Application of δ – Pre – I – Open Sets in Ideal Topological Spaces

R. Sajuntha

Associate Professor in Mathematics, Ponjesly College of Engineering, Nagercoil. Tamil Nadu, India.

Abstract

In this paper we introduce some weak separation axioms by utilizing the notions of δ -pre-I-open sets and the δ -pre-I-closure operator. Also we define $(\delta, pI) - T_1^*$ Spaces, $(\delta, pI) - R_0^*$ spaces and $(\delta, pI) - symmetric spaces and show that <math>(\delta, pI) - T_1^*$ and $(\delta, pI) - R_0^*$ spaces are equivalent.

Keywords – ideal spaces, δ –pre- I-open, δ –pre- I-closed set, $(\delta, pI) - T_1^* (\delta, pI) - R_0^*$ space and (δ, pI) – symmetric space.

I. INTRODUCTION AND PRELIMINARIES

By a space (X, τ) , we always mean a topological space (X, τ) with no separation properties assumed. If $A \subseteq X$, cl(A) and int(A) will, respectively, denote the closure and interior of A in (X, τ) . An ideal I[4] on a topological (X, τ) is a non empty collection of subsets of X which satisfies (i) $A \in I$ and $B \subseteq A$ implies $B \in I$ and (ii) $A \in I$ and $B \in I$ implies $A \cup B \in I$. Given a space (X, τ) with an ideal I on X and if $\mathscr{P}(X)$ is the set of all subsets of X, a set operator $(\cdot)^* : \mathscr{P}(X) \to \mathscr{P}(X)$, called a local function [4] of A with respect to τ and I, is defined as follows: for $A \subseteq X, A^*(\tau, I) = \{x \in X / U \cap A \notin I\}$, for every $\{U \in \tau(x)\}$ where $\tau(x) = \{U \in \tau / x \in U\}$. A Kuratowski closure operator $cl^*(A)$ for a topology $\tau^*(X, \tau)$, called the *-topology, finer than τ is defined by $cl^*(A) = A \cup A^*(I, \tau)$ [5] when there is no chance for confusion, we will simply write A^* for $A^*(\tau, I)$ and τ^* for $\tau^*(I, \tau)$. If I is an ideal on X, then (X, τ, I) is called an ideal space. A subset A of a topological space (X, τ) is said to be δ -preopen[1] if $A \subset int(cl_{\delta}(A))$. A subset A of an ideal space (X, τ, I) is said to be pre-I-open[2] if $A \subset int(cl^*(A))$. The complement of pre-*I*-open set is called pre-*I*-closed.

The family of all pre-*I*-open sets in (X, τ, I) is denoted by *PIO* (X, τ, I) or simply *PIO*(X). Clearly $\tau \subset PIO(X)$. The largest pre-*I*-open set contained in A, denoted by *plint*(A), called the pre-*I*-interior of A. The smallest pre-*I*-closed set containing A, denoted by *pIcl*(A), is called the pre-*I*-closure of A.

A subset A of an ideal space (X, τ, I) is said to be R-I-open set [6] if $int(cl^*(A)) = A$.

A subset A of X is said to be *R*-*I*-closed if its complement is *R*-*I*-open. Let (X, τ, I) be an ideal space, A be a subset of X and x be a point of X. A point $x \in X$ is called a $\delta - I - cluster$ point of A if $A \cap V \neq \emptyset$ for every *regular-I-open* set V containing x. The set of all $\delta - I$ - cluster point of A is called the $\delta - I$ - closure of A and is denoted by $[A]_{\delta - I}$ but we denote it by $cl_{\delta I}^*(A)$. If $A = cl_{\delta I}^*(A)$, then A is $\delta - I$ - closed. The complement of a $\delta - I$ - closed set is said to be $\delta - I$ - open.

II. $\delta - pre - I - open sets$

Definition 2.1. A subset A of an ideal space is said to be $\delta - pre - I$ - open if $A \subset int(cl_{\delta I}^*(A))$, $cl_{\delta I}^*(A)$ is the family of all $\delta - I$ -cluster point of A. The complement of a $\delta - pre - I$ - open set is said to be $\delta - pre - I$ - closed. The family of all $\delta - pre - I$ - open (resp. $\delta - pre - I$ - closed) sets in a topological space X is denoted by $\delta IPO(X, \tau, I)$ (resp. $\delta IPC(X, \tau, I)$). The intersection of all $\delta - pre - I$ - closed sets containing A is called the $\delta - pre - I$ - closure of A and is denoted by $pcl_{\delta I}^*(A)$.

Definition 2.2. A subset U of an ideal space (X, τ, I) is called a (δ, PI^*) -neighbourhood of a point $x \in X$ if there exists a $\delta - pre - I$ -open set V such that $x \in V \subset U$.

Lemma 2.3. For the $\delta - pre - l$ -closure subsets of *A* and *B* in an ideal topological space (X, τ, I) the following properties hold:

(a) A is $\delta - pre - I$ -closed in (X, τ, I) if and only if $A = pcl_{\delta I}^{*}(A)$.

(b) If $A \subseteq B$, then $pcl_{\delta I}^{*}(A) \subseteq pcl_{\delta I}^{*}(B)$.

(c) $pcl_{\delta I}^{*}(A)$ is $\delta - pre - I$ -closed, that is $pcl_{\delta I}^{*}(pcl_{\delta I}^{*}(A)) = pcl_{\delta I}^{*}(A)$.

(d) $x \in pcl_{\delta I}^{*}(A)$ if and only if $A \cap V \neq \emptyset$ for every $V \in \delta IPO(X, \tau, I)$ containing x.

Lemma 2.4. For a family $\{A_{\alpha} \mid \alpha \in \Delta\}$ of subsets in an ideal space (X, τ, I) , the following properties hold: (a) $pcl_{\delta I}^*(\cap \{A_{\alpha} \mid \alpha \in \Delta\}) \subset \cap \{pcl_{\delta I}^*(A_{\alpha}) \mid \alpha \in \Delta\}.$ (b) $pcl_{\delta I}^*(\cup \{A_{\alpha} \mid \alpha \in \Delta\}) \supset \cup \{pcl_{\delta I}^*(A_{\alpha}) \mid \alpha \in \Delta\}.$

Proof. (a) Since $\bigcap_{\alpha \in \Delta} \{A_{\alpha}\} \subset A_{\alpha}$ for each $\alpha \in \Delta$ by Lemma 2.3, we have $pcl_{\delta I}^{*}(\cap \{A_{\alpha} \mid \alpha \in \Delta\}) \subset pcl_{\delta I}^{*}(A_{\alpha})$ for each $\alpha \in \Delta$ and hence $pcl_{\delta I}^{*}(\cap \{A_{\alpha} \mid \alpha \in \Delta\}) \subset \cap \{pcl_{\delta I}^{*}(A_{\alpha}) \mid \alpha \in \Delta\}$

(b) Since $A_{\alpha} \subset \bigcup_{\alpha \in \Delta} \{A_{\alpha}\}$ for each $\alpha \in \Delta$ by Lemma 2.3 we have $pcl_{\delta I}^*(A_{\alpha}) \subset pcl_{\delta I}^*(\bigcup_{\alpha \in \Delta} (A_{\alpha}))$ and hence $pcl_{\delta I}^*(\bigcup \{A_{\alpha} \mid \alpha \in \Delta\}) \supset \bigcup \{pcl_{\delta I}^*(A_{\alpha}) \mid \alpha \in \Delta\}.$

Lemma 2.5. Let A be an ideal space (X, τ, I) . If A is $\delta - pre$ open in X, then it is $\delta - pre - I$ open.

Lemma 2.6. Let (X, τ, I) be an ideal space. For each point $x \in X$, $\{x\}$ is $\delta - pre - I$ -open or $\delta - pre - I$ -closed.

III. $D_{\delta nl}^*$ - SETS AND ASSOCIATED SEPARATION AXIOMS

Definition 3.1. A subset A of an ideal space (X, τ, I) is called a $D_{\delta pl}^*$ -set if there are two $\delta - pre - I$ -open sets U, V such that $U \neq X$ and A = U - V. If A = U and $V = \emptyset$, Then it follows that every $\delta - pre - I$ -open set U different from X is a $D_{\delta pl}^*$ -set.

Definition 3.2. An ideal space (X, τ, I) is called $(\delta, pI) - D_0^*$ if every pair of distinct

points x and y of X, there exists a $D_{\delta pl}^*$ -set of X containing y but not x or a $D_{\delta pl}^*$ -set of X containing x but not y.

Definition 3.3. An ideal space (X, τ, I) is called $(\delta, pI) - D_1^*$ if every pair of distinct points x and y of X, there exists a $D_{\delta pl}^*$ -set of X containing x but not y and a $D_{\delta pl}^*$ -set of X

containing y but not x.

Definition 3.4. An ideal space (X, τ, I) is called $(\delta, pI) - D_2^*$ if every pair of distinct points x and y of X, there exists a $D_{\delta nI}^*$ -set of X containing G and E of X containing x and y respectively.

Definition 3.5. An ideal space (X, τ, I) is called $(\delta, pI) - T_0^*$ if for every pair of distinct points of X, there is a $\delta - pre - I$ -open set containing one of the points but not the other.

Definition 3.6. An ideal space (X, τ, I) is called $(\delta, pI) - T_1^*$ if for every pair of distinct points of X, there is a $\delta - pre - I$ -open set U in X containing x but not y and a $\delta - pre - I$ -open set V in X containing y but not x.

Definition 3.7. An ideal space (X, τ, I) is called $(\delta, pI) - T_2^*$ if for every pair of distinct points x and y of X, there is a $\delta - pre - I$ -open set U and V in X containing x and y respectively such that $U \cap V = \emptyset$. **Remark 3.8.** (a) If (X, τ, I) is $(\delta, pI) - T_i^*$, then it is $(\delta, pI) - T_{i-1}^*$, i= 1,2.

(b) If (X, τ, I) is $(\delta, pI) - T_i^*$, then it is $(\delta, pI) - D_i^*$, i = 0, 1, 2.

(c) If (X,τ,I) is $(\delta,pI) - D_i^*$, then it is $(\delta,pI) - D_{i-1}^*$, i = 1,2.

Theorem 3.9 An ideal space (X, τ, I) is $(\delta, pI) - D_1^*$ if and only if it is $(\delta, pI) - D_2^*$.

Proof. Let (X, τ, I) is $(\delta, pI) - D_1^*$. Let $x, y \in X$ such that $x \neq y$. Since X is $(\delta, pI) - D_1^*$, there exist a $D_{\delta pI}^*$ -set G_1 and G_2 such that $x \in G_1$ and $y \notin G_1$ and $y \in G_2$ and $x \notin G_2$. Let $G_1 = (U_1 - U_2)$ and $G_2 = (U_3 - U_4)$. From $x \notin G_2$, we have either $x \notin G_3$

or $x \in G_3$ and $x \in G_4$. We discuss the two cases separately.

(1) Suppose $x \notin G_3$. From $y \notin G_1$, we obtain the following two sub cases. (a) $y \notin U_1$

From $x \in (U_1 - U_2)$ we have $x \in U_1 - (U_2 \cup U_3)$ and $y \in (U_3 - U_4)$ we have $y \in U_3 - (U_1 \cup U_4)$ it is easy to see that $(U_1 - (U_2 \cup U_3)) \cap (U_3 - (U_1 \cup U_4)) = \emptyset$. (b) $y \in U_1$ and $\in U_2$, we have $x \in (U_1 - U_2)$ and $y \in U_2$, $(U_1 - U_2) \cap U_2 = \emptyset$.

(2) $x \in U_3$ and $x \in U_4$, we have $y \in (U_3 - U_4)$, $x \in U_4$ and $(U_3 - U_4) \cap U_4 = \emptyset$. Hence X is $(\delta, pl) - D_2^*$.

Conversely, Suppose X is $(\delta, pI) - D_2^*$ Let $x, y \in X$ such that $x \neq y$. Since X is $(\delta, pI) - D_2^*$, there exist a $D_{\delta pI}^*$ -set U and V containing x and y respectively such that $U \cap V = \emptyset$. Hence X is $(\delta, pI) - D_1^*$

Definition 3.10. A point $x \in X$ which has only X as the (δ, pI^*) -neighbourhood is called a (δ, pI^*) -neat point.

Theorem 3.11. For the ideal space (X, τ, I) the following are equivalent.

(b) (X, τ, I) has no (δ, pI^*) -neat point.

Proof. (a) \Rightarrow (b). Since X is $(\delta, pl) - D_1^*$ So each point X is contained in a $D_{\delta pl}^*$ -set O = U - V and $U \neq X$. This implies that x is not a (δ, pl^*) -neat point.

(b) \Rightarrow (a). By Lemma 2.6, for each pair of points x, $y \in X$, at least one of them say x has a (δ, pI^*) -neighbourhood U containing x and not y. Thus U which is different from X is a $D_{\delta pl}^*$ -set, If X has no (δ, pI^*) -neat point, then y is not a (δ, pI^*) -neat point. This means that there exists (δ, pI^*) -neighbourhood V of y such that $V \neq X$. Thus $y \in (U - V)$ but not x and (V - U) is a $D_{\delta pl}^*$ -set. Hence $(\delta, pI) - D_{\delta pl}^*$

Definition 3.12. An ideal space (X, τ, I) is said to be (δ, pI^*) -symmetric if for each point $x, y \in X$ $x \in pcl_{\delta I}^*(\{y\})$ implies $y \in pcl_{\delta I}^*(\{x\})$.

Theorem 3.13. For the ideal space (X, τ, I) , the following are equivalent.

- (a) (X, τ, I) is (δ, pI^*) -symmetric.
- (b) For each $x \in X$, $\{x\}$ is $\delta pre l$ -closed.
- (c) (X,τ,I) is $(\delta,pI) T_1^*$

Proof. (a) \Rightarrow (b). Let x be any point of X. Let y by any distinct point from x. By Lemma 2.6,

⁽a) (X, τ, I) is $(\delta, pI) - D_{1}^{*}$

{y} is $\delta - pre - I - open_{or} \delta - pre - I - closed in (X, \tau, I).$

(i) In case when
$$\{y\}$$
 is $\delta - pre - l - open$, let $V_y = \{y\}$. Then $V_y \in \delta IPO(X, \tau, l)$.

(ii) In case when {y} is $\delta - pre - I - closed$, $x \notin \{y\} = pcl_{\delta I}^*(\{y\})$.

By (a), $y \notin pcl_{\delta i}^{*}(\{x\})$. Now put $V_{y} = X - pcl_{\delta i}^{*}(\{x\})$. Then $x \notin V_{y}$, $y \in V_{y}$ and $V_{y} \in \delta IPO(X, \tau, I)$. Hence $X - \{x\} = \bigcup V_{y} \in \delta IPO(X, \tau, I)$, $y \in X - \{x\}$. This shows that $\{x\}$ is $-pre - I - closed(X, \tau, I)$.

(b) \Rightarrow (c). Suppose {p} is $\delta - pre - I - closed$ for every $p \in X$. Let x, $y \in X$ with $x \neq y$. Now $x \neq y$ implies that $y \in X - \{x\}$. Hence $X - \{x\}$ is a $\delta - pre - I - open$ set containing y but not x. Similarly $X - \{y\}$ is a $\delta - pre - I - open$ set containing x but not containing y. Accordingly (X, τ, I) is $(\delta, pI) - T_1^*$

 $(c) \Rightarrow (a)$. Suppose that $y \notin pcl_{\delta I}^*(\{x\})$. Since $x \neq y$, by (c), there exists a $\delta - pre - I - open$ set U containing x such that $y \notin U$ and hence $x \notin pcl_{\delta I}^*(\{y\})$.

This shows that (X, τ, I) is (δ, pI^*) -symmetric.

Definition 3.14. A function $f : (X, \tau, I) \to (Y, \sigma)$ is said to be $\delta - pre - I - continuous$ if for each $x \in X$ and each $\delta - pre - I - open$ set U in X containing x such that $f(u) \subset V$. **Theorem 3.15.** If $f : (X, \tau, I) \to (Y, \sigma)$ is a $\delta - pre - I - continuous$ surjective function and E is a $D_{\delta nl}^*$ -set in Y, then the inverse image of E is a $D_{\delta nl}^*$ -set in X.

Proof. Let E is a $D_{\delta pl}^*$ -set in Y. Then there exists a $\delta - pre - l - open$ sets U_1 and U_2 in Y such that $E = U_1 - U_2$ and $U_1 \neq Y$. By the $\delta - pre - l - continuity$ of f, $f^{-1}(U_1)$ and $f^{-1}(U_2)$ are $\delta - pre - l - open$ sets in X. Since $U_1 \neq Y$, we have $f^{-1}(U_1) \neq X$. Hence $f^{-1}(U_1) - f^{-1}(U_2)$ is a $D_{\delta pl}^*$ -set.

Theorem 3. 16. If (Y, σ) is a $(\delta, pI) - D_1^*$ and $f: (X, \tau, I) \to (Y, \sigma)$ is a $\delta - pre - I - continuous$ bijective function, then (X, τ, I) is $(\delta, pI) - D_1^*$

Proof. Suppose (Y, σ) is a $(\delta, pI) - D_1^*$ space. Let x, y be any pair of distinct points in X. Since f is injective and Y is $(\delta, pI) - D_1^*$ there exist a $D_{\delta pl}^*$ -sets G_x and G_y of Y containing f(x), f(y) respectively, such that $f(y) \notin G_x$ and $f(x) \notin G_y$. Therefore, by Theorem 3.15, $f^{-1}(G_x)$ and

 $f^{-1}(G_y)$ are $D_{\delta pl}^*$ -sets in X containing x and y respectively, such that $y \notin f^{-1}(G_x)$ and $x \notin f^{-1}(y)$. Hence X is $(\delta, pl) - D_1^*$

Theorem 3.17. An ideal space (X, τ, I) is $(\delta, pI) - D_1^*$ if and only if for each pair of distinct points $x, y \in X$, there exists a $\delta - pre - I - continuous$ surjective function

 $f: (X, \tau, I) \to (Y, \sigma)$ such that f(x) and f(y) are distinct where (Y, σ) is a $(\delta, pI) - D_1^*$ space.

Proof. For every pair of distinct points of X, it suffices to take the identity function on X.

Conversely, let x, y be distinct points in X. By hypothesis, there is a

 $\delta - pre - I - continuous$ surjective function f of a space X onto a $(\delta, pI) - D_1^*$ space Y such that $f(x) \neq f(y)$. By Theorem 3.9, there exist disjoint $D_{\delta pl}^*$ -sets G_x and G_y in Y such that $f(x) \in G_x$ and $f(y) \in G_y$. Since f is $\delta - pre - I - continuous$ surjective, by Theorem 3.15,

 $f^{-1}(G_x)$ and $f^{-1}(G_y)$ are disjoint $D^*_{\delta pl}$ -sets in X containing x and y respectively. Hence again by Theorem 3.9, $(\delta, pl) - D^*_1$ space.

IV.
$$(\boldsymbol{\delta}, \boldsymbol{pI}) \cdot R_0^*$$
 SPACE AND $(\boldsymbol{\delta}, \boldsymbol{pI}) \cdot R_1^*$ SPACES

Definition 4.1. Let A be a subset of an ideal space (X, τ, I) . The $\delta - pre - I - kernel$ of A, denoted by $plker_{\delta}(A)$, is defined to be the set $plker_{\delta}(A) = \cap \{ U \in \delta IPO(X, \tau, I) | A \subset U \}$. Theorem 4.2. Let (X, τ, I) be an ideal space and $A \subseteq X$.

Theorem 4.2. Let (X, τ, I) be an ideal space and $A \subset X$.

Then $plker_{\delta}(A) = \{x \in X | \delta cl_{pl}^{*}(\{x\}) \cap A \neq \emptyset\}.$ **Proof.** Let $x \in plker_{\delta}(A)$ and $\delta cl_{pl}^{*}(\{x\}) \cap A \neq \emptyset$. Now $\{x\} \subset \delta cl_{pl}^{*}(\{x\})$. Hence $\{x\} \notin (X - \delta cl_{pl}^{*}(\{x\}))$ which is a $\delta - pre - l - open$ set containing A. This is absurd,

 $\{x\} \notin (X - ocl_{pI} \setminus \{x\})$ which is a o - pre - I - open set containing A. This is absurd, since $x \in pIker_{\delta}(A)$. Consequently $pcl_{\delta I}^*(\{x\}) \cap A \neq \emptyset$.

Let x be such that $pcl_{\delta I}^*({X}) \cap A \neq \emptyset$ and suppose that $x \notin plker_{\delta}(A)$. Then there exists a

 $\delta - pre - l - open$ set U containing A and $x \notin U$. Let $y \in pcl_{\delta I}^*(\{X\}) \cap A$. Hence, U is a (δ, pI^*) - neighbourhood of y which does not contains x. This is a contradiction to $x \in plker_{\delta}(A)$. Hence $plker_{\delta}(A) = \{x \in X \mid \delta cl_{pI}^*(\{x\}) \cap A \neq \emptyset\}.$

Definition 4.3. An ideal space (X, τ, I) is said to be $(\delta, pI) - R_0^*$ if every $\delta - pre - I - open$ set contains the $\delta - pre - I$ - closure of each of its singletons.

Theorem 4.4. An ideal space (X, τ, I) is $(\delta, pI) - R_0^*$ if and only if it is $(\delta, pI) - T_1^*$

Proof. Let x and y be two distinct points of X. For $x \in X$, $\{x\}$ is $\delta - pre - I - open$ or $\delta - pre - I - closed$ by lemma 2.6. (i) When $\{x\}$ is $\delta - pre - I - open$, let $V = \{x\}$, then $x \in V, y \notin V$ and $V \in \delta IPO(X, \tau, I)$. Moreover, since (X, τ, I) is $(\delta, pI) - R_0^*$

We have $pcl_{\delta I}^{*}(\{x\}) \subset V$. Hence $x \notin X - V$, $y \in X - V$ and $X - V \in \delta IPO(X, \tau, I)$. (i) When $\{x\}$ is $\delta - pre - I$ -closed, $y \in X - \{x\}$ and $X - \{x\} \in \delta IPO(X, \tau, I)$.

Hence $pcl_{\delta I}^{*}(\{y\}) \subset X - \{x\}$, since (X, τ, I) is $(\delta, pI) - R_{0}^{*}$. Now, let $V = X - pcl_{\delta I}^{*}(\{y\})$, then $x \in V, y \notin V$ and $V \in \delta IPO(X, \tau, I)$. Then, we obtain (X, τ, I) is $(\delta, pI) - T_{1}^{*}$ Conversely, Let V be any $\delta - pre - I - open$ set of X and $x \in V$. For each $y \in X - V$, there exists $V_{y} \in \delta IPO(X, \tau, I)$ such that $x \notin V_{y}$ and $y \in V_{y}$. Therefore, we have $pcl_{\delta I}^{*}(\{x\}) \cap (\cup V_{y}) = \emptyset$. Since $\in V_{y}, X - V \subset (\cup V_{y})$ and hence $pcl_{\delta I}^{*}(\{x\}) \cap (X - V) = \emptyset$. This implies that $pcl_{\delta I}^{*}(\{x\}) \subset V$. Hence (X, τ, I) is $(\delta, pI) - R_{0}^{*}$.

Theorem 4.5. For an ideal space (X, τ, I) the following are equivalent.

(a)
$$(X, \tau, I)$$
 is $(\delta, pI) - R_0^*$

- **(b)** (X, τ, I) is $(\delta, pI) T_1^*$
- (c) (X, τ, I) is $(\delta, pI^*) symmetric$.

Proof. The proof follows from Theorems 3.13 and 4.4.

Theorem 4.6. For an ideal space (X, τ, I) the following are equivalent.

(a) (X, τ, I) is $(\delta, pI) - R_0^*$ space.

(b) For any nonempty set A and $G \in \delta IPO(X, \tau, I)$ such that $A \cap G \neq \emptyset$, there exist $F \in \delta IPC(X, \tau, I)$ such that $A \cap F \neq \emptyset$ and $F \subset G$. (c) For any $G \in \delta IPO(X, \tau, I), G = \bigcup \{F \in \delta IPC(X, \tau, I) | F \subset G\}.$ (d) For any $F \in \delta IPC(X, \tau, I), F = \cap \{G \in \delta IPO(X, \tau, I) | F \subset G\}$.

(e) For any $x \in X$, $pcl_{\delta I}^*(\{x\}) \subset pIker_{\delta}(\{x\})$.

Proof. (a) \Rightarrow (b). Let A be any non empty subset of X and $G \in \delta IPO(X, \tau, I)$ such that $A \cap G \neq \emptyset$. Which implies $x \in G \in \delta IPO(X, \tau, I)$. Since X is $(\delta, pI) - R_0^*$ every $\delta - pre - I - open$ contains the closure of each of its singletons.

Therefore, $pcl_{\delta I}^*({x}) \subset G$. Set $F = pcl_{\delta I}^*({x})$. Then $A \cap F \neq \emptyset$ and $F \subset G$. (b) \Rightarrow (c) Let $G \in \delta IPO(X, \tau, I)$ then $G \supset \bigcup \{F \in \delta IPC(X, \tau, I) | F \subset G\}$. Let x be any point of G. Then there exists $F \in \delta IPC(X, \tau, I)$ such that $x \in F$ and $F \subset G$. Therefore, we have $x \in F \subset \bigcup \{F \in \delta IPC(X, \tau, I) | F \subset G\}$.

 $(c) \Rightarrow (d)$. The proof is clear.

 $(d) \Rightarrow (e)$ Let x be any point of X and $y \notin plker_{\delta}(\{x\})$. Then there exists $V \in \delta IPO(X, \tau, I)$ such $x \in V$ and $y \notin V$ and hence $pcl_{\delta I}^{*}(\{y\}) \cap V = \emptyset$. By (d), $plker_{\delta}(pcl_{\delta I}(\{y\}) \cap V) = \emptyset$ and there exists $G \in \delta IPO(X, \tau, I)$ such that $x \notin G$ and $pcl_{\delta I}^{*}(\{y\}) \subset G$. Therefore, $pcl_{\delta I}^{*}(\{x\}) \cap G = \emptyset$ and thus by Lemma 1.2, (c) and (d), $y \notin pcl_{\delta I}^{*}(pcl_{\delta I}^{*}(\{x\})) = pcl_{\delta I}^{*}(\{x\})$. Consequently, $pcl_{\delta I}^{*}(\{x\}) \subset plker_{\delta}(\{x\})$. $(d) \Rightarrow (e)$. The proof is clear. Theorem 4.7. For an ideal space the following properties are equivalent,

- (a) (X, τ, I) is $(\delta, pI) R_0^*$ space.
- (b) If F is $\delta pre I closed$ and $x \in F$, then $pIker_{\delta}(\{x\}) \subset F$.
- (c) If $x \in X$, then $pIker_{\delta}(\{x\}) \subset pcl_{\delta I}^{*}(\{x\})$.

Proof. (a) \Rightarrow (b). Let F be $\delta - pre - I - closed$ and $x \in F$. Then $\{x\} \subset F$ which implies that $plker_{\delta}(\{x\}) \subset plker_{\delta}(F)$. By (a), it follows from Theorem 4.6, $plker_{\delta}(F) = F$. Thus $plker_{\delta}(\{x\}) \subset F$. (b) \Rightarrow (c). Since $x \in pcl_{\delta I}^{*}(\{x\})$ and $pcl_{\delta I}^{*}(\{x\})$ is $\delta - pre - I - closed$, by (b) $plker_{\delta}(\{x\}) \subset pcl_{\delta I}^{*}(\{x\})$. (c) \Rightarrow (a). Let $x \in pcl_{\delta I}^{*}(\{y\})$. then $y \in plker_{\delta}(\{x\})$. By (c), $y \in pcl_{\delta I}^{*}(\{x\})$. Therefore, $x \in pcl_{\delta I}^{*}(\{y\})$ implies that $y \in pcl_{\delta I}^{*}(\{x\})$. Hence by Theorem 4.5, (X, τ, I) is $(\delta, pl) - R_{0}^{*}$.

Definition 4.8. An ideal space (X, τ, I) is said to be $(\delta, pI) - R_1^*$ space if for each $x, y \in X$ $pcl_{\delta I}^*(\{x\}) \neq pcl_{\delta I}^*(\{y\})$, there exists disjoint $\delta - pre - I - open$ sets U and V such that $pcl_{\delta I}^*(\{x\})$ is a subset of U and $pcl_{\delta I}^*(\{y\})$ is a subset of V.

Theorem 4.9. An ideal space (X, τ, I) is $(\delta, pI) - R_1^*$ space if and only if X is $(\delta, pI) - T_2^*$ **Proof.** Let x and y be any distinct points of X. By Lemma 2.5, each point x of X is $\delta - pre - I - open$ or $\delta - pre - I - closed$.

- (i) When $\{x\}$ is $\delta pre I open$, since $\{x\} \cap \{y\} = \emptyset$, $\{x\} \cap pcl_{\delta I}^*(\{y\}) \subset \emptyset$, and hence $pcl_{\delta I}^*(\{x\}) \neq pcl_{\delta I}^*(\{y\})$.
- (ii) When {x} is $\delta pre I closed$, $pcl_{\delta I}^*(\{x\} \cap \{y\}) \subset pcl_{\delta I}^*(\{x\}) \cap \{y\} \subset \emptyset$, and hence $pcl_{\delta I}^*(\{x\}) \neq pcl_{\delta I}^*(\{y\})$. Since X is $(\delta, pI) - R_1^*$, there exists disjoint $\delta - pre - I - open$ sets U and V such that $x \in pcl_{\delta I}^*(\{y\}) \subset U$ and $y \in pcl_{\delta I}^*(\{y\}) \subset V$. This shows that X is $(\delta, pI) - T_2^*$

Conversely, let x and y be any points of X such that $pcl_{\delta I}^*(\{x\}) \neq pcl_{\delta I}^*(\{y\})$. By Remark 3.8,

every $(\delta, pI) - T_2^*$ space is $(\delta, pI) - T_1^*$. Therefore, by Theorem 3.13, $pcl_{\delta I}^*(\{x\}) = \{x\}$ and $pcl_{\delta I}^*(\{y\}) = \{y\}$ and hence $x \neq y$. Since X is $(\delta, pI) - T_2^*$ there exists disjoint $\delta - pre - I - open$ set U and V such that $pcl_{\delta I}^*(\{x\}) = \{x\} \subset U$ and $pcl_{\delta I}^*(\{y\}) = \{y\} \subset V$. This shows that (X, τ, I) is $(\delta, pI) - R_1^*$

CONCUSION

In this paper, we define a new class of sets $\delta - pre - I - open$ set and $\delta - pre - I - closed$ set and some weak separation axiom by utilizing the notion of $\delta - pre - I - open$ set and $\delta - pre - I - closed$ set. Also we define $(\delta, pI) - R_0^+$ space, $(\delta, pI) - T_1^+$, $(\delta, pI^+) - symmetric$, $(\delta, pI) - T_2^+$ space, $(\delta, pI) - R_1^+$. We characterize these sets and study some of their fundamental properties.

REFERENCES

- M. Caldas, T. Fukutake, S. Jafari and T. Noiri, Some applications of ô preopensets in topological spaces, Bull. Math. Acad. Sinica, Vol.33(3)(2005).
- [2] J. Dontchev, On pre I open sets and a decomposition of I-continuity, Banyan Math. J., 2(1996).
- [3] D. Jankovic and T.R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97(4)(1990), 295-310.
- [4] K. Kuratowski, Topology, Vol. I, Academic Press, New York, 1996.
- [5] R. Vaidyanathaswamy, The localization theory in set topology, Proc. Indian Acad. Sci., 20(1945), 51-61.
- [6] S. Yuksel, A. Acikgoz, T. Noiri, On $\delta I -$ continuous functions, Turk. J. Math. 29 (2005), 39-51.