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Abstract

Fountain(1979) obtained monoid embedding of type A semigroup into an inverse semigroup. In this piece of
work, we extend this result to translational hulls and, in effect, give a faithful representation of translational hull of
type A semigroup with some accompanying results.
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I. INTRODUCTION AND PRELIMINARIES

Let X be a set, and denote by Ty the set of all functions a: X — X. Ty is called the full transformation
semigroup on X with the operation of composition of functions. A homomorphism ¢: S — Ty is a representation
of the semigroup S. We say that ¢ is a faithful representation, if it is an embedding.

It is well known that the set of all partial one-one maps of any non-empty set X is an inverse semigroup and it is
called symmetric inverse semigroup usually denoted by Ty.

A. The *-Equivalences

Let S be a semigroup and a,b € S. (a,b) € L* if Vx,y € St, ax = ay if and if bx = by. R* is dual to £L* and
this definition of £* apply in dual manner to R*. The intersection of £* and R* is denoted by H*. The join of L~
and R*on S isthe equivalence D*. In general, Lo R* # R*o L* and neither equals D*. Basically, aD*b if and
only if there exists elements x;,x,,x3,...,x, Iin S such that al*x;R*x,L %3 ... x,_1L"x,R*b. D € D* and
H S H* If S isregular,then £L=L" and R = R".
Let S be a semigroup and I an ideal of S. Then I is called *-ideal if £; < Tand R; < I forall a € I. The smallest
*-ideal containing a is the principal *-ideal generated by a and is denoted by 7*(a). For a,b € S, a7*b if and only
if 7*(a) = 7*(b). The J*-class containing the element a € S is denoted by 7. £L* is a right congruence and R* is a
left congruence.
A semigroup is called left(right) abundant if each R*- (L*-) class contains an idempotent and abundant if it is
both left and right abundant.
A semigroup S is said to be superabundant if each H *-class contains an idempotent. If the idempotents of a left
(right) abundant semigroup form a semilattice, it is called left(right) adequate. It is called adequate if it is both
left and right adequate.
In an adequate semigroup, the idempotents in each L£*-class and each R*-class are unique. If S is adequate, and a is
an element of S, then a*(a) will denote the unique idempotent in the L*-(R*-) class of a .
A left(right) adequate semigroup S is called left(right) type A if ae = (ae)Ta[ea = a(ea)*] for all a € S and all
idempotents e € S. An adequate semigroup is called type A if it is both left and right typeA.
Fountain (1979) characterised a type A semigroup in terms of certain embeddings into an inverse semigroup. In
particular, we have the following:
Theorem 1.2 (Fountain1979): Let S be an adequate semigroup, then the following conditions are equivalent:

i S is atype A semigroup

ii. Va € Sand Ve € E(S), eS' naS! = eaS' and S'e n Sla = Slae.

iii. there are inverse semigroups S;,S,, and embeddings ¢,:S - S;, ¢,:S = S,, such that ¢,;a* =

(10)* = (p1a) 1 (¢p10), prat = (p0)' = (p10) (1) 7"

The embedding in (iii) of the above theorem will be useful in our study here. Meanwhile, we outline more properties
of type A semigroup below.

If S is an adequate semigroup with semilattice E of idempotents, then Va, b € S, if aL*b then L} = £ and since a*
is the unique idempotent in L, a* = b*.
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Conversely, if a* = b* then a*L*b* and we have aLl*a*L*b*L*b. That is, aL*b.

Hence, aL*b ifand only if a* = b* (Va,b € S). Dually, (Va,b € S) aR*b if and only if a* = bT.

al*a* = abL*a’b and therefore (ab)* = (a*b)*. bR*b' = abR*ab' and therefore (ab)t = (abh)'.

It is therefore obvious that for e € E, (ae)* = a*e and (ea)’ = ea'. (ab)* and b* are idempotents. Therefore,
(ab)*b* = [(ab)*b*]* = (abb*)* = (ab)*. Thus, b*(ab)* = (ab)*b* = (ab)”

Therefore, (ab)* < b*, where < is the usual ordering on E. Similarly, (ab)ta’ = af(ab)’ = [af(ab)T]t =
(atab)t = (ab)'. Therefore, (ab)t < at.

Furthermore
i. (ath)t = a'b’ = bfal V. a(ab™)* = (abMHta {a(ab?)* = aa*bt =
ii. (ab*)* = a’b* = b*a* ab® = (abMTa (left typed)}
iii. (ab™)* = a*bt =bta* {a*b' € E since E Vi. a't = af
is a semilattice, so that (ab®)* = (a*b")* = vii. a'b = b(ab)* {a’b = b(a*b)* (right
asbt) typed) = b(ab)*}
iv. (a’b)t = a*bt = bTa” viii. (@)t =a

iX. (ah)* =af

B. The Translational Hull of a Semigroup

A map 4 from a semigroup S to itself is a left translation of S if for all elements a,b € S, A(ab) = (Aa)b.
A map p from a semigroup S to itself is a right translation of S if (ab)p = a(bp) for all elements a,b € S. A
left translation A and a right translation p are linked if a(1b) = (ap)b for all a,b € S. The set of all linked pairs
(4, p) of left and right translations is called the translational hull of S and it is denoted by £2(S). We denote the
set of all the idempotents of 2(S) by E,(5). The set of the left translations of S is denoted by A(S) and the set of the
right translations of S is denoted by P(S). £2(S) is a subsemigroup of the direct product A(S) x P(S). For
(A, p)(A, p") € 02(S) , the multiplication is given by (4, p)(1',p") = (A1, pp") where A1’ denotes the composition
of the left maps A and A’ (that is, first A" and then 1) and pp’ denotes the composition of the right maps p and p’ (that
is, first p and then p'). For each a in S, there is a linked pair (1., p,) within 2(S) defined by 1,x = ax and xp, =
xa, and called the inner part of 2(S) and for all a, b € S, the following is obvious (A4, p,)(As, P5) = (Aap) Pap)-
a - (A4, pg) is amap of S into 2(S) is denoted by M. 115(S) = {(Ae, po) | a € S, Aex = ax, xp, = xa,Vx € S}
Theorem 1.4 (Ault 1972): Translational hull of an inverse semigroup is an inverse semigroup.
For (4, p) € 2(S), the inverse (A, p)~! is denoted by (171, p~1) and satisfies the property -

Alx=(xtp)t, and xp~! =(Ax" 1) vxeS

Lemma 1.5: Let S be a type A semigroup. A, A" (p,p’) are left (right) translations of S whose restrictions to the
set of idempotents of S are equal, then 21 = 1" (p = p).
If 2(S) is adequate, and (4, p) is an element of 2(S), then (1*, p*) denotes the unique idempotent in the L£*- class
of (1, p), and (AT, p™) denotes the unique idempotent in the R*- class of (1, p).
Fore € E(S), Afe = (Ae)f; Qe = (Ae)*; ept = (ep)t; ep* = (ep)*
At 4%, pt, p* satisfy the following properties —
Fora€ s, Ata=(a'p)fa; 1a=Qa")a; ap’=a(a’p)'; ap* = a(la*)*

We notice from the definition that Ate, A*e, ep’ and ep* are idempotents. We also note the following:
i. Ate = (ep)fe  from the definition
=e(ep)t  idempotents commute
=e(e’p)t
=ep' by definition.

ii. e = (de)’e by definition
=e(le)* commutativity of idempotents
= ep” by definition.
In particular therefore, ATht and a*p' are idempotent of S.

Theorem 1.6: (Fountain & Lawson 1985): The translational hull of a type A semigroup is typeA.

In theorem 1.2 above, Fountain(1979) obtained an embedding of type A semigroup into an inverse semigroup. In the
next section, this embedding will be extended to that of the translational hulls.
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I1. REPRESENTATION OF TRANSLATIONAL HULL OF TYPE A SEMIGROUP

We will denote the set of left translations by A(S) and right translations by I'(S). The left and the right translations
will be assumed to be linked.

Welet I:a — Ay, and I'(S) = {1,:a € S}. We also let 4s: a - p, and A(S) = {p,:a € S}.

Let us consider the following theorem.

Theorem 2.1: Given a typeA monoid S, there are inverse semigroups S;, S,, and embeddings ¢;:S — S;, ¢,:S —
S,, such that ¢,a* = (¢p1a)* = (p1a) (¢ya), ¢rat = (p,a)" = (p1a)(¢p;a)!, and there are also embeddings
PY1: A(S) = A(S1), Y,:P(S) = P(S,) such that each of the diagrams

S 1 > S, S %2 > S,

I I, Ag 4s,
Y Yo
A(S) > A(Sy) P(S) > P(S2)
Q) (i0)
commutes and ¥;(A) = [hs D] = WD i@, 200" = W2 (0] = Y2(0)[Y2(0)] ™

The theorem is proved through the following propositions and corollaries. Diagram (i) is dual to diagram (ii) and
therefore every fact established about diagram (i) applies in dual manner to diagram (ii).

Proposition 2.2: Given a typeA monoid S, there are inverse semigroups S;,S,, and embeddings ¢;:S — S;,
(IEZ:S;:_) Sy, suchthat ¢1a* = (¢10)" = (p1a) ' (P10), p.a’ = (P20)" = (p,a)(p,0) 7"
roof:
Foreacha € S, (a*,a) € L* since S is abundant.
Define amap n,: a*S — aS defined by n,(a*s) = as, s € S.
Leta*s =a*s” s,s €8.
n.(a*s") = as’ = aa*s  [a* isaright identity to a]
= aa’s’ = as =n,(a’s"”). Thus,n, is well defined.
Let n,(a*s;) =n.(a*sy), s1,5, €S. This implies that as; = as,. Since (a*,a) € L*, as; = as, implies that
a’s; = a’s,. Thus, n, is one — one and therefore, a member of the symmetric inverse semigroup Ts on S.
So, T¢ becomes the S;.
1, 1S as well surjective since Vas € aS, as = aa*s = n,(a*s), which implies that every element as € a$ has a pre
—image a*s € a*S.
Thus, n, is a bijection.
Hence, Va € S, there is a bijection n,: a*S — aS defined by n,(a*s) = as, (s € S) which maps a* to a.

Now, define a map ¢p1: S - S; by ¢1(a) =n,, (@ €S5)

For a,b € S, the domain of n,n, isn;*(b*S N aS)

nz1(b*S N aS) = nz1(b*aS) [since for a type A semigroup S, eS N aS = eaS, (Va € S)(Ve € E)].

=ng'[a(b*a)*S] = ' na[(b*@)*S] = (b*a)"S.

Now, since baLl*(ba)* = (b*a)*, dom(ny,) = (b*a)*S = dom(nyny).

For (b*a)*s € (b*a)*S = dom(np,)

Mpa [(b*@)*s] = bas = bb*as = n,b*as
= npya(b*a)*s since S is atype A semigroup
=1NpNa[(b"a)’s]

ThUS, Nba = NpNa Va,b ES.

Hence, Va,b € S, ¢p1ba =1y, = npn, = P1bP1a.

Therefore, ¢, is a homomorphism.
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Let p1a = ¢, b. This implies that n, = n,. Thatis, domn, = domn, = eS (say).
Then, a = n,(e) = n,(e) = b.
Thus, ¢4 is one — one and hence an embedding.
We show that ¢ a* = (¢p1a)*.
Leta,x,y € S. [prap1x = Pprap,y] & [¢p1(ax) = ¢d1(ay)] since ¢, is a homomorphism
& [ax = ay] since ¢, is one —one
& [a*x = a*y] since (a*,a) € L*
e [pi@x)=¢1(@y)] e [$1(a)Pi(x) = p1(@)P1 (V)]
< ¢1(a)L 1 (a).
Since ¢, is a homomorphism, ¢;(a*) is an idempotent in Is and since idempotent in L, , must be unique,

$1(a”) = ($r1a)".

We show next that if (a, b) € L*(S), then [¢;(a), p1(b)] € L*[¢p1(S)].
Let (a,b) € L*(S). This implies that a* = b*, and therefore ¢,a* = ¢, b*.
$1(@)L(¢1a)" = p1a” and ¢pra” = ¢1b" L¢P, b.

Hence, ¢,(a)L*¢,(b) by transitivity of L*.

Now, we establish that ¢, a* = (¢,a)* = (p1a) " (p;1a), (Va € S)
Since S; is regular, L(S;) = L*(S1).
Sothatfora € S, ¢pa € Sy, (p10)* = (p1a) ' (¢1a) € Ly, since the idempotent must be unique.

Therefore given a typeA monoid S, there is an inverse semigroup S; and an embedding ¢4:S — S; such that

pra” = (p10)" = (p1a)"(¢10).

R* is dual to L*. Thus, given a typeA monoid S, there is an inverse semigroup S, and an embedding ¢,:S — S,
such that ¢pa’ = (¢2a)" = (¢2a)(po0) ™"

Corollary 2.3: If (a, b) € R*(S), then [¢p; (a), p1(b)] € R*[¢1(S)]

Definition: Let H be a subset of a semigroup S. The upper saturation Hw of H in S is defined by: Hw =
{se€eS:(3h e H) h < s}.

Proposition 2.4: ¢, preserves subsemigroups and upper saturations

Proof:

Let H be a subsemigroup of (S,7) and a,b € H. Then a-b € H, and since ¢,(a), p1(b) € ¢1(H), then with
¢,(a-b) = ¢p,a-¢pb € p1H, ¢p,H is a subsemigroup of S;.

Let Hw be the upper saturation of H and assuming s € Hw. This implies that 3h € H such that h = se [e € E(S)].
Therefore ¢ h = ¢p1se = p1spe. ¢,h € p1H, consequently ¢p1h < ¢;s. Thus, ¢1s € p;Hw and ¢ Hw is the
upper saturation of ¢ H in ¢4 S.

Lemma 2.5: For an inverse semigroup S;, I':a » A, is an isomorphism from S; onto I'( S;).
Proof:

Fora,b € S;, I'(ab) = Ay = A A, = T'(a)T' (b). Therefore, I' is a homomorphism.

Let /‘la == Ab'

a=aala=,a'a =A,ata=bata<bh.
Similarly, b < a, and therefore a = b.
Thus, I is injective. It is also an onto map since VA, € I'(S;), 3a € S witha » A,.

Lemma 2.6: For a typeA semigroup S, I':a = A, is an isomorphism from S onto I"(S).
Fora,b € S;, I'(ab) = Ay, = A A, = T'(@)T(b). Therefore, I' is a homomorphism.
a=aa*=,a" = Aya* = ba* < b. Similarly, b < qa, and therefore a = b.

Thus, I is injective. It is also an onto map since VA, € I'(S), 3a € S witha ~ A4,.

Corollary 2.7: For an inverse semigroup S;, 4g,:a = p, is an isomorphism from S; onto A(S,). Similarly, for a
typeA semigroup S, 4g: a - p, is an isomorphism from S onto A(S).
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Proposition 2.8: Given a typeA monoid S, there are inverse semigroups S;, S,, and embeddings ;: A(S) = A(Sy),

V21 P(S) = P(S2) such that Y1) = D] = YLD i (D),
IF/)Jz(;}T) = [2()]" = Y2 (P [W2(P] 7
roof:

Let us denote the symmetric inverse semigroup on A(S) by Tsy. Foreach A € A(S), we define a map 6;:
AA(S) = AA(S) by 6, (A" A1) = A4, A € A(S).

We show that 8, is one-one.

Let 0, (A*A1) = 6, (A" A), A4, A, € A(S). This implies that A1, = A4,.
Since AL*A*, A =4, & A4 =11,

Thus, 8, is one-one and 6; € T (s). So that we take A(S;) to be T (s

Evidently, 6, is surjective since VA1, € AA(S), Ay = AX*A; = 6,1 A,. Implying that every
AAy € AA(S) has a pre-image 1*A; in A*A(S).

Hence, VA € A(S), there is a bijection 8,: A*A(S) — AA(S) defined by 6; (A*4;) = 144, A; € A(S), which maps 1*
to A.

Now, define the map y4: A(S) = A(S;) by (1) =6,.
We show that 1, is a homomorphism.
For 4,1 € A(S), the domain of 6,6, is 8;1[AA(S) N I*A(S)]
This implies that dom 8,60, = 81 [I*AA(S)] since for a type A semigroup, eS N aS = eaS$, (Va € S) (3e € E)
7L [I"2A(S)] = 67 AU ) A(S)] = 6716, [(1" )" A(S)] = (") A(S)
Since IAL* (L) = (I*A)*, dom 8;; = (I*A)*A(S).
ThUS, dom 8[8/1 = dom QM.
Moreover, for (I*2)*A, € dom 6,
O[T 4] = A4 = 1A = 0[] = O, [AT )" A1] = 6,6, [(I" )" A4 ]
Hence, 6,6, = 6,;.
Therefore, V4,1 € A(S), Y, (I1) = 6, = 6,0, = P, (DY, (D)
Thus, ¥, is a homomorphism.

Let (D) = Y1 (1). Then, 6, = 6;. Thatis, dom 6, = dom 6, = A" A(S) (say).
Therefore, 1 = ,(1) = 6,(1) = L.
Thus, v, is injective and hence an embedding.

L(A(S;)) = L*(A(Sy)) since A(S;) is regular. Therefore, for each 1, (1) € A(S;), [Wi (D] = [W (D] YD)
€ Ly, ) = L7y, ) since the idempotents are unique.
Now, we just need to show that ; (1*) = [Y1 (D)]*
For 4,4,2" € A(S), let (D1 (A) = P D1 (A) & (A1) = Pp;(A1") & 1 =1

SAUL =11 P (A)P1(4) =1 (AP (1)
So that ¥, () L*P1 (A9).
Since ¥, is a homomorphism and A* an idempotent in A(S), 1, (1) is an idempotent in A(S;) and since idempotent
in Ly, 1y must be unique, ¥, (17) = [ (D)]"
By dual argument, it follows that 1,:P(S) - P(S,) is an embedding such that ,(p") = [Y,(p)]" =
Y20 [Y2(p)] 7!
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Proposition 2.9: Each of the diagrams

S 1 — S S > S,

I} I-"S‘1 AS AS1

As)—L— a5 P(s)—L2— p(sy)

Q) (i)

commutes.
Proof:
We defined the map ¢,:S — S; by ¢, (a) = n,. The rest are —
Igia—> Ay, Iy i ng— Ay, and Py: 4, - 6,
Thus, ¥, l3(@) = 6, and [, ¢y (a) = 4y,
So, foranyx € S, 6, (x) = A,(x) = ax
and 2, (x) =ax = 4,(x) =6, (x)
Therefore, 15 = I, ¢ . Hence, diagram (i) commutes and dually, diagram (i) commutes. Here is the end of the
proof of theorem 2.1

Proposition 2.10: ¥4, z,bl_l is an idempotent-separating congruence on I'(S)
Proof:

Yo = {(asdy) € T(S) XT(S): 6, = 6,,}
Y101, "1 is clearly an equivalence.
Now, let (Aq, 25), (X0, A'5) € Y109y ™"
This implies that 6, = 6,,, 6, =6,
61,27, = V1(AaA'e) = P1(A)Y1(Ae) = 63,01, = 603,60, = Y1(Ap)P1(A3)
=1 (ﬂb/fb) = 9/1b/1'b
01,01, = V1 (A)P1(Aa) =¥1(AAa) = 63,1,
and
63,62, = V1)1 (X)) = Y1 (ApA'}) = 6,2,
Ora = Ony2r, SINCE O, =6,,, 6, =6y,
Therefore, 1, 3, " is a congruence.
Further, since 1, and I are one-one, 6; = 6;, = a = b. So that
Y1017 = {(Aes ) € T(S) XT'(S): a = b}
Now, let (4, 4) € YN Eys) X Ey(s)- Then, e = f and therefore 4, = Af
Thus, 1, ;! is idempotent-seperating.
Y, is equally idempotent-seperating since if A,,A¢ € Ep(s) such that ¥;(4,) = ¥1(4f).
Then, 9,13=9,1f=> e=f =1 =4.

A semigroup homomorphism p: S — T is said to be a good homomorphism if for all a,b € S, a L*(S)b implies
ap L*(T)bp and that a R*(S)b implies ap R*(T)bp.

Proposition 2.11: 1, is a good homomorphism

Proof:

Suppose 4,4 € I'(S) such that (A,4) € L*[['(S)]. Then AL*A* L*X , which implies that the maps 8;: 1*A(S) -
AA(S) and 6;: 1*A(S) = RA(S) have the same domain.

We note that 8, and 6, are elements of the symmetric inverse semigroup sy on A(S). The compositions 0,710,
and 6,16, are identity maps on A*A(S)

We note that 8, "6 is read as 8, then 6, 7. [6,76) = Lypm s, ]
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Therefore, 0,710, = Lyeas) = 6,716,

Thus, 6, =6,6,"'6, =6,0,76;

And 0, = 6,0,716, = 6,6,7'6,

Therefore, 6, L[Ty(s)]0;.

Since T sy is an oversemigroup of I'(S;), 6,L*[I'(S1)]6;. Thatis 1 (D)L [I'(S1) ], (R).

Recall that a semigroup homomorphism y:S — T is called a *-homomorphism if for any elements a,b € S,
aLl*(S)b ifand only if Y(a)L*(T)Y(b) [and aR*(S)b ifand only if Y(a)R*(T)Y(b)]

A semigroup homomorphism ¢: S — T is said to be a *-homomorphism if forall a,b € S, a L*(S)b if and only
if ap L*(T)bp and a R*(S)b ifand only if ap R*(T)be.
Proposition 2.12: ;: I'(S) —» I'(S;) is a *-homomorphism
Proof:
One half of this proof has been answered by the fact that v, is good. That is AL*[I'(S)]A = Y, (D)L [T (S (R)
[VA, X €T (S)]
Conversely, let o, (D) L*[T(S)]p1 (R)
We wish to show that AL*[I"'(S)]A.
We know that for A, 2 € I'(S), A*L*[I'(S)]A and X"L*[I'(S)]X, and since v, is good, we have

YL AVLTSDIP1 (D) and W)L [T (S (R)
So that our assumption — o, (D)L*[I' (ST, () - yields 1, (A)L*[T'(S)]yp, (X)) by transitivity.

P, (A2*) and ¥, (X") are idempotents and are right identities to each other by their £L*-relationship.
So, we have PP R) =9, (A7) and P, W)Y, (A7) = P ()
That is P (A7) = P (2D and P, AA) =P ()

A& and A°A* are idempotents and since 1, is idempotent-seperating,

AR =2 and X"A* =4&" sothat A* = A" implying that A*L*[I"'(S)]1"

and therefore,  AL*[C(S)]A* L [T (X" L[ (S)]r

so that, AL (S)]A.
Proposition 2.13: If § is a congruence on I'(S), then 1, (&) is a congruence on I'(S;)
Proof:

Suppose § is a left compatible relation on I'(S) and let (8,,6;) € ¥1(6) and 6;. € I'(S;).
Since v, is a bijection, ¥, '(8;) = A. So that (1,X) €5 and A'€I'(S), and since & is left compatible,
(A'A4, A7) € 8. So that
[W1(A D), Pp1(AR)] = [Y1 )P (D), Y1 (WDPp1(R)] = (6262, 6265) € ¥1(5).
By similar argument, right compatibility follows.
Now, let § be an equivalence relation on I'(S) and assuming 6, € I'(S;). Then, again, 1/)1‘1(9,1) =1€r(S) and
since & is reflexive, (4,1) € 6.
Therefore, ;1 (1, 4) = [Y1 (1), Y1 (AD)] = (8,5, 8,) € Y,(5). Hence, 1(6) is reflexive.
Suppose (6;,6;) € ¥1(8). Then, ¥, 1(6;,6,) = [, 2 (6,), ¥, ' (B,)] €6 and since & is symmetric,
[V 716, ¥ (6] €S
Therefore, (6;, 6;) € Y1(8). Thus, 4(6) is symmetric.
Now, let (6;,6;) € Y1(8) and (6;,6;) € P1(6). This implies that (1,A) €d and (A,%) €5 and since & is
transitive, (4,%) € 3. So that, 1 (4, %) = (6;,6;) € ¥,(8) and therefore 1, () is transitive.
Definition:
- Anideal F of a semilattice E is called a P-ideal if the intersection of F with any other principal ideal of the
semigroup is a principal ideal.
- Asemigroup homomorphism : S — T is called a P-homomorphism if ((Es)) is a P-ideal of E;.

Theorem 2.14: If ¢, and I5, are P-homomorphisms, then so is the composition ) [5.

Proof:

Note: To avoid use of too many subscripts in this proof, we replace ¢, with ¢.

Now, suppose 6, € E,s,, with the assumption that ¢ and I3, are P-homomorphisms. We wish to show that
(I5,0(Es)) N Eys,)0, isaprincipal ideal of Ey s, ).

With 6, € Ej(s,, and since I, is a P-homomorphism, 36, € Ey s, such that
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([:gl (Egl)) n EA(Sl)ge = EA(Sl)ge’ ............................. (l)
Suppose also ¢ (f) € Eg, such that 6, < I, ¢ (f).

Then since ¢ is a P-homomorphism, 3¢ (f") € E;, such that
(P(Es)) NEg d(f) = Es,(f)eevvvvviieie (ii)
Suppose again that g € E such that ¢ (f") < ¢(g).
1}1¢(g) E EA(Sl)' therEfore gel—gl(p(g) = 1}1(1)(9)98 E EA(Sl)ee
and 0,15, ¢(g) € (I, ¢ (Es))
Thus, 8.15,¢(9) € (I5,¢(Es)) N Eys;)e
We note here that E;s,,0. I, $(g) is a principal ideal of E s,
Now, we wish to show that
(I5,9(Es)) N Epgsy0e = EpcsOels, d(9)
Assuming 6, € Esy0.15,$(g)
Then, 8, < 6,13, ¢(9) € (I5,(Es)) N Eycs,y0e
Therefore' EA(S1)991—;'1¢(9) c (1—:91¢(ES)) n EA(Sl)ge

Conversely,
VO, € (I3, ¢(Es)) N Eyy6. , Wearesure 8, € Eys,)0,
Sothat 8,, <6, ......eevevininnnn (iii)
and we are sure 6, € (I3, ¢ (Es))
So that with g' € Eg, 6,, € Gop(g) oo, (@iv)

And therefore,
On € (I3, 0(Es)) N Exsy )0 S (I, (Es,)) 0 Epes;y0e = Engsy)Ber [from (i)]
Thus, 6,, <0, <5 d(f).eevvnneiinnnn.n. v)
And from (iv) and (v), and since 8,, is an idempotent
On- O < I5,0(f).I5,6(9")
Thatis 6,, < I d(HP(G) -oooooeeeiiiii, (vi)
d(NP9) = d@)P() € Es, p(f) and d()P(g") < ¢(g") € (P(Es))
So that p(f)p(g") € (B(Es)) N Es, ¢(f) = Es,d(f")  [from(ii)]
Therefore, ¢p(f)p(g") < ¢(f) < ¢p(g) [from the definition of g above]
0 < I5,0()P(g") < I3, ¢(g) and taking this to (iii), we have
On = 0.0 < 0.15,0(9)
Therefore, 6,, € Es 6,I5,¢(g)
Hence, (I5,¢(Es)) N Enspbe S Enspybels, d(9)
Sothat (5, ¢(Es)) N ExspyBe = Eacspbels, ¢(9)
Now, we have shown that the intersection of (I3, ¢(Es)) with any principal ideal E, s, 6, of E, s, is a principal
ideal. Thus, (I3, ¢(Es)) is a principal ideal of E, s,y and therefore the composition 5, ¢ is a P-homomorphism.
Finally, commutativity of our diagram guarantees that 1, I5 is equally a P-homomorphism.

111. CONCLUSION

In this piece of work, we looked into monoid embedding of type A semigroup into an inverse semigroup
obtained by Fountain (1979). We extend this result to translational hulls and, in effect, gave a faithful representation
of translational hull of type A semigroup. We showed that the embedding is structure — preserving. A couple of
accompanying results were also obtained.
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