pre $-I$-open set and $\delta-p r e-I$-closed set. Also we define $(\delta, p l)-R_{0}^{*}$ space, $(\delta, p l)-T_{1}{ }^{*},\left(\delta, p I^{*}\right)$-symmetric, $(\delta, p l)-T_{2}{ }^{*}$ space, $(\delta, p l)-R_{1}^{*}$ We characterize these sets and study some of their fundamental properties.

REFERENCES

[1] M. Caldas, T. Fukutake, S. Jafari and T. Noiri, Some applications of $\bar{\delta}$-preopensets in topological spaces, Bull. Math. Acad. Sinica, Vol.33(3)(2005).
[2] J. Dontchev, On pre - I - open sets and a decomposition of I-continuity, Banyan Math. J., 2(1996).
[3] D. Jankovic and T.R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97(4)(1990), 295-310.
[4] K. Kuratowski, Topology, Vol. I, Academic Press, New York, 1996.
[5] R. Vaidyanathaswamy, The localization theory in set topology, Proc. Indian Acad. Sci.,20(1945), 51-61.
[6] S. Yuksel, A. Acikgoz, T. Noiri, On $\bar{\delta}-I-$ continuous functions, Turk. J. Math. 29 (2005), 39-51.

