International Journal of Mathematics Trends and Technology (IJMTT) - Volume 62 Number 3 - October 2018

On Different Continuities of Digital Images

Annie kurien K.*, M.S.Samuel**

*Department of Mathematics, Mar Thoma College for Women, Perumbavoor

** Department of Computer Applications, MACFAST, Thiruvalla .

ABSTRACT. In this paper we study properties of different continuities from $Z^n \to Z^n$.

Key words: Khalimsky continuity, digital (k_0, k_1) continuity, (k_0, k_1) continuity, Khalimsky (k_0, k_1) continuity

1. INTRODUCTION

In this paper we compare several kind of continuities such as $k - (k_0, k_1)$, (k_0, k_1) , KD (k_0, k_1) continuities and Khalimsky continuity and digital version of pasting theorem is also established.

2. PRELIMINARIES

Definition 2.1 (Digital (k_0, k_1) continuty). Let (X, k_0) and (Y, k_1) be two discrete topological spaces in Z^{n_0} and Z^{n_1} respectively. A function $f : X \to Y$ is (k_0, k_1) continuous if and only if for every $x_0 \in X$, $\epsilon \in N$ and $N_{k_1}(f(x_1), \epsilon) \subset Y$, there is a $\delta \in N$ such that the corresponding $N_{k_0}(x_0, \delta) \subset X$ satisfies

$$f(N_{k_0}(x_0,\delta)) \subset N_{k_1}(f(x),\epsilon).$$

Definition 2.2 (Khalimsky continuty). [2] For two spaces $(X, T_X^{n_0})$ and $(Y, T_Y^{n_1})$, a function $f : X \to Y$ is said to be Khalimsky continuous at a point $x \in X$, if f is continuous at the point x with the Khalimsky product topology.

Definition 2.3. [2] Let X_{n_0,k_0} and Y_{n_1,k_1} be two topological spaces with k_i adjacency $i \in \{0,1\}$ and $x \in X$. A map $f : X \to Y$ is Khalimsky (k_0, k_1) continuous $[KD(k_0, k_1)$ continuous] at the point x if

(1) f is Khalimsky continuous at the point x andFigure 100 and 1

International Journal of Mathematics Trends and Technology (IJMTT) - Volume 62 Number 3 - October 2018

(2) for $N_{k_1}(f(x), 1) \subset Y$, there is $N_{k_0}(x, 1) \subset X$ such that

$$f(N_{k_0}(x,1)) \subset N_{k_1}(f(x),1).$$

Definition 2.4 ((k_0, k_1) continuty). For two spaces X_{n_0,k_0} and Y_{n_1,k_1} , a function $f : X \to Y$ is said to be (k_0, k_1) continuous at a point $x \in X$ if for any $N_{k_1}^*(f(x), \epsilon) \subset Y$, there is $N_{k_0}^*(x, \delta) \subset X$ such that

$$f(N_{k_0}^*(x,\delta)) \subset N_{k_1}^*(f(x),\epsilon)$$

for some $\epsilon \in N$.

Result 2.5 (Khalimsky (k_0, k_1) continuty). For two spaces X_{n_0,k_0} and Y_{n_1,k_1} , a function $f: X \to Y$ is said to be K- (k_0, k_1) continuous at a point $x \in X$, if

- (1) f is Khalimsky continuous at the point x and
- (2) f is (k_0, k_1) continuous at the point x.

Example 2.6. Consider a map $f : X_{1,2} \to Y_{n,k}$. Then

- (1) K(2, k) continuity of f implies KD-(2, k) continuity of f, but the converse does not hold.
- (2) None of (2, k) continuity of f and KD-(2, k) continuity of f implies the other.

Consider the map $f : A_{2,4} \to Y_{1,2}$ given by $f(a_1) = 1$ and $f(a_2) = 2$ where $A = \{a_1 = (0,1), a_2 = (1,1)\}$ and $Y = \{1,2\} \subset Z$ The map f is (4,2) continuous but it can not be Khalimsky continuous at the point a_1 because $\{1\} \in T_Y$ and $\{a_1\} \notin T_A^2$.

FIGURE 1

http://www.ijmttjournal.org

Theorem 2.7. Let $f : X_{n_0,k_0} \to Y_{n_1,k_1}$ be a map $1 \le n_i \le 3$, i.e., $\{0,1\}$. Then K- (k_0, k_1) continuity of f implies KD- (k_0, k_1) continuity of f.

Proof. Case I. $X_{1,2} \to Y_{1,2}$. Then K(2,2) continuity of f is equivalent to KD(2,2) continuity of f because for any points $x \in X$ and $y \in Y$ we have

$$N_2(x,1) = N_2^*(x,1)$$
 and $N_2(y,1) = N_2^*(y,1)$.

Case II. If $f : X_{n,k} \to Y_{1,2}, 2 \le n \le 3$, for any point $y \in Y$, we have $N_2(y,1) = N_2^*(y,1)$. Hence K-(k,2) continuity of f implies KD-(k,2) continuity of f because the existence of $N_k^*(x,r)$ implies $N_k(x,1) \subset N_k^*(x,r)$.

Case III. If $f : X_{1,2} \to Y_{n,k}$, $2 \le n \le 3$, K- (k_0, k_1) continuity of f implies KD- (k_0, k_1) continuity of f because for any point $x \in X$, $N_2^*(x, 1) = N_2(x, 1)$ and further for any point $y \in Y$, the existence of $N_k^*(y, s)$ implies $N_k(y, 1) \subset N_k^*(y, s)$.

Case IV. $2 \leq n_i \leq 3, i \in \{0,1\}$, we can prove that K- (k_0, k_1) continuity of f implies KD- (k_0, k_1) continuity of f at each point $x_1 \in X$; if not for some point $x_1 \in X$, there exist some $K(k_0, k_1)$ continuous map $f : X_{n_0,k_0} \to Y_{n_1,k_1}$ such that $f(x_2) \notin N_{k_1}(f(x), 1)$ where $x_2 \in N_{k_0}(x_1, 1)$. Thus by 2.4 and 2.6 by considering a pair of distinct points $x_1, x_2 \in X$ such that x_1 and x_2 are k_0 -adjacent, we investigate the following case according to the locations of $x_1 \in X$ and $f(x_1) \in Y$.

a. Assume that the two points $x_1 \in X$ and $f(x_1) \in Y$ are pure open points. Since both $\{x\}$ and $\{f(x_1)\}$ are the smallest open sets containing the points x_1 and $f(x_1)$ respectively, we have $N_{k_0}(x, 1) = N_{k_0}^*(x, 1)$ and

$$N_{k_1}(f(x), 1) = N_{k_1}^*(f(x), 1).$$

By the $K(k_0, k_1)$ continuity of f at the point x_1 , we have

$$f(N_{k_0}(x_1,1)) = f(N_{k_0}^*(x_1,1)) \subset N_{k_1}^*(f(x_1),1) = N_{k_1}(f(x_1),1)$$

which means that f is $KD - (k_0, k_1)$ continuous map at the point x_1 .

b. Assume that x_1 is a pure closed point and $f(x_1)$ is a pure open point. Then owing to the $K(k_0, k_1)$ continuity of f at the point x_1 , there is a smallest open set containing the point x_1 , namely 0_{x_1} such that $0_{x_1} \subset N_{k_0}^*(x, r)$ for some $r \in N$. According to the k_0 -adjacency of X_{n_0,k_0} and further $N_{k_1}^*(f(x_1), 1) = N_{k_1}(f(x_1), 1)$ because $\{f(x_1)\} \in T_Y^{n_1}$. Due to the $K(k_0, k_1)$ continuity of f at the point x_1 and $f(0_{x_1}) =$ $\{f(x_1)\}$ and $f(N_{k_0}^*(x, r)) = N_{k_1}^*(f(x_1), 1)$. Thus $f(x_1)$ and $f(x_2)$ are equal to each other or k_1 -adjacent, where $x_2 \in N_{k_0}(x_1, 1)$. Therefore International Journal of Mathematics Trends and Technology (IJMTT) - Volume 62 Number 3 - October 2018

 $f(N_{k_0}(x_1,1)) \subset f(N_{k_0}^*(x_1,r)) \subset N_{k_1}^*(f(x_1),1) = N_{k_1}(f(x_1),1)$

for any k_0 adjacency of X_{n_0,k_0} which implies that f is $KD(k_0, k_1)$ continuous at the point x.

c. Assume that x_1 is a mixed point and $f(x_1)$ is a pure open point. Due to the K- (k_0, k_1) continuity of f, there is $N_{k_0}^*(x_1, r)$ such that

 $f(N_{k_0}(x_1,1)) \subset f(N_{k_0}^*(x_1,r)) \subset N_{k_1}^*(f(x_1),1) = N_{k_1}(f(x_1),1)$

because $\{f(x_1)\} \in T_Y^{n_1}$ where the number r is given by Definition 2.4. Thus the map f is KD- (k_0, k_1) continuous at the point x_1 .

d. Assume that x₁ is a pure open point and f(x₁) is a pure closed point. By the hypothesis of K(k₀, k₁) continuity of f at the point x₁, take N^{*}_{k₁}(f(x₁), s) ⊂ Y where s is given in 2.4. Since the singleton {x₁} is an open set, there is N^{*}_{k₀}(x₁, 1) = N^{*}_{k₀}(x₁, 1) ⊂ X such that

$$f(N_{k_0}^*(x_1, 1)) \subset N_{k_1}^*(f(x_1), s).$$

Hence K- (k_0, k_1) continuity of f at any point $x_1 \in X$ implies KD- (k_0, k_1) continuity of f at any point x_1 .

References

- Ulrich Echhardt and Longen J. Lalicki. Topologies for the digital spaces Z² and Z³. Computer Vision and Image Understanding, 90:295–312, 2003.
- [2] S. E. Han. Computer topology and its applications. *Honam Math. J.*, 25(1):153–162, 2003.
- [3] J. Slapal. A Jordan curve theorem with respect to certain closure operations on the digital plane. Notes in Theo. Comp. Sci., 46:20, 2001.
- [4] A. Rosenfeld. Digital topology. American Mathematical Monthly, 86:621–630, 1979.
- [5] Kiselman and O. Christer. *Digital geometry and mathematical morphology*. Uppsala University, Department of Mathematics, 2002.

ISSN: 2231 - 5373

http://www.ijmttjournal.org

Page 191