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Abstract 

     The structure of proper type 𝐴 semigroup constructed by Lawson(1986) is visited and some results obtained. The 

structure is married up with the structure maps of type 𝐴 semigroup and an alternative structure of proper type 𝐴 

semigroup is obtained in line with Armstrong(1988) analysis of concordant semigroups. By using Munn semigroup, 

the representation of the left translational hull of the alternative proper type 𝐴 semigroup is obtained.  
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I. INTRODUCTION 

*-Prehomomorphism triple is an alternative name we have, in this paper, chosen to call the structure of proper type 

𝐴 semigroup due to the pivotal position of *-prehomomorphism in the structure as constructed by Lawson(1986). 

The structure, whose operation is the direct product, takes the form 𝑇 = 𝑇 𝑆, 𝐶, 𝜓 , where 𝐶 is a cancellative 

monoid, 𝜓 is a *-prehomomorphism from 𝐶 to a type 𝐴 semigroup 𝑊 , and 𝑆 is a type 𝐴 *-subsemigroup of of 𝑊. 

 

Let 𝑊 be a type 𝐴 semigroup and 𝐶 a cancellative monoid. A mapping 𝜓: 𝐶 → 𝑊 is called a ∗-𝑃𝑟𝑒𝑜𝑚𝑜𝑚𝑜𝑟𝑝𝑖𝑠𝑚 

if the following conditions are satisfied: 

i. ∀𝑔,  ∈ 𝐶,  𝜓(𝑔)𝜓() ≤ 𝜓(𝑔) 

ii. 𝜓(1) is an idempotent 

iii. If 𝑠 ∈ 𝑊 and 𝑠 ≤ 𝜓(𝑔) [𝑔 ∈ 𝐶], then 𝑠∗, 𝑠† ≤ 𝜓(1) 

where ≤ is the natural partial order on 𝑊.  

Now, let 𝜓: 𝐶 → 𝑊 be a ∗-prehomomorphism and let 𝑆 be a type 𝐴 ∗-subsemigroup of 𝑊. We define ∗-

𝑝𝑟𝑒𝑜𝑚𝑜𝑚𝑜𝑟𝑝𝑖𝑠𝑚 𝑡𝑟𝑖𝑝𝑙𝑒 by 𝑇 = 𝑇 𝑆, 𝐶, 𝜓 =   𝑠, 𝑔 ∈ 𝑆 × 𝐶   𝑠 ≤ 𝜓(𝑔)} endowed with 𝑑𝑖𝑟𝑒𝑐𝑡 𝑝𝑟𝑜𝑑𝑢𝑐𝑡. 

If  𝑠, 𝑔 ,  𝑡,  ∈ 𝑇, then 𝑠 ≤ 𝜓(𝑔) and 𝑡 ≤ 𝜓() and therefore 𝑠𝑡 ≤ 𝜓 𝑔 𝜓  ≤ 𝜓 𝑔 . Hence,  𝑠𝑡, 𝑔 ∈ 𝑇. 
Thus, if 𝑇 is non-empty, 𝑇 is a subsemigroup of 𝑆 × 𝐶. 

If 𝑆 is type 𝐴 with semilattice 𝐸 of idempotents and assuming for 𝑒 ∈ 𝐸,  𝑎 ∈ 𝑆,  𝑎 ≤ 𝑒. Then ∃𝑓 ∈ 𝐸 such that 

𝑎 = 𝑓𝑒 = 𝑒𝑓 ∈ 𝐸. That is 𝑎 ≤ 𝑒  ⇒   𝑎 ∈ 𝐸. For references, we can formally state this fact. 

Lemma 1.1: If 𝑆 is type 𝐴 with semilattice 𝐸 of idempotents and assuming for ∈ 𝐸, 𝑎 ∈ 𝑆, then 𝑎 ≤ 𝑒 ⇒ 𝑎 ∈ 𝐸. 

Still on 𝑆 a type 𝐴 semigroup, if 𝑎, 𝑏 ∈ 𝑆 such that 𝑎 ≤ 𝑏. Then ∃𝑒 ∈ 𝐸 such that 𝑎 = 𝑏𝑒. This implies that 𝑎𝑒 =
𝑏𝑒 = 𝑎. Therefore, 𝑎𝑒 = 𝑎.  
If  𝑎ℒ∗𝑏, then 𝑎∗ = 𝑏∗. Now, assuming 𝑎 ≤ 𝑏 and 𝑎ℒ∗𝑏, then 𝑎𝑒 = 𝑎 and ∀𝑥, 𝑦 ∈ 𝑆1, 𝑎𝑥 = 𝑎𝑦  ⇔  𝑏𝑥 = 𝑏𝑦. If we 

take 𝑥 = 𝑒, 𝑦 = 𝑏∗ = 𝑎∗, then we have that [𝑎𝑒 = 𝑎𝑎∗ = 𝑎]  ⇔  [𝑏𝑒 = 𝑏𝑏∗ = 𝑏] and since 𝑏𝑒 = 𝑎,  𝑎𝑒 = 𝑎  ⇔  

𝑎 = 𝑏.  

So that if 𝑎 ≤ 𝑏 and 𝑎ℒ∗𝑏, then 𝑎 = 𝑏. Similarly or dually, if 𝑎 ≤ 𝑏 and 𝑎ℛ∗𝑏, then 𝑎 = 𝑏. 

 

If 𝐶 is a cancellative monoid with set of idempotents 𝐸(𝐶) and suppose 𝑒 ∈ 𝐸 𝐶 . Then  𝑒. 𝑒 = 𝑒 = 1. 𝑒 and by 

cancellation, 𝑒 = 1. That is, the only idempotent in a cancellative monoid is 1. 

If  𝑠, 1 ∈ 𝑇 = 𝑇 𝑆, 𝐶, 𝜓 , then 𝑠 ≤ 𝜓(1) and since by definition 𝜓 1  is an idempotent,𝑠 ∈ 𝐸 𝑆 . 
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Assuming (𝑠, 𝑔) ∈ 𝑇 is an idempotent, then (𝑠, 𝑔)2 =  𝑠2, 𝑔2 =  𝑠, 𝑔 . That is  𝑠2 = 𝑠 and  𝑔2 = 𝑔. 𝐶 being a 

cancellative monoid implies that 𝑔 = 1.  
Thus, the set of idempotents of 𝑇 is given by 𝐸 𝑇 =   𝑒, 1   𝑒 ≤ 𝜓 1 , 𝑒 ∈ 𝐸(𝑆)} 

That is   𝐸 𝑇 =  𝜔 𝜓 1   ∩  𝐸 𝑆   ×  1 . 
We know that direct product of two semigroups is again a semigroup. Now, what about when the semigroups are 

type 𝐴? 

 

Proposition 1.2:  The direct product of two type 𝐴 semigroups is again type 𝐴. 
Proof:    Let 𝑆 and  𝑇 be type 𝐴 semigroups and assuming  𝑠, 𝑡 ∈ 𝑆 × 𝑇,  𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇.  
For all 𝑠1 ,  𝑠2 ∈ 𝑆, 𝑠𝑠1 = 𝑠𝑠2  ⇔  𝑠∗𝑠1 = 𝑠∗𝑠2 

Similarly, ∀𝑡1,  𝑡2 ∈ 𝑇, 𝑡𝑡1 = 𝑡𝑡2  ⇔  𝑡∗𝑡1 = 𝑡∗𝑡2 

So that,   𝑠𝑠1, 𝑡𝑡1 =  𝑠𝑠2, 𝑡𝑡2   ⇔   (𝑠∗𝑠1, 𝑡∗𝑡1) =  (𝑠∗𝑠2, 𝑡∗𝑡2) 

That is,  𝑠, 𝑡  𝑠1, 𝑡1 = (𝑠, 𝑡) 𝑠2, 𝑡2    ⇔    (𝑠∗, 𝑡∗) 𝑠1, 𝑡1 =  (𝑠∗, 𝑡∗) 𝑠2, 𝑡2  

Therefore,  ∀ 𝑠, 𝑡 ∈ 𝑆 × 𝑇,   (𝑠, 𝑡)ℒ∗(𝑆 × 𝑇)(𝑠∗, 𝑡∗) 

Similarly,   ∀ 𝑠, 𝑡 ∈ 𝑆 × 𝑇,    𝑠, 𝑡 ℛ∗(𝑆 × 𝑇)(𝑠† , 𝑡†). 

Thus, every ℒ∗ and  ℛ∗ contains an idempotent.  

If  𝑒𝑠 ∈ 𝐸(𝑆) and  𝑒𝑡 ∈ 𝐸(𝑇), then  𝑒𝑠 , 𝑒𝑡 ∈ 𝐸 𝑆 × 𝑇 . Let also  𝑓𝑠 , 𝑓𝑡 ∈ 𝐸 𝑆 × 𝑇 , then  𝑒𝑠 , 𝑒𝑡  𝑓𝑠 , 𝑓𝑡 =
 𝑒𝑠𝑓𝑠  , 𝑒𝑡𝑓𝑡  =  𝑓𝑠𝑒𝑠 , 𝑓𝑡𝑒𝑡   =  𝑓𝑠 , 𝑓𝑡  𝑒𝑠 , 𝑒𝑡 ∈ 𝐸 𝑆 × 𝑇 . Therefore, 𝐸 𝑆 × 𝑇  is a semilattice. 

Now,  𝑒𝑠 , 𝑒𝑡 (𝑠, 𝑡)  =   𝑒𝑠𝑠, 𝑒𝑡𝑡  =  [𝑠 𝑒𝑠𝑠 
∗, 𝑡 𝑒𝑡𝑡 

∗] =  𝑠, 𝑡 [ 𝑒𝑠𝑠 
∗,  𝑒𝑡𝑡 

∗]                                           

       = (𝑠, 𝑡) 𝑒𝑠𝑠, 𝑒𝑡𝑡  ∗  =  (𝑠, 𝑡)[ 𝑒𝑠 , 𝑒𝑡 (𝑠, 𝑡)]∗. 

And   𝑠, 𝑡  𝑒𝑠 , 𝑒𝑡 =  𝑠𝑒𝑠 , 𝑡𝑒𝑡  =  (𝑠𝑒𝑠)†𝑠, (𝑡𝑒𝑡)†𝑡 =  (𝑠𝑒𝑠)† , (𝑡𝑒𝑡)† (𝑠, 𝑡) 

    =  𝑠𝑒𝑠 , 𝑡𝑒𝑡 
†(𝑠, 𝑡)  = [(𝑠, 𝑡) 𝑒𝑠 , 𝑒𝑡 ]†(𝑠, 𝑡) 

Hence, 𝑆 × 𝑇 is type 𝐴. 
 

Lemma 1.3(Lawson 1986): Let 𝑆 be a type 𝐴 semigroup and let 𝑇 be an abundant subsemigroup of 𝑆 with 𝐸(𝑇) an 

order ideal of 𝐸 𝑆 . Then, 𝑇 is type 𝐴. 

 

Proposition 1.4(Lawson 1986): Let 𝑇 = 𝑇 𝑆, 𝐶, 𝜓 . Then 𝑇 is a type 𝐴 semigroup. 

 

Proposition 1.5(Lawson 1986): 𝑇 = 𝑇 𝑆, 𝐶, 𝜓  is a proper type 𝐴 semigroup. 

 

Now, the projection 𝛼: 𝑇 = 𝑇 𝑆, 𝐶, 𝜓 → 𝑆, defined by 𝛼: (𝑠, 𝑔) ↦ 𝑠 is clearly a homomorphism as we can see that 

for  𝑠, 𝑔 𝛼 𝑡,  𝛼 = 𝑠𝑡 =  𝑠𝑡, 𝑔 𝛼 =   𝑠, 𝑔  𝑡,   𝛼. 
 𝛼 is one-to-one on the idempotents of 𝑇 since if  𝑒, 1 ,  𝑓, 1  ∈ 𝐸(𝑇),  𝑒, 1 𝛼 =  𝑓, 1 𝛼  ⇒  𝑒 = 𝑓  ⇒   𝑒, 1 =
 𝑓, 1 . Thus, 𝛼 is idempotent – separating. 

 

We can easily show that 𝛼 is good. For  𝑠, 𝑔 ,  𝑡,  ∈ 𝑇,    𝑠, 𝑔 ℒ∗ 𝑇  𝑡,  ⇒ ∃ 𝑠1, 𝑔1 ,  𝑠2, 𝑔2 ∈ 𝑇  such that 

(𝑠, 𝑔) 𝑠1, 𝑔1 = (𝑠, 𝑔) 𝑠2, 𝑔2   ⇔  (𝑡, ) 𝑠1, 𝑔1 = (𝑡, ) 𝑠2, 𝑔2  

  𝑠𝑠1, 𝑔𝑔1 =  𝑠𝑠2, 𝑔𝑔2     ⇔    𝑡𝑠1, 𝑔1 =  𝑡𝑠2, 𝑔2  

 𝑠𝑠1 = 𝑠𝑠2  ⇔  𝑡𝑠1 = 𝑡𝑠2. This implies that 𝑠ℒ∗ 𝑆 𝑡 =  𝑠, 𝑔 𝛼ℒ∗ 𝑆 (𝑡, )𝛼   
Similarly,   𝑠, 𝑔 ℛ∗ 𝑇  𝑡,  ⇒  𝑠, 𝑔 𝛼ℛ∗ 𝑆 (𝑡, )𝛼 

 𝑘𝑒𝑟 𝛼 =   𝑠, 𝑔 ,  𝑡,  ∈ 𝑇 × 𝑇  𝑠 = 𝑡} 

 

The projection 𝛽: 𝑇 = 𝑇 𝑆, 𝐶, 𝜓 → 𝐶, defined by 𝛽: (𝑠, 𝑔) ↦ 𝑔 is equally a homomorphism. 

               𝑘𝑒𝑟 𝛽 =   𝑠, 𝑔 ,  𝑡,  ∈ 𝑇 × 𝑇  𝑔 = }. 

 

Proposition 1.6:   The kernel of the projection 𝛽: 𝑇 → 𝐶 coincides with the minimum cancellative monoid 

congruence on 𝑇. 
Proof:  Let   𝑠, 𝑔 , (𝑡, ) ∈ 𝑘𝑒𝑟 𝛽. This implies that 𝑔 =  and 𝑠 ≤ 𝜓(𝑔) and  𝑡 ≤ 𝜓  = 𝜓(𝑔). 

This implies that ∃𝑢, 𝑣 ∈ 𝐸(𝑊) such that  𝑠 = 𝜓(𝑔)𝑢   and  𝑡 = 𝜓(𝑔)𝑣. 

Therefore,  𝑠𝑣𝑢 = 𝜓(𝑔)𝑣𝑢  and  𝑡𝑣𝑢 = 𝜓(𝑔)𝑣𝑢 

Hence, 𝑠𝑣𝑢 = 𝑡𝑣𝑢  and since 𝐸(𝑊) is a semilattice, ∃𝑒 ∈ 𝐸(𝑊) such that  𝑣𝑢 = 𝑒. So that 𝑠𝑒 = 𝑡𝑒. Since 𝑆 is a *-

subsemigroup of 𝑊, 𝑒 ∈ 𝑆. 
Now, we have:     𝑠𝑒 = 𝑡𝑒  and  𝑔 = . That is   𝑠, 𝑔  𝑒, 1 =  𝑡,   𝑒, 1 ;    (𝑒, 1) ∈ 𝐸(𝑇) 

This implies that   𝑠, 𝑔 𝜍𝑇(𝑡, ). Reversing the argument gives the converse.   
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Theorem 1.7:  The composition of the kernels,  𝛽 𝑜 𝑘𝑒𝑟 𝛼 𝑜 𝑘𝑒𝑟 𝛽 , is transitive. 

Proof:  Let   𝑠, 𝑔 ,  𝑡,   , [ 𝑡,  ,  𝑥, 𝑘 ] ∈  𝑘𝑒𝑟 𝛽  𝑜  𝑘𝑒𝑟 𝛼  𝑜  𝑘𝑒𝑟 𝛽. Then, we wish to show that  [ 𝑠, 𝑔 ,  𝑥, 𝑘 ] ∈
 𝑘𝑒𝑟 𝛽  𝑜  𝑘𝑒𝑟 𝛼  𝑜  𝑘𝑒𝑟 𝛽. 

To be more explicit, we need to show that if there exist  𝑠1, 𝑔1 ,  𝑡1, 1 ,  𝑡2, 2 ,  𝑥1, 𝑘1   ∈  𝑇  such that  

            𝑠, 𝑔 ,  𝑠1, 𝑔1  ∈  𝑘𝑒𝑟 𝛽,     𝑠1, 𝑔1 ,  𝑡1, 1   ∈  𝑘𝑒𝑟 𝛼,     𝑡1, 1 ,  𝑡,    ∈  𝑘𝑒𝑟 𝛽   

   and   

             𝑡,  ,  𝑡2, 2  ∈ 𝑘𝑒𝑟 𝛽,     𝑡2, 2 ,  𝑥1, 𝑘1   ∈  𝑘𝑒𝑟 𝛼,        𝑥1, 𝑘1 ,  𝑥, 𝑘   ∈  𝑘𝑒𝑟 𝛽   

Then, we can find 𝑢, 𝑣 ∈ 𝑇 such that  

             𝑠, 𝑔 , 𝑢 ∈ 𝑘𝑒𝑟 𝛽,   (𝑢, 𝑣) ∈ 𝑘𝑒𝑟 𝛼,   [𝑣,  𝑥, 𝑘 ] ∈ 𝑘𝑒𝑟 𝛽. 

If we accept the premise, then we know from the definitions of 𝑘𝑒𝑟 𝛽  and  𝑘𝑒𝑟 𝛼 that  

 𝑔 = 𝑔1,   𝑠1 = 𝑡1,    = 1 = 2,  𝑡2 = 𝑥1   and  𝑘 = 𝑘1. 

And since  𝑘𝑒𝑟 𝛽 = 𝜍𝑇 , there exist   𝑒, 1  and  𝑛, 1 ∈ 𝐸(𝑇) such that  

  𝑒, 1  𝑠, 𝑔   =  𝑒, 1 (𝑠1, 𝑔)  ……………….(1) 

  𝑛, 1 (𝑥, 𝑘)  =  𝑛, 1  𝑥, 𝑘    ……………….(2) 

For   𝑠, 𝑔 , 𝑢 ∈  𝑘𝑒𝑟 𝛽, we need to find 𝑒1 ∈ 𝐸(𝑇) such that  

         𝑒1 𝑠, 𝑔 =   𝑒1𝑢  ………………………….(3) 

Similarly, for [𝑣,  𝑥, 𝑘 ] ∈ 𝑘𝑒𝑟 𝛽, we need some 𝑓1 ∈ 𝐸(𝑇) such that  

          𝑓1𝑣 =  𝑓1(𝑥, 𝑘)  ………………………….(4) 

We know that our 𝑒, 𝑓, 𝑚, and 𝑛  lie in 𝐸(𝑆) and since 𝐸(𝑆) is a semilattice, 𝑒𝑓𝑚, 𝑛𝑓𝑚 ∈ 𝐸(𝑆). 

If we take  𝑒1 =  𝑒𝑓𝑚, 1  ∈ 𝐸(𝑇)  and  𝑓1 =  𝑛𝑓𝑚, 1 ∈ 𝐸(𝑇), then equations (3) and (4) will respectively give 

   𝑒𝑓𝑚, 1  𝑠, 𝑔 =    𝑒𝑓𝑚, 1 𝑢  ……………..(5) 

and      𝑛𝑓𝑚, 1 𝑣 =   𝑛𝑓𝑚, 1 (𝑥, 𝑘)  ……………..(6) 

Now, if we choose 𝑢 = (𝑓𝑚𝑠1, 𝑔) where 𝑠1 = 𝑓𝑠  and  𝑒 ≤ 𝑓, and if we choose  𝑣 = (𝑓𝑚𝑥1, 𝑘) where 𝑥1 = 𝑚𝑥  

and  𝑛 ≤ 𝑚, then our equations are satisfied and therefore our goal achieved. 

 

II. THE STRUCTURE MAPS OF TYPE 𝑨 SEMIGROUP 

 

         The structure maps of a semigroup 𝑆 are maps between ℒ-classes and ℛ-classes of the idempotents 𝐸(𝑆) of the 

semigroup. Interestingly, Armstrong(1988) broadened the definition to maps between ℒ∗-classes and ℛ∗-classes of 

the idempotents 𝐸(𝑆) for abundant semigroups. Lawson(1986) characterised type 𝐴 semigroup as proper if and only 

if these structure maps are injective. Our goal this section is to characterize type 𝐴 semigroup in structure maps 

framework in line with Armstrong’s (1988) analysis of concordant semigroups in terms of their traces and structure 

maps. A concordant semigroup is an idempotent connected abundant semigroup in which the idempotents generate 

a regular semigroup. 

 

Let 𝑆 be a type 𝐴 semigroup and 𝑒, 𝑓 ∈ 𝐸(𝑆) with 𝑓𝜔𝑒. Suppose 𝑎 ∈ ℛ𝑒
∗ , then (𝑓𝑎)† = (𝑓𝑎†)† = (𝑓𝑒)† = 𝑓† = 𝑓 

Thus,      𝑓𝑎 ∈ ℛ𝑓
∗. So that corresponding to each pair of  ℛ∗-classes ℛ𝑒

∗  and ℛ𝑓
∗ with 𝑓𝜔𝑒, we can associate a map: 

    𝜙𝑒 ,𝑓 :  ℛ𝑒
∗ → ℛ𝑓

∗  defined by 𝑎 ↦ 𝑓𝑎 

Similarly, for ℒ∗-classes ℒ𝑒
∗ and ℒ𝑓

∗  with 𝑓𝜔𝑒 we have  𝜓𝑒 ,𝑓 :  ℒ𝑒
∗ → ℒ𝑓

∗    defined by 𝑎 ↦ 𝑎𝑓 

The maps 𝜙𝑒 ,𝑓  and 𝜓𝑒 ,𝑓  , given that 𝑓𝜔𝑒, are called the 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 𝑚𝑎𝑝𝑠 𝑜𝑓 𝑆. 

 

Suppose 𝑆 is a type 𝐴 semigroup endowed with one-one structure maps and assuming  𝑎, 𝑏 ∈ 𝜍 ∩ ℛ∗, so that for 

some 𝑓 ∈ 𝐸(𝑆), 𝑓𝑎 = 𝑓𝑏 and 𝑎† = 𝑏† . We therefore have  𝑓𝑎 = 𝑓𝑏 = 𝑓𝑏†𝑏 = 𝑓𝑎†𝑏. 
We know that 𝑓𝑎†𝜔𝑎†  and (𝑓𝑎)† =  𝑓𝑎 †𝑓𝑎† , (𝑓𝑎)† =  (𝑓𝑎†)†  and therefore,  𝑓𝑎ℛ∗𝑓𝑎† . Let us put 𝑒 = 𝑎†  and 

 = 𝑓𝑎† . Then we have a structure map     𝜙𝑒 , :  ℛ𝑒
∗ → ℛ

∗  with 𝑎𝜙𝑒 , = 𝑎,  𝑎 ∈ ℛ𝑒
∗ . 

 𝑎 ∈ ℛ𝑒
∗  implies that 𝑒 = 𝑎† = 𝑏† . So that 𝑏 ∈ ℛ𝑒

∗  as well. 

 𝑎𝜙𝑒 , = 𝑎 = 𝑓𝑎†𝑎 = 𝑓𝑎 = 𝑓𝑎†𝑏 = 𝑏 = 𝑏𝜙𝑒 ,  and since by assumption, 𝜙𝑒 ,  is one-one, 𝑎 = 𝑏. Thus, 𝜍 ∩
ℛ∗ = 𝜄. Similar argument produces 𝜍 ∩ ℒ∗ = 𝜄. 
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On the other hand, assuming the type 𝐴 semigroup 𝑆 is proper with 𝜙𝑒 ,𝑓 :  ℛ𝑒
∗ → ℛ𝑓

∗ , 𝑓𝜔𝑒, 𝑒, 𝑓 ∈ 𝐸 𝑆 . Suppose that 

for 𝑎, 𝑏 ∈ ℛ𝑒
∗  , 𝑎𝜙𝑒 ,𝑓 = 𝑏𝜙𝑒 ,𝑓  . This implies that 𝑎ℛ∗𝑏 and 𝑓𝑎 = 𝑓𝑏. That is,  𝑎, 𝑏 ∈ 𝜍 ∩ ℛ∗ and since 𝑆 is proper, 

𝑎 = 𝑏. 
Thus, a type 𝐴 semigroup is proper if and only if its structure maps are one-one. 

 

Let us recall that 𝜔 = 𝜔𝑟 ∩ 𝜔𝑙 . Now, suppose 𝑓𝜔𝑟 ∪ 𝜔𝑙𝑒. Then we have 𝑓𝜔𝑟𝑒 or 𝑓𝜔𝑙𝑒.  𝑓𝜔𝑟𝑒 implies that 𝑒𝑓 = 𝑓. 
So that 𝑓𝑒. 𝑓 = 𝑓 and 𝑓. 𝑒 = 𝑓𝑒 and therefore, 𝑓𝑒ℛ𝑓. In the same vein, 𝑓𝜔𝑙𝑒 produces 𝑓𝑒 = 𝑓 and 𝑒𝑓ℒ𝑓. 
Now, let 𝛷 and 𝛹 be collections of structure maps on 𝑆, given by  

  𝛷 = {𝜙𝑒 ,𝑓 :  ℛ𝑒
∗ → ℛ𝑓

∗ | 𝑓𝜔𝑒}   and    𝛹 =  𝜓𝑒 ,𝑓 :  ℒ𝑒
∗ → ℒ𝑓

∗   𝑓𝜔𝑒} 

 

With 𝑔 ∈ 𝐸(𝑆), suppose 𝑔𝜔𝑓𝜔𝑒, then for 𝑎 ∈ ℛ𝑒
∗ ,  𝑎𝜙𝑒 ,𝑓𝜙𝑓 ,𝑔 = 𝑓𝑎𝜙𝑓 ,𝑔 = 𝑔𝑓𝑎 = 𝑔𝑓𝑒𝑎  [since 𝑓𝜔𝑒] 

    = 𝑎𝜙𝑒 ,𝑔𝑓𝑒  

 and with   dom[𝜙𝑒 ,𝑓𝜙𝑓 ,𝑔]  =  dom[𝜙𝑒 ,𝑔𝑓𝑒 ], we have 𝜙𝑒 ,𝑓𝜙𝑓 ,𝑔 = 𝜙𝑒 ,𝑔𝑓𝑒 . 

Thus, if 𝑔𝜔𝑓𝜔𝑒, then 𝜙𝑒 ,𝑓𝜙𝑓 ,𝑔 = 𝜙𝑒 ,𝑔𝑓𝑒 . 

 

Lemma 2.1:   𝜙𝑒 ,𝑓 = 1ℛ𝑒
∗   if   𝑓 ∈ ℛ𝑒

∗ ∩ 𝐸 𝑆 . 

Proof:    Suppose 𝑓 ∈ ℛ𝑒
∗ ∩ 𝐸 𝑆 ,    𝑒 ∈ 𝐸 𝑆 .  Since 𝑆 is adequate, 𝑓 = 𝑒. With 𝑎 ∈ ℛ𝑒

∗  ,  𝑎𝜙𝑒 ,𝑓 = 𝑓𝑎 = 𝑒𝑎 = 𝑎. 

 

The following theorem was adapted from lemma 8.1 of Armstrong(1988) where it basically had to do with 

concordant semigroup. We recast the proof to particularly suit type 𝐴 semigroup. 

 

Theorem 2.2: Given that 𝑒ℒ∗𝑎ℛ∗𝑓, (𝑎 ∈ 𝑆) [𝑒, 𝑓 ∈ 𝐸 𝑆 ]. Then there exist isomorphisms   

 𝜃𝑓 ,𝑎 ,𝑒 : 𝜔(𝑓) → 𝜔(𝑒) satisfying 𝑎𝜙𝑓 , = 𝑎𝜓𝑒 ,𝜃𝑓 ,𝑎 ,𝑒
  for  ∈ 𝜔(𝑓) 

 𝜃𝑒 ,𝑎 ,𝑓 : 𝜔(𝑒) → 𝜔(𝑓) satisfying  𝑎𝜓𝑒 ,𝑔 = 𝑎𝜙𝑓 ,𝑔𝜃𝑒 ,𝑎 ,𝑓
 for 𝑔 ∈ 𝜔(𝑒) 

such that  𝜃𝑒 ,𝑎 ,𝑓𝜃𝑓 ,𝑎 ,𝑒 = 1𝑑𝑜𝑚 𝜃𝑒 ,𝑎 ,𝑓
   and    𝜃𝑓 ,𝑎 ,𝑒𝜃𝑒 ,𝑎 ,𝑓 = 1𝑑𝑜𝑚 𝜃𝑓 ,𝑎 ,𝑒

 

 

Proof:  Type 𝐴 semigroup is idempotent – connected. Hence, for all 𝑎 ∈ 𝑆, and for all 𝑎† , 𝑎∗ ∈ 𝑆,  there exists 

isomorphisms  𝛼:   𝑎† →  𝑎∗   satisfying  𝑥𝑎 = 𝑎(𝑥𝛼) for all 𝑥 ∈  𝑎†   and 𝛼−1:  𝑎∗ →  𝑎†  satisfying 𝑎𝑦 =
 𝑦𝛼−1 𝑎, for all 𝑦 ∈  𝑎∗ . 
We recall that   𝑎† =  𝑥  𝑥𝜔𝑎†} = 𝜔(𝑎†). 

 𝑒ℒ∗𝑎ℛ∗𝑓 implies that  𝑎† = 𝑓  and  𝑎∗ = 𝑒 since 𝑆 is adequate. We can therefore give our connecting 

isomorphisms as  

 𝛼:  𝜔(𝑓) → 𝜔(𝑒)  such that 𝑎 = 𝑎(𝛼) with   ∈ 𝜔(𝑓)    

and  𝛽: 𝜔(𝑒) → 𝜔(𝑓)  such that 𝑎𝑔 =  𝑔𝛽 𝑎 with  𝑔 ∈ 𝜔(𝑒). 

Since we are talking about type 𝐴 semigroup here, 𝛼 = (𝑎)∗  and   𝑔𝛽 =  (𝑎𝑔)† . 

We can see that    𝑎 = 𝑎(𝛼) implies that 𝑎𝜙𝑓 , = 𝑎𝜓𝑒,𝛼    

and        𝑎𝑔 =  𝑔𝛽 𝑎   implies that    𝑎𝜓𝑒 ,𝑔 = 𝑎𝜙𝑓 ,𝑔𝛽 . 

To satisfy the demands, we can now take 𝛼 = 𝜃𝑓 ,𝑎 ,𝑒   and  𝛽 = 𝜃𝑒 ,𝑎 ,𝑓 . 

𝛽𝛼: 𝜔(𝑒) → 𝜔(𝑒)  and  𝑎 𝑔𝛽𝛼 = 𝑎[ 𝑎𝑔 †𝛼]  = 𝑎[ 𝑎𝑔 †𝑎]∗  =  𝑎𝑔 †𝑎 = 𝑎𝑔 

So that  𝑎 𝑔𝛽𝛼 = 𝑎𝑔. The fact that 𝑎𝜓𝑒 ,𝑔 = 𝑎𝜙𝑓 ,𝑔𝛽   tells us that  𝑎 ∈ ℒ𝑒
∗ 

Therefore,  𝑎 𝑔𝛽𝛼 = 𝑎𝑔   ⇔  𝑒 𝑔𝛽𝛼 = 𝑒𝑔. 

Now,     𝑔𝛽𝛼 ∈ 𝜔(𝑒)  so that   𝑒(𝑔𝛽𝛼) = 𝑔𝛽𝛼.   𝑔 ∈ 𝜔(𝑒), therefore  𝑒𝑔 = 𝑔 

Hence, with  𝑒 𝑔𝛽𝛼 = 𝑒𝑔,   we have   𝑔𝛽𝛼 = 𝑔. Thus, 𝜃𝑒 ,𝑎 ,𝑓𝜃𝑓 ,𝑎 ,𝑒 = 1𝑑𝑜𝑚 𝜃𝑒 ,𝑎 ,𝑓
.   

Furthermore,  𝛼𝛽: 𝜔(𝑓) → 𝜔(𝑓),     𝛼𝛽 𝑎 =   [ 𝛼 ∗𝛽]𝑎  = [𝑎 𝛼 ∗]†𝑎  = (𝑎)†𝑎  = 𝑎†𝑎 = 𝑎. 
From  𝑎𝜙𝑓 , = 𝑎𝜓𝑒 ,𝛼  ,   we notice that 𝑎 ∈ ℛ𝑓

∗ . Therefore,  𝛼𝛽 𝑎 =   𝑎   ⇔   𝛼𝛽 𝑓 =   𝑓. 

 𝛼𝛽 ∈ 𝜔(𝑓) so that   𝛼𝛽 𝑓 =  𝛼𝛽,   ∈ 𝜔(𝑓) so that  𝑓 = . Hence, 𝛼𝛽 = . 

Thus,  𝜃𝑓 ,𝑎 ,𝑒𝜃𝑒 ,𝑎 ,𝑓 = 1𝑑𝑜𝑚 𝜃𝑓 ,𝑎 ,𝑒
.  All as required. 

 

Let 𝑎, 𝑏 ∈ 𝑆, and suppose ℒ𝑎
∗ ∩ ℛ𝑏

∗ ∩ 𝐸 𝑆 ≠ ∅. Then ∃ ∈ ℒ𝑎
∗ ∩ ℛ𝑏

∗ ∩ 𝐸 𝑆 , and since ℒ∗ is a right congruence 

and  is left identity in ℛ𝑏
∗ , 𝑎𝑏ℒ∗𝑏 = 𝑏. Similarly,  𝑎 = 𝑎ℛ∗𝑎𝑏. 

Thus, ℒ𝑎
∗ ∩ ℛ𝑏

∗ ∩ 𝐸 𝑆 ≠ ∅  implies that  𝑎ℛ∗𝑎𝑏ℒ∗𝑏. In fact, this is obviously true of all semigroups. 
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Suppose, 𝜔𝑟𝑓. This implies that 𝑓 =  and therefore  , 𝑓 ∈  ℛ ⊆ ℛ∗. Our 𝑆 here is adequate and , 𝑓 ∈
𝐸 𝑆 , so that  = 𝑓. Thus, if 𝜔𝑟𝑓, then 𝜙𝑓 ,𝑓 = 𝜙𝑓 , . Dually, if 𝑘𝜔𝑙𝑓, then 𝜓𝑓 ,𝑓𝑘 = 𝜓𝑓 ,𝑘 . 

Lawson(1985) described the structure of proper type 𝐴 semigroup in terms of  *-prehomomorphism. Now, we wish 

to give an alternative description of this structure in terms of the structure maps of type 𝐴 semigroup. We make use 

of the product given by Armstrong(1988) on the structure maps of concordant semigroup. 

 

To avoid ambiguity, we hereby replace our *-prehomomorphism 𝜓 by 𝜋 and therefore the structure 𝑇(𝑆, 𝐶, 𝜓) 

becomes 𝑇 𝑆, 𝐶, 𝜋 . We need to do this because we have also used 𝜓 as one of the structure maps of type 𝐴 

semigroup and right here, the *-prehomomorphism and the structure maps are coming together. 

 

We have given 𝛷 and 𝛹 as collections of structure maps on 𝑆. That is  

  𝛷 = {𝜙𝑒 ,𝑓 :  ℛ𝑒
∗ → ℛ𝑓

∗ | 𝑓𝜔𝑒}   and    𝛹 =  𝜓𝑒 ,𝑓 :  ℒ𝑒
∗ → ℒ𝑓

∗   𝑓𝜔𝑒} 

 

Now, define a product ‘’ₒ’’ on 𝑇 by: 

For all  𝑠, 𝑔 , (𝑡, ) in 𝑇,    𝑠, 𝑔 ₒ(𝑡, )  =   𝑠, 𝑔 𝜓 𝑒 ,1 , 𝑘 ,1    𝑡,  𝜙 𝑓 ,1 , 𝑘 ,1   

Where   𝑒, 1 ∈  ℒ 𝑠,𝑔 
∗  𝑇  ∩ 𝐸(𝑇),   𝑓, 1 ∈  ℛ 𝑡 , 

∗  𝑇  ∩ 𝐸(𝑇),  (𝑘, 1) ∈ 𝑆[ 𝑒, 1 ,  𝑓, 1 ]  

 𝑆[ 𝑒, 1 ,  𝑓, 1 ] is the sandwich set of  𝑒, 1  and   𝑓, 1  defined by  

 𝑆[ 𝑒, 1 ,  𝑓, 1 ] =   𝑘, 1 ∈ 𝐸 𝑇 :  𝑘𝑒, 1 =  𝑓𝑘, 1 =  𝑘, 1 ;    𝑒𝑘𝑓, 1 =  𝑒𝑓, 1   
 

We denote the structure by  𝑇 = 𝑇 (𝑇, 𝛷, 𝛹) and show that the binary operation ′′ₒ′′ in 𝑇  coincides with the direct 

product in 𝑇 = 𝑇 𝑆, 𝐶, 𝜋 . 

 

Theorem 2.3:  𝑇 = 𝑇 (𝑇, 𝛷, 𝛹) is a proper type 𝐴 semigroup with only one 𝒟∗-class. 

We first show that the operation in  𝑇 = 𝑇 (𝑇, 𝛷, 𝛹) coincides with the direct product in 𝑇 = 𝑇 𝑆, 𝐶, 𝜋 . 
Proof:   𝑠, 𝑔 ,  𝑡,  ∈ 𝑇 . This implies that  𝑠, 𝑔 ,  𝑡,  ∈ 𝑇. 

  𝑠, 𝑔 ₒ 𝑡,    =     𝑠, 𝑔 𝜓 𝑒 ,1 , 𝑘 ,1    𝑡,  𝜙 𝑓 ,1 , 𝑘 ,1  =  𝑠, 𝑔  𝑘, 1  𝑘, 1 (𝑡, )  =  (𝑠𝑘𝑡, 𝑔) 

From the product, we notice that  𝑠, 𝑔 ∈  ℒ 𝑒 ,1 
∗  𝑑𝑜𝑚 𝜓 𝑒 ,1 , 𝑘 ,1   and therefore 𝑠ℒ∗𝑒. 

So that   𝑠𝑒 = 𝑠  ……………. (i) 

We also have that (𝑘, 1) ∈ 𝑆[ 𝑒, 1 ,  𝑓, 1 ] which implies that   𝑘𝑒 = 𝑘  …………. (ii) 

Equations (i) and (ii) give that  𝑠ℒ∗𝑘 ……….(iii)   

Hence,  𝑠𝑘 = 𝑠. 
In the same vein, (𝑡, ) ∈  ℛ 𝑓 ,1 

∗  implying that 𝑡ℛ∗𝑓. So that 𝑓𝑡 = 𝑡 and (𝑘, 1) ∈  𝑆[ 𝑒, 1 ,  𝑓, 1 ] implies that 

𝑓𝑘 = 𝑘 and therefore  𝑡ℛ∗𝑘 ………….…(iv)  

That is 𝑘𝑡 = 𝑡. 
Now,  𝑠𝑘𝑡, 𝑔 = (𝑠𝑡, 𝑔) which is the direct product of (𝑠, 𝑔) and (𝑡, ) in 𝑇 = 𝑇 𝑆, 𝐶, 𝜋 . 
Evidently, 𝑇  is a subsemigroup of 𝑇 and therefore a proper type 𝐴 semigroup. 

(iii) and (iv) give    𝑠𝒟∗𝑡 …………(v) 

With  𝑠, 𝑔 ∈  ℒ 𝑒 ,1 
∗ ,    𝑔 ∈  ℒ1

∗ and with  𝑡,  ∈  ℛ 𝑓 ,1 
∗ ,  we have   ∈  ℛ1

∗ . So that   𝑔𝒟∗ …………(vi) 

Thus, (v) and (vi) give     𝑠, 𝑔 𝒟∗(𝑇 ) 𝑡,  . 

III. THE TRANSLATIONAL HULL 

3.1 The Translational Hull of a Semigroup 

A map 𝜆 from a semigroup 𝑆 to itself is a 𝑙𝑒𝑓𝑡 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 of 𝑆 if for all elements  𝑎, 𝑏 ∈ 𝑆, 𝜆 𝑎𝑏 =  𝜆𝑎 𝑏. A map 

𝜌 from a semigroup 𝑆 to itself is a 𝑟𝑖𝑔𝑡 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 of 𝑆 if  𝑎𝑏 𝜌 = 𝑎(𝑏𝜌) for all elements  𝑎, 𝑏 ∈ 𝑆. A left 

translation 𝜆 and a right translation 𝜌 are linked if 𝑎 𝜆𝑏 =  𝑎𝜌 𝑏 for all  𝑎, 𝑏 ∈ 𝑆. The set of all linked pairs  𝜆, 𝜌  

of left and right translations is called the 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑢𝑙𝑙 of 𝑆 and it is denoted by 𝛺(𝑆). We denote the set of all 

the idempotents of 𝛺(𝑆) by 𝐸𝛺 𝑆 .  The set of the left translations of 𝑆 is denoted by 𝛬(𝑆) and the set of the right 

translations of 𝑆 is denoted by 𝛲 𝑆 .  𝛺(𝑆) is a subsemigroup of the direct product 𝛬(𝑆) × 𝛲 𝑆 . For 
 𝜆, 𝜌  𝜆′, 𝜌′  ∈ 𝛺(𝑆) , the multiplication is given by  𝜆, 𝜌  𝜆′, 𝜌′ =   𝜆𝜆′, 𝜌𝜌′  

where 𝜆𝜆′ denotes the composition of the left maps 𝜆 and 𝜆′ (that is, first 𝜆′ and then 𝜆) and 𝜌𝜌′ denotes the 

composition of the right maps 𝜌 and 𝜌′ (that is, first 𝜌 and then 𝜌′). For each a in 𝑆, there is a linked pair (𝜆𝑎 , 𝜌𝑎) 
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within 𝛺 𝑆  defined by 𝜆𝑎𝑥 = 𝑎𝑥 and  𝑥𝜌𝑎 = 𝑥𝑎, and called the 𝑖𝑛𝑛𝑒𝑟 𝑝𝑎𝑟𝑡 of 𝛺 𝑆  and for all 𝑎, 𝑏 ∈ 𝑆, the 

following is obvious  𝜆𝑎 , 𝜌𝑎  𝜆𝑏 , 𝜌𝑏 =  (𝜆𝑎𝑏 , 𝜌𝑎𝑏 ). 

 

Theorem 3.2:   The translational hull of proper type𝐴 semigroup is a proper type𝐴 semigroup 

Proof: 

Suppose 𝑆 is a proper type𝐴 semigroup let  𝜆1 ,𝜌1 , (𝜆2 ,𝜌2) ∈ 𝛺 𝑆  such that 

  𝜆1 ,𝜌1 , (𝜆2 ,𝜌2)  ∈  ℒ∗ ∩ 𝜍……………….(i) 

Then,   𝜆1 ,𝜌1 𝜍(𝜆2 ,𝜌2)  ⇒   ∃(𝜆, 𝜌) ∈ 𝐸𝛺 𝑆  such that  𝜆, 𝜌  𝜆1 ,𝜌1 =  𝜆, 𝜌  𝜆2 ,𝜌2  

    ⇒    𝜆𝜆1 = 𝜆𝜆2  and therefore, ∀𝑒 ∈ 𝐸 𝑠 ,   𝜆𝜆1(𝑒) = 𝜆𝜆2(𝑒) 

 𝜆[𝜆1 𝑒 ]†𝜆1(𝑒) = 𝜆[𝜆2 𝑒 ]†𝜆2(𝑒)   

Since 𝑆 is type𝐴, we have [𝜆𝜆1 𝑒 ]†𝜆𝜆1(𝑒)  =  [𝜆𝜆2 𝑒 ]†𝜆𝜆2(𝑒)  =  [𝜆𝜆1 𝑒 ]†𝜆𝜆2(𝑒)   

and since   [𝜆𝜆2 𝑒 ]†𝜆 ∈ 𝐸(𝑆),   𝜆1 𝑒 𝜍𝜆2 𝑒   ……………………..(ii) 

From (i),   𝜆1 ,𝜌1 ℒ
∗(𝜆2 ,𝜌2). Now, assuming  ∀𝑎, 𝑏 ∈ 𝑆1 [∀𝑒 ∈ 𝐸 𝑆 ] 

                    𝜆1 𝑒 𝑎 = 𝜆2 𝑒 𝑏  ………………….(iii) 

Then,  ∀𝑓 ∈ 𝐸 𝑆  ,  𝜆1 𝑒 𝑎𝑓 = 𝜆2 𝑒 𝑏𝑓 and we have  𝜆1𝜆𝑒𝑎𝑓 = 𝜆1𝜆𝑒𝑏𝑓     

We note that if    𝜆│𝐸(𝑆) = 𝜆′│𝐸(𝑆), then  𝜆 = 𝜆′ 

Thus,  𝜆1𝜆𝑒𝑎 = 𝜆1𝜆𝑒𝑏   and    (𝜆1𝜆𝑒𝑎 , 𝜌1𝜌𝑒𝑎 ) = (𝜆1𝜆𝑒𝑏 , 𝜌1𝜌𝑒𝑏 ) 

This implies that    (𝜆1, 𝜌1) 𝜆𝑒𝑎 , 𝜌𝑒𝑎  = (𝜆1, 𝜌1)(𝜆𝑒𝑏 , 𝜌𝑒𝑏 ) and with  𝜆1 ,𝜌1 ℒ
∗(𝜆2 ,𝜌2)  we have 

   𝜆2 ,𝜌2  𝜆𝑒𝑎 , 𝜌𝑒𝑎  =  (𝜆2 ,𝜌2) 𝜆𝑒𝑏 , 𝜌𝑒𝑏    ⇒   𝜆2𝜆𝑒𝑎 = 𝜆2𝜆𝑒𝑏    

  (𝜆2𝑒)𝑎 = 𝜆2𝑒𝑎𝑎∗ = 𝜆2𝜆𝑒𝑎𝑎∗ = 𝜆2𝜆𝑒𝑏𝑎∗ = (𝜆2𝑒)𝑏𝑎∗ ⇒  (𝜆2𝑒)𝑎 ≤  (𝜆2𝑒)𝑏 

In the same vein,  (𝜆2𝑒)𝑏 ≤  (𝜆2𝑒)𝑎 

Thus,   (𝜆2𝑒)𝑎 =  (𝜆2𝑒)𝑏  …………………. (iv) 

 (iii) and (iv) give      𝜆1(𝑒)ℒ∗𝜆2(𝑒) ……………..(v) 

(ii) and (v)  give     [𝜆1 𝑒), 𝜆2 𝑒  ∈  ℒ∗ ∩ 𝜍 

and since 𝑆 is a proper type𝐴 semigroup, 𝜆1(𝑒) = 𝜆2(𝑒)  ∀𝑒 ∈ 𝐸(𝑆)  

Hence,   𝜆1 = 𝜆2. In the same vein,  𝜌1 = 𝜌2. So that   𝜆1 ,𝜌1 = (𝜆2 ,𝜌2)   

Thus,   ℒ∗ 𝛺 𝑆   ∩   𝜍𝛺 𝑆  =  𝜄𝛺 𝑆  and dually,  ℛ∗ 𝛺 𝑆   ∩   𝜍𝛺 𝑆  =  𝜄𝛺 𝑆 . 

 

Let 𝑆 be a monoid with a set of idempotents 𝐸. 𝑆 is said to be 𝑙𝑒𝑓𝑡 𝐸-𝑐𝑎𝑛𝑐𝑒𝑙𝑙𝑎𝑏𝑙𝑒 if  ∀𝑎 ∈ 𝑆  (∀𝑒 ∈ 𝐸), 𝑎𝑒 = 𝑎  

and   ∀𝑠, 𝑡 ∈ 𝑆  𝑎𝑠 = 𝑎𝑡 implies 𝑒𝑠 = 𝑒𝑡. 

Theorem 3.3:  If 𝛬(𝑇 ) is left  𝐸𝛬(𝑇 ) −cancellable, then the map 𝜃: 𝛬(𝑇 ) → 𝛬(𝑇 )/𝜍𝛬(𝑇 ) × 𝐸𝛬(𝑇 ) 

 defined by    𝜃 𝜆 = (𝜆𝜍𝛬 𝑇  , 𝜆
′) ,  𝜆′ ∈ 𝐸𝛬(𝑇 ) is one-one. 

Proof: 

Let   𝜆𝜍𝛬 𝑇  , 𝜆
′ = (ƛ𝜍𝛬 𝑇  , 𝜆

′) ,   𝜆, ƛ ∈ 𝛬(𝑇 ), 𝜆′ ∈ 𝐸𝛬(𝑇 ) 

⇒  𝜆𝜍𝛬 𝑇  =  ƛ𝜍𝛬 𝑇   and since 𝛬(𝑇 ) is left  𝐸𝛬(𝑇 ) −cancellable,  𝜆ℒ∗𝜆′ℒ∗ƛ 

Thus,   𝜆, ƛ ∈  𝜍𝛬 𝑇  ∩ ℒ∗ 𝛬 𝑇    

 𝛬(𝑇 ) is proper and therefore  𝜆, ƛ ∈  𝜍𝛬 𝑇  ∩ ℒ∗ 𝛬 𝑇   = 𝜄𝛺 𝑇   

Hence,  𝜆 = ƛ . 

IV. THE REPRESENTATION 

Let 𝑋 be a set, and denote by 𝑇𝑋  the set of all functions 𝛼: 𝑋 →  𝑋.  𝑇𝑋  is called the 𝑓𝑢𝑙𝑙  𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 

 𝑠𝑒𝑚𝑖𝑔𝑟𝑜𝑢𝑝 on 𝑋 with the operation of composition of functions. A homomorphism 𝜙: 𝑆 → 𝑇𝑋  is a 

𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 of the semigroup 𝑆.  
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In this section, we use the Munn semigroup to obtain the representation of 𝛬 𝑇   

 

4.1     The Munn Semigroup  

Given a semilattice 𝐸, the Munn semigroup 𝑇𝐸  consists of all isomorphisms between principal ideals of 𝐸. It is an 

inverse subsemigroup of the 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝑠𝑒𝑚𝑖𝑔𝑟𝑜𝑢𝑝 𝔗𝐸  which is a subsemigroup of the full 

transformation semigroup.  Munn showed that for any inverse semigroup 𝑆, there is a homomorphism from 𝑆 into 

𝑇𝐸(𝑆) which maps 𝐸(𝑆) isomorphically onto 𝐸(𝑇𝐸 𝑆 ) and induces the maximum idempotent separating congruence 

on 𝑆. The maximum idempotent separating congruence on an inverse semigroup is the largest congruence contained 

in Green’s relation ℋ(details in Howie 1995). 

Fountain(1979) extended Munn’s result to type 𝐴 semigroup 𝑆 to give a homomorphism from 𝑆 into 𝑇𝐸(𝑆) mapping 

𝐸(𝑆) isomorphically onto 𝐸(𝑇𝐸 𝑆 ) and inducing the largest congruence contained in ℋ∗.  

By analogy with this Fountain’s result, we wish to obtain a representation of 𝛬(𝑇 ) on a full subsemigroup of a type 

𝐴 semigroup of mapping using the Munn semigroup. 

 

So, for an arbitrary semilattice 𝛬 𝐸 , 𝑇𝛬 𝐸  consists of all isomorphisms between principal ideals of 𝛬 𝐸 , and 𝑇𝛬 𝐸  

is an inverse semigroup. 

For 𝜆 ∈ 𝛬(𝑇 ), define the maps 𝜗𝜆  and 𝛶𝜆  as follows:  

 𝜗𝜆 :   𝜆† →  𝜆∗     and   𝛶𝜆 :   𝜆∗ →  𝜆†     by  𝜆′𝜗𝜆 = (𝜆′𝜆)∗   and   𝜆′𝛶𝜆 = (𝜆𝜆′)†  

For 𝜆′ ∈  𝜆† ,   𝜆′𝜗𝜆𝛶𝜆 = [𝜆(𝜆′𝜆)∗]†   

Now, 𝜆′ ∙ [𝜆′𝜗𝜆𝛶𝜆] =  𝜆′[𝜆(𝜆′𝜆)∗]†   = [𝜆′𝜆(𝜆′𝜆)∗]†   = (𝜆′𝜆)†  = 𝜆′𝜆† = 𝜆′ since 𝜆′ ∈  𝜆† . 

Therefore,∀𝜆′ ∈  𝜆† ,  𝜆′ ≤ 𝜆′𝜗𝜆𝛶𝜆 . In the same vein, for 𝜆′ ∈  𝜆∗ , 𝜆′ ≤ 𝜆′𝛶𝜆𝜗𝜆  

 

For 𝜆′ ∈  𝜆† , suppose 𝜆′𝜗𝜆 =  𝜆′′𝜗𝜆 .  Then we have (𝜆′𝜆)∗ = (𝜆′′𝜆)∗. Since 𝛬(𝑇 ) is type 𝐴, 𝜆′𝜆 = 𝜆(𝜆′𝜆)∗ =
𝜆(𝜆′′ 𝜆)∗ = 𝜆′′ 𝜆. Therefore, 𝜆′ = 𝜆′𝜆† = (𝜆′𝜆)† = (𝜆′′ 𝜆)† = 𝜆′′𝜆† = 𝜆′′ 

Thence, 𝜗𝜆  is one-one for each 𝜆 ∈ 𝛬(𝑇 ). Similarly, 𝛶𝜆  is one-one for each 𝜆 ∈ 𝛬(𝑇 ). 

Thus,  𝜗𝜆 , 𝛶𝜆 ∈ 𝑇𝐸𝛬(𝑇 )   ∀𝜆 ∈ 𝛬(𝑇 ). For ƛ ∈  𝜆† , assume ƛ𝜗𝜆𝛶𝜆 = 𝜆′  ……………….. (i)  

 where 𝜆′ ∈  𝜆† . Then, ƛ𝜆′ = ƛ ƛ𝜗𝜆𝛶𝜆 =  ƛ[𝜆(ƛ𝜆)∗]† = [ƛ𝜆 ƛ𝜆)∗ † = (ƛ𝜆)† = ƛ𝜆†  = ƛ  

So that ƛ ≤ 𝜆′ = ƛ𝜗𝜆𝛶𝜆  ,  ∀ƛ ∈  𝜆†  ………………(ii) 

The domain of 𝜗𝜆′ 𝜆 =  (𝜆′𝜆)†  =  𝜆′𝜆† =  𝜆′ . Now, 𝜆′′ ∈ 𝑑𝑜𝑚𝜗𝜆′ 𝜆 =  𝜆′ , 

  𝜆′′ 𝜗𝜆′ 𝜆 = (𝜆′′ 𝜆′𝜆)∗  = [(𝜆′′ 𝜆′)∗𝜆]∗      and     𝜆′′ 𝜗𝜆′ 𝜗𝜆 = (𝜆′′ 𝜆′)∗𝜗𝜆   = [(𝜆′′ 𝜆′)∗𝜆]∗ 

So that      𝜗𝜆′ 𝜆 = 𝜗𝜆′ 𝜗𝜆 | 𝜆′   ………………….. (iii) 

Similarly,   𝛶𝜆′ 𝜆 = 𝛶𝜆𝛶𝜆′ | (𝜆′ 𝜆)∗  . Therefore,  

  𝜆′𝜗𝜆′ 𝜆𝛶𝜆′ 𝜆  =  𝜆′𝜗𝜆′ 𝜗𝜆𝛶𝜆𝛶𝜆′  =   𝜆′𝜗𝜆𝛶𝜆 𝜆
′ = 𝜆′[𝜆(𝜆′𝜆)∗]†   = [𝜆′𝜆(𝜆′𝜆)∗]†   = (𝜆′𝜆)†  = 𝜆′𝜆†   = 𝜆′…(iv) 

   ƛ𝜗𝜆′ 𝜆𝛶𝜆′ 𝜆  =  ƛ𝜗𝜆′ 𝜗𝜆𝛶𝜆𝛶𝜆′   =  ƛ𝜗𝜆𝛶𝜆𝛶𝜆′  since  ƛ ≤ 𝜆′  from (ii) 

    =  𝜆′𝛶𝜆′    since  𝜆′ = ƛ𝜗𝜆𝛶𝜆  from (ii) 
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       = 𝜆′         …………………….. (v) 

So that  (iii) = (iv). That is,  𝜆′𝜗𝜆′ 𝜆𝛶𝜆′ 𝜆  =  ƛ𝜗𝜆′ 𝜆𝛶𝜆′ 𝜆  

  ⇒      𝜆′ = ƛ  since  𝜗𝜆′ 𝜆  &  𝛶𝜆′ 𝜆  are one – one. 

So from (i), we see that  𝜗𝜆𝛶𝜆 = 1 𝜆†   , the identity map on  𝜆† . In the same vein,  𝛶𝜆𝜗𝜆 = 1 𝜆∗  . 

Thus, 𝜗𝜆  and 𝛶𝜆  are mutually inverse isomorphisms for each  𝜆 ∈ 𝛬(𝑇 ). 

 

Theorem 4.2:    𝜇 = {(𝜆, ƛ) ∈ 𝛬 𝑇  × 𝛬 𝑇  :  𝜗𝜆 = 𝜗ƛ, 𝛶𝜆 = 𝛶ƛ} is the largest idempotent separating congruence 

contained in ℋ∗, and there is a homomorphism from 𝛬 𝑇   onto a full subsemigroup of  𝑇𝐸𝛬(𝑇 )  whose kernel equals 

𝜇, with semilattice of idempotents of 𝑇𝐸𝛬(𝑇 ) isomorphic to 𝐸𝛬(𝑇 ). 

Proof: The straightforward definition clearly makes 𝜇 an equivalence.  To show compatibility of 𝜇 with the 

operations on 𝛬 𝑇  , let (𝜆1, ƛ1),  𝜆2, ƛ2 ∈ 𝜇  

 ⇒  𝜗𝜆1
= 𝜗ƛ1

, 𝛶𝜆1
= 𝛶ƛ1

,  𝜗𝜆2
= 𝜗ƛ2

, 𝛶𝜆2
= 𝛶ƛ2

 

⇒  𝜗𝜆1
𝜗𝜆2

= 𝜗ƛ1
𝜗ƛ2

  and    𝛶𝜆1
𝛶𝜆2

= 𝛶ƛ1
𝛶ƛ2

 

From (iii) above, we have  𝜗𝜆1𝜆2
= 𝜗ƛ1ƛ2

  and    𝛶𝜆1𝜆2
= 𝛶ƛ1ƛ2

 

⇒  (𝜆1𝜆2 , ƛ1ƛ2)  ∈ 𝜇. Thus, 𝜇 is a congruence. 

Furthermore, let 𝜆′ , ƛ′ ∈ 𝐸𝛬 𝑇   with   𝜆′𝜇ƛ′  

⇒ 𝜗𝜆′ = 𝜗ƛ′  and  𝛶𝜆′ = 𝛶ƛ′  

⇒   𝜆′  =  ƛ′    and evidently,  𝜆′= ƛ′ . Therefore, 𝜇 is idempotent separating.  

Now, let (𝜆, ƛ) ∈ 𝜇. This implies that  𝜗𝜆 = 𝜗ƛ and  𝛶𝜆 = 𝛶ƛ 

⇒   𝜆† =  ƛ†    and    𝜆∗ =  ƛ∗  

⇒  𝜆† = ƛ†    and   𝜆∗ = ƛ∗  so that  𝜆ℛ∗ƛ  and  𝜆ℒ∗ƛ  

and therefore  𝜆ℋ∗ƛ . Hence  𝜇 ∈ ℋ∗. 

Suppose 𝜏 is a congruence on 𝛬 𝑇   with 𝜇 ∈ ℋ∗ and suppose  𝜆1, ƛ1 ∈ 𝜏. 

Then  ∀𝜆′ ∈  𝜆†   and  ∀𝜆′′ ∈  𝜆∗ ,    𝜆′𝜆1, 𝜆′ƛ1 ∈ 𝜏  and    𝜆1𝜆′′, ƛ1𝜆′′ ∈ 𝜏   

⇒  𝜆′𝜆1ℋ
∗𝜆′ƛ1    and    𝜆1𝜆′′ℋ

∗ ƛ1𝜆′′ 

That is  (𝜆′𝜆1)∗ = (𝜆′ƛ1)∗  and   (𝜆1𝜆
′′ )† =  (ƛ1𝜆′′)

†  

⇒   ∀𝜆′ ∈  𝜆† ,   𝜆′𝜗𝜆1
= 𝜆′𝜗ƛ1

  and  ∀𝜆′′ ∈  𝜆∗ ,   𝜆′′𝛶𝜆1
= 𝜆′′𝛶ƛ1

   

⇒   𝜆1, ƛ1 ∈ 𝜇. So that,   𝜏 ⊆ 𝜇. 

Define a map 𝜉: 𝛬 𝑇  → 𝑇𝐸𝛬(𝑇 )  by  𝜆𝜉 = 𝜗𝜆  and suppose 𝜆, ƛ ∈ 𝛬 𝑇  . 

 𝑑𝑜𝑚 𝜗𝜆𝜗ƛ = (𝑖𝑚 𝜗𝜆 ∩ 𝑑𝑜𝑚 𝜗ƛ)𝜗𝜆
−1   (Howie 1995, pg 148) 
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Where 𝜗𝜆 :   𝜆† →  𝜆∗ ,    𝜗ƛ:   ƛ† →  ƛ∗ . So that 𝑑𝑜𝑚 𝜗𝜆𝜗ƛ = ( 𝜆∗ ∩  ƛ† )𝜗𝜆
−1   

Every type 𝐴 semigroup 𝑆 with semilattice 𝐸 is characterized by 𝑒𝑆1 ∩ 𝑎𝑆1 = 𝑒𝑎𝑆1 and 𝑆1𝑒 ∩  𝑆1𝑎 =  𝑆1𝑎𝑒  

∀𝑎 ∈ 𝑆,  ∀𝑒 ∈ 𝐸.  ( Fountain 1979). 

Therefore,  𝑑𝑜𝑚 𝜗𝜆𝜗ƛ =  𝜆∗ƛ† 𝜗𝜆
−1  and since 𝜗𝜆  and 𝛶𝜆  are mutually inverse isomorphisms 

 𝑑𝑜𝑚 𝜗𝜆𝜗ƛ =  𝜆∗ƛ† 𝛶𝜆 =  (𝜆∗ƛ†)𝛶𝜆   =  (𝜆𝜆∗ƛ†)† =  (𝜆ƛ†)† =  (𝜆ƛ)† = 𝑑𝑜𝑚 𝜗𝜆ƛ 

For  𝜆′ ∈   𝜆ƛ † ,  𝜆′𝜗𝜆𝜗ƛ = (𝜆′𝜆)∗𝜗ƛ =  [ 𝜆′𝜆 ∗ƛ]∗ =  𝜆′𝜆ƛ ∗ = 𝜆′𝜗𝜆ƛ 

Hence,   𝜗𝜆𝜗ƛ = 𝜗𝜆ƛ. So that,  𝜆ƛ𝜉 = 𝜆𝜉ƛ𝜉  and thus,𝜉 is a homomorphism. 

For each ′ ∈ 𝐸𝛬(𝑇 ) ,  𝜗𝜆′ ∙ 𝜗𝜆′ = 𝜗𝜆′  and (𝜆′)† = (𝜆′)∗ = 𝜆′ so that 𝜗𝜆′ :  𝜆′  →  𝜆′  .  For 𝜆 ∈  𝜆′  , 𝜆𝜗𝜆′ = 𝜆𝜆′ = 𝜆 . 

Thus, the idempotents of 𝑇𝐸𝛬(𝑇 ) have the form 1 𝜆′   - the identical map of  𝜆′   onto itself,   𝜆′ ∈ 𝐸𝛬(𝑇 ). 

Thus, the one – one translation 𝜆′ ↦ 1 𝜆′   is an isomorphism since 1 𝜆′ 𝜆′′  = 𝜗𝜆′ 𝜆′′ = 𝜗𝜆′ 𝜗𝜆′′ = 1 𝜆′  1 𝜆′′  . That is, 

𝐸𝛬(𝑇 ) is isomorphic to the semilattice of idempotents of 𝑇𝐸𝛬(𝑇 ) . 

Moreover, 𝜆′𝜉 = 𝜗𝜆′ = 1 𝜆′   and therefore, the 𝑖𝑚 𝜉 is a full subsemigroup of 𝑇𝐸𝛬(𝑇 ) . 

Kernel of 𝜉 is given by  𝜉 𝑜 𝜉−1. For 𝜆, ƛ ∈ 𝛬 𝑇  , 

  [(𝜆, ƛ) ∈ 𝜇]  ⇔ [ 𝜗𝜆 = 𝜗ƛ and 𝛶𝜆 = 𝛶ƛ] ⇔ [ 𝜗𝜆 = 𝜗ƛ and  𝜗𝜆
−1 = 𝜗ƛ

−1] ⇔  [𝜗𝜆 = 𝜗ƛ] 

   ⇔ [𝜆𝜉 = ƛ𝜉]  ⇔  [ 𝜆, ƛ ∈  𝜉 𝑜 𝜉−1].   Thus, 𝑘𝑒𝑟 𝜉 = 𝜇. 

V. CONCLUSION 

         In this article, we married up the structure of proper type A semigroup constructed by Lawson(1986) with the 

structure maps of type A semigroup and we obtained an alternative structure of proper type A semigroup in line with 

Armstrong(1988) analysis of concordant semigroups. We obtained the representation of the left translational hull of 

the alternative proper type A semigroup using the Munn semigroup. Some other results associated proper type A 

semigroup were also obtained. 
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