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Abstract 

              In  this  project we  are  going  to  explore  the “Countable  Topological  Spaces”  in  greater  details. We  

shall  try  to  understand  how  these  axioms  are  affected  to  spaces,  by  taking  open  and  closed  sets.  A  clear   

idea  of  the  separation  properties  typical  of  the  spaces  we  are  studying  helps  us  understand  what  kind  of   

proof  techniques  to  use.  When  working  with  T1- Spaces,  we  use  that  points  are  closed.  In  particular,  the  

inverse  image  of  (via  a  continuous  function)  of  a  points  in  a  T1- Spaces  is  a  closed  sets.  Finally  we  

conclude  that  an  Axiom  of  Countability  is  a  properties  of  certain  mathematical  objects  that  requires  the  

existence  of  a  countable  set  with  certain  properties,  while  without  it  such  sets  might  not  exists.                 
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Section 1.1 First and Second Countable Topological Spaces: 

 

Definition 1.1.1 

                  A  topological  space  (X, 𝜏)  is  said  to  have  a  countable  local  basis  (or  countable  basis)  at  a  

point  x ∈ X  if  there  exists  a  countable  collection  say  𝔅x  of  open  sets  containing  x  such  that  for  each  open  

set  U containing  x  there  exists  V ∈ 𝔅x  with  V ⊆ U. 

Definition 1.1.2 

                    A  topological  space  (X, 𝜏)  is  said  to  be  first  countable  or  said  to satisfy  the  first  countability  

axiom  if  for  each  x ∈ X  there  exists  a countable  local  base  at  x. 

 

Definition 1.1.3  

                    If  a  topological  space  (X, 𝜏)  has  a  countable  basis  B  then  we  say that  (X, 𝜏)  is  a  second  

countable  topological  spaces  or  it  satisfies  the second  countability  axiom. 

 

Definition 1.1.4  

                    A  topological  space  (X, 𝜏)  is  said  to  be  a  separable  topological space  if  there  exists  a  

countable  subset  say  A  of  X  such  that  A̅ = X. 

 

Definition 1.1.5  

                    A  topological  space  (X, 𝜏)  is  said  to  be  a  Lindelof  space  if  for any  collection  A  of  open  sets  

such  that  X = 𝐴𝐴∈𝐴 , there  exists  a  countable subcollection  say  B ⊆ A  such  that  X =  𝐵𝐵∈𝐵 .  That  is,  a  

topological  space (X, 𝜏)  is  said  to  be  a  Lindelof  space  if  and  only  if  every  open  cover  of  X has  a  

countable  subcover  for  X.  

 

Theorem 1.1.6 

                  If  (X, 𝜏)  is  a  second  countable  topological  space  then  (X, 𝜏)  is  a Lindelof  space. 

 

Proof.  

           Let  𝔅 = {B1,B2,B3,….}  be  a  countable  basis  for  (X, 𝜏)  and  A  be  an open  cover  for  X.  

               Assume  that,  X ≠ 𝜙,  A ≠ 𝜙,  for  each  A ∈ A  and B ≠ 𝜙,  for  each     B ∈ 𝔅.                              

              Let A ∈ A  and  x ∈ A.  

               Now  x ∈ A,  A  is  an  open  set then  there  exists  B ∈ 𝔅  such  that 

                                          x ∈ B ⊆  A.                      → (1) 

              For  each  n ∈ ℕ,  let  Fn = {A ∈ A : Bn ⊆  A}.   
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              ∴ Fn = 𝜙,  for  some  n ∈ ℕ.   

             ∴(1) ⟹  {n ∈ ℕ: Fn ≠ 𝜙 } is  a  nonempty  set.  

         Let  {n ∈ ℕ: Fn ≠ 𝜙 } = {n1,n2,….nk….}   

                 Take  Ank ∈ Fnk . 

                   ∴ Bnk ⊆  Ank ∈ A.  

                To  prove  that:    𝐴∞
𝑘=1 nk = X.  

           So,  let  x ∈ X  and  A  is  an  open cover  for  X  then  x ∈ A  for  some  A.                              

    Let x ∈ A,  B  is  a  basis  for  (X, 𝜏)  then  there  exists  k ∈ ℕ  such  that   x ∈ Bnk ⊆  A.   

       ∴ A ϵ Fnk. Also  Ank ∈ Fnk .  

     By  definition  of  Fnk,  Bnk ⊆  Ank .  

        Hence  x ∈ X  then  x ∈ Ank ,  for  some  k ∈ ℕ. 

               ∴  X ⊆   𝐴∞
𝑘=1 nk.   

     {Ank}
∞

k=1  is  a  countable  subcover  for  A.   

∴ Every  open  cover  A  of   X  has  a  countable subcover.  

         Hence  (X, 𝜏)  is  a  Lindelof  space.  

 

Theorem 1.1.7 

               Every  second  countable  topological  space  (X, 𝜏)  is  a  separable space. 

 

Proof.  

           

                  Given  that  (X, 𝜏)  is  a  second  countable  topological  space  then  there exists  a  countable  basis  say  

𝔅 = {B1,B2,….}  for  (X, 𝜏)  and  𝔅  is  a  countably  infinite  set.   

     For  some  n ∈ ℕ,  𝔅 = {B1,B2,…..Bn}  or  𝔅 ≠ 𝜙  or  𝔅  is  a  countably  infinite  set.   

     If   X ≠ 𝜙  then  𝔅 ≠ 𝜙.   

     If  for  some  k ϵ ℕ,  Bk =  𝜙,  then  𝔅1 = {B1,B2,…..Bk-1,Bk+1….. }  is  also  a  basis  for  (X, 𝜏).  
     Assume  that  each  Bn ≠ 𝜙  for  all  n. 

  Since  Bn ≠ 𝜙,  for  each  n ∈ ℕ,   

  Let  xn ∈ Bn and  A = {x1, x2, x3,…}  and  A  is  a  finite  set.  

  Now  to  prove  that:  A̅ = X.   

  Take  an  x ∈ X  and  an  open  set  U  containing  x. 

   Now  𝔅  is  a  basis  for  (X, 𝜏),  U  is  an  open  set  containing  x  then  there  exists  𝔅n ∈ B  such  that  x ∈ Bn  

and  Bn ⊆  U.  Also  xn ∈ Bn.   

                    ∴ xn ∈ U ∩ A.   

                      ⟹ U ∩ A ≠ 𝜙.   

      we  have  proved  that  U ∩ A ≠ 𝜙  for  each  open  set  U containing  x. 

       For   x ∈ X  and  x ∈ A̅  and  hence  A̅ = X.  

        ∴ (X, 𝜏)  has  a  countable  dense  subset. 

        ∴ (X, 𝜏)  is  a  separable  space. 

 

Section  1.2  Properties  of  First  Countable  Topological  Spaces: 

Theorem 1.2.1  

                 If  (X, 𝜏)  is  a  first  countable  topological  space  then  for  each  x ϵ X  there  exists  a  countable  local  

base  say  {Vn(x)}n=1    such  that   Vn+1(x)  ⊆  Vn(x). 

 

Proof: 

                       Let  x ∈ X.   

                 Now  (X, 𝜏)  is  a  first  countable  topological  space  then  there  exists  a  countable  local  base  say  

{Un}
∞

n=1  at  x. 

                Let  Vn(x) = U1 ∩ U2 ∩ …….∩ Un  then  {Vn(x)}∞
n=1  is  a  collection  of  open  sets  such  that                   

Vn+1(x) ⊆  Vn(x)  for  all  n ∈ ℕ.   

        It  is  enough  to  prove  that  {Vn(x)}∞
n=1  is  a local  base  at  x.  

        Let  V  be  an  open  set   containing  x.  

       Now  {Un}
∞

n=1  is  a  local  base  at  x  and  V  is  an  open  set  containing  x  then  there  exists  n0 ∈ N  such  

that  Un0 ⊆  V.   
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       By  definition  of  Vn(x)ʹs  we  have  Vn0(x) ⊆  Un0.  

      For  each  open  set  V  containing  x  then  there  exists  n0 ∈ N  such  that  Vn0(x) ⊆  V.   

     ∴ {Vn(x)}  is  a local  base  at  x  satisfying  Vn+1(x) ⊆  Vn(x)  for  all  n ∈ ℕ. 

           

Theorem 1.2.2 

                   Let  (X, 𝜏)  be  a  first  countable  topological  space  and  A  be  a nonempty  subset  of  X.  Then  for  

each  x ∈ X,  x ∈ A̅  if  and  only  if  there exists  a  sequence  {xn}n=1  in  A  such  that  xn → x  as  n → ∞. 

 

Proof.   

            

                       Let  us  assume  that  x ∈ A̅.  

           Now  (X, 𝜏)  is  a  first  countable topological  space  then  there  exists  a  countable  local  base  say             

𝔅 = {Vn}
∞

n=1  such  that  Vn+1 ⊆  Vn,  for  all  n ∈ ℕ.              

        Hence  x ∈ A  then  A ∩ Vn ≠ 𝜙,  for each  n ∈ N.   

          Let   xn ∈ A ∩ Vn. 

Claim: 

                   

                    xn → x as n → ∞ 

          Let  U  be  an  open  set  containing  x  then there  exists  n0 ∈ N  such  that  x ∈ Vn0 ⊆  U.   

         Hence   xn ∈ Vn ⊆  Vn0 ⊆  U  for  all n ≥ n0.   

         ie.,  xn ∈ U  for  all  n ≥ n0:   

        ∴ xn → x  as  n → ∞. 

           Conversely,  suppose  there  exists  a  sequence  {xn }
∞

n=1  in  A  such  that   xn → x.   

          Then  for  each  open  set  U  containing  x  there  exists  a  positive integer  n0  such  that  xn ∈ U  for  all        

n ≥ n0.  

          In  particular,  xn0 ∈ U ∩ A.  

          Hence for  each  open  set  U  containing  x,  U ∩ A ≠ 𝜙 

           ∴ x ∈ A̅.  (by  theorem 1.1.7) 

 

 Section  1.3  Regular  and  Normal  Topological  Spaces: 

Definition 1.3.1 

              A  topological  space  (X, 𝜏)  is  called  a  T1  space  if  for  each   x ∈ X, the  singleton  set  {x}  is  a  

closed  set  in  (X, 𝜏). 
 

Definition 1.3.2 

               A  T1-topological  space  (X, 𝜏)  is  called  a  regular  space  if  for  each x ∈ X  and  for  each  closed  

subset  A  of  X  with  x ∉ A,  there  exist  open  sets U, V  in  X  satisfying  the  following: 

                     (i) x ∈ U, A ⊆  V , (ii) U ∩ V = Ф. 

 

Definition 1.3.3 

                      A  topological  space  (X, 𝜏)  is  said  to  be  a  normal  space  if  and only  if  it  satisfies: 

                      (i) (X, 𝜏)  is  a  T1-space, 

                      (ii) A, B  closed  sets  in  X,  A ∩ B = Ф  implies  there  exist  open sets  U, V  in  X  such  that  A ⊆  
U,  B ⊆  V  and   U ∩ V = Ф. 

 

Theorem 1.3.4 

                     Every  metric  space  (X, d)  is  a  normal  space,  That  is  if  𝜏d  is  the topology  induced  by  the  

metric  then  the  topological  space  (X, 𝜏d)  is  a  normal  space. 

 

Proof. 

   

                Let  A, B  be  disjoint  closed  subsets  of  X.  

     Then  for  each  a ∈ A,  a ∉ B = B̅  implies  d(a, B) = inf{d(a; b) : b ∈ B} > 0.  

     If  ra = d(a, B) > 0  then  B(a, ra) ∩ B = ∅  (if  there  exists  b0 ∈ B  such  that  d(b0, a) < ra,  then 

  ra = d(a, B)  <  d(a, b0)  ≰ ra  a  contradiction). 



International Journal of Mathematics Trends and Technology (IJMTT) – Volume 62 Number 3 - October 2018 

ISSN: 2231 – 5373                                  http://www.ijmttjournal.org        Page 181 

     Similarly  for  each  b ∈ B  there exists  rb  >  0  such  that  B (b, rb) ∩ A = Ф.                            

       Let  U =  𝐵𝑎∈𝐴  (a,ra/3),  V =  𝐵 𝑏∈𝐵 (a, rb/3).  

     It  is  easy  to  prove  that  U ∩ V = ∅. 

     Hence  if  A, B  are  disjoint  closed  subsets  of  X  then  there  exist  open  sets  U, V  in  X  such  that  A ⊆ U,  

B ⊆ V  and  U ∩ V = ∅.  

      ⟹   (X, 𝜏d)  is  a  normal space.  

 

Theorem 1.3.5  

                  

                        A  T1-topological  space  (X, 𝜏)  is  regular  if  and  only  if  whenever  x is  a  point  of  X  and  U  is  

an  open  set  containing  x  then  there  exists  an  open  set  V  containing  x  such  that  V̅ ⊆  U. 

 

Proof. 

  

          Assume  that  (X, 𝜏)  is  a  regular  topological  space,  x ∈ X  and  U  is  an open  set  containing  x. 

       Now  x ∈ U  implies  x ∉ A = Uc = X\U,  the  complement of  the  open  set  U.   

      Now  A  is  a  closed  set  and  x ∉ A.  

      Hence  X  is  a  regular space  then  there  exist  open  sets  V  and  W  of  X  such  that  x ∈ V,  A = Uc ⊆  W  

and   V ∩ W = ∅.  

     Now  V ∩ W = ∅  then  V ⊆  Wc ⊆  U  (we have  Uc ⊆  W),  V ⊆  Wc  implies  V̅ ⊆  W̅c = Wc   

       ⟹ V̅ ⊆  U.  

     Hence  for  x ∈ X  and  for  each  open  set  U  containing  x,  there  exists  an  open  set  V  containing  x  such  

that  V̅ ⊆  U. 

         Now   let  us  assume  that  the  above  statement  is  satisfied.  

       Our  aim  to  prove  that  (X, 𝜏)  is  a  regular  space. 

       Take  a  closed  set  A  of  X  and a  point  x ∈ X\A.  

        Now  A  is  a  closed  subset  of  X  implies  U = X\A  is  an open  set  containing  x.  

        Hence  by  our  assumption  there  exists  an  open  set  V containing  x  such  that  V̅ ⊆  U = Ac. 

       Now  V̅ ⊆  Ac  then  A ⊆  (V̅ )c = X\V. 

      Then  V  and  (V̅ )c = W  are  open  sets  satisfying  x ∈ V,  A ⊆  W  and  V ∩ W = V ∩ (V̅ )c ⊆  V ∩ Vc = ∅. 

      ∴ V ⊆  V̅  then  (V̅)c ⊆  Vc.  

    Hence  by  definition  (X, 𝜏)  is  a  regular  space.  

 

Theorem 1.3.6 

                    A  T1-topological  space  is  a  normal  space  if  and  only  if  whenever A  is  a  closed  subset  of  X  

and  U  is  an  open  set  containing  A,  then  there exists  an  open  set  V  containing  A  such  that  V̅ ⊆  U. 

 

Proof. 

      Assume  that  (X, 𝜏)  is  a  normal  topological  space.  

      Take  a  closed set  A  and  an  open  set  U  in  X  such  that  A ⊆  U.   

      Now  A ⊆  U  then  Uc ⊆  Ac.  

      Here  A,  Uc = B  are  closed  sets  such  that  A ∩ B = A ∩ Uc ⊆  U ∩ Uc = ∅.   

      ie.,  A, B  are  disjoint  closed  subsets  of  the  normal  space  (X, 𝜏). 
      Hence there  exist  open  sets  U, W  in  X  such  that  A ⊆  V,  B = Uc ⊆  W  and  V ∩ W = ∅.  

      Further  V̅ ⊆  Wc.  

     Now  V̅ ⊆  Wc ⊆  U.  

     Hence  whenever  A  is  a closed  set  and  U  is  an  open  set  containing  A  then  there  exists  an  open  set V  

such  that  A ⊆  V,  V̅ ⊆  U.  

     Now  let  us  assume  that  the  above  statement  is satisfied.   

     our  aim  is  to  prove  that  (X, 𝜏)  is  a  normal  space. 

     Let  A, B  be  two  disjoint  closed  subsets  of  X. 

     Now  A ∩ B = ∅  then  A ⊆  Bc = U. 

    ie., U  is  an  open  set  containing  the  closed  set  A.   

    Hence by  our  assumption  there  exists  an  open  set  V  such  that  A ⊆  V,     V̅ ⊆  U.  

  Now  V̅ ⊆  U  then  Uc ⊆  (V̅)c  ⟹  B ⊆  (V̅)c. 
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  Further  V ∩ (V̅)c  ⊆  V ∩ Vc = ∅. 

  ie.,  whenever  A, B  are  closed  subsets  of  X,  then  there  exist  open  sets  V  and  (V̅)c = W  such  that  A ⊆  V,  

B ⊆  W  and  V ∩ W = ∅.   

   ∴ (X, 𝜏)  is  a  normal  space.  

 

 

Theorem 1.3.7 

                    

                   Every  compact  Hausdorff  topological  space  (X, 𝜏)  is  a  regular space. 

 

Proof. 

                

                    Let  A  be  a  closed  subset  of  X  and  x ∈ X\A,  then  for  each  y ∈ A,  x ≠ y.  

       Hence  X  is  a  Hausdorff  space  then  there  exist  open  sets  Uy, Vy  in  X  satisfying  x ∈ Uy,  y ∈ Vy  and 

 Uy ∩ Vy = ∅. 

     W.K.T. closed subset  of  a  compact  space  is  compact.  

    Here  A ⊆   𝑉𝑦∈𝐴 y. 

    ie., {Vy: y ∈ A}  is  an  open  cover  for  the  compact  space  A.  

    ∴ There exists  n ∈ ℕ  and  y1, y2…..yn ∈ A  such  that  A ⊆   𝑉𝑛
𝑖=1 yi.  

     Let  U =  𝑈𝑛
𝑖=1 yi  and  V  =  𝑉𝑛

𝑖=1 yi.  

     Then  U, V  are  open  sets  in  X  satisfying  x ∈ U,  A ⊆  V and  U ∩ V ⊆  U ∩ (Vy1 ∪ Vy2 ∪……∪Vyn) = (U ∩ 

Vy1) ∪ (U ∩ Vy2) ∪….∪ (U ∩ Vyn) ⊆  (Uy1 ∩ Vy1) ∪ (Uy2 ∩ Vy2) ∪…..∪ (Uyn ∩ Vyn) = ∅. 

     ∴ (X, 𝜏)  is  a  regular  space.   

 

Theorem 1.3.8 

               Every  compact  Hausdorff  space  (X, 𝜏)  is  a  normal  space. 

 

Proof. 

         Let  A, B  be  disjoint  closed  sets  in  X. 

        Then  for  each  x ∈ A,  x ∉ B. 

      Now  (X, 𝜏)  is  a  regular  space  then  there  exist  open  sets  Ux, Vx  satisfying: x ∈ Ux; B ⊆  Vx  and   

Ux ∩ Vx = Ф. 

     Now  {Ux : x ∈ A} is an open cover for A then  there  exists  n ∈ ℕ,  x1, x2,….xn ∈ A  such  that  A ⊆   𝑈𝑛
𝑖=1 xi.  

     Let  U = Ux1 ∪ Ux2 ∪…..∪ Uxn  and  V = Vx1 ∩ Vx2 ∩,…. ∩ Vxn.  

    Then  U, V  are  open sets  in  X  satisfying  A ⊆  U,  B ⊆  V  and  U ∩ V = ∅.                         

 ∴ (X, 𝜏)  is  a  normal  space. 

  

Theorem 1.3.9 

                 Let  (X, 𝜏)  be  a  normal  space  and  A, B  be  disjoint  non  empty closed  subsets  of  X.  Then  for  a, b 

∈ ℝ,  a < b  there  exists  a  continuous function  f : X → [a, b]  such  that  f(x) = a  for  every  x  in  A,  and  f(x) = b  

for every  x  in  B. 

 

Proof. 

             Define  g : [0, 1] → [a, b]  as  g(t) = a + (b - a)t  then  g  is  continuous.    

  Now by  Urysohn  Lemma  theorem,  there  is  a  continuous  function  

 f1 : X → [0, 1] such  that  f1(x) = 0, for  all  x ∈ A  and  f1(x) = 1  for  all  x ∈ B. 

        The  function  f = g o f1 : X → [a, b]  is  a  continuous  function  and  further  f(x) = g(f1(x)) = g(0) = a  for  all  

x ∈ A  and  f(x) = g(f1(x)) = g(1) = b  for  all  x ∈ B. 

 

CONCLUSION 

 

        These  are  ordered  roughly  chronologically  (although  this  is  obscured  by  the fact  that  the  most  recent  

editions  or  versions  are  cited).  I  have  included  only  those  texts  that  I  have  looked  at  myself,  that  are  at  

least  at  the  level of  the  more  elementary  chapters  here,  and  that  offer  significant  individuality of  treatment.  

The  above  mentioned  are  many  other  textbooks  in  topology. 
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