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Abstract  
          While doing statistical analysis, a problem often resists that there may exist some extremely small or 

large observation (outliers). To deal with such problem diagnostics of the observations is the best option for the 

model building process. Mostly analysts use ordinary least square (OLS) method which is utterly failing in the 

identification of outliers. In this paper, we use the diagnostics method to detect outliers and influential points in 

models for count data. Gauss-Newton and Likelihood Distance method approach has been treated to detect the 

outliers in parameter estimation in non-linear regression analysis. We used these techniques to analyze the 

performance of residual and influence in the non-linear regression model.  The results show us detection of 

single and multiple outlier cases in count data.    
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I. INTRODUCTION 

     Count data is a statistical data type, in which the observation can take only the non-negative integer values 

i.e. {0, 1, 2……} where these integers coming from counting instead of ranking. Count data is dissimilar from 

the binary data and ordinal data and their statistical approach are also different. In binary data the observation 

can take only two values, usually represented by 0 and 1. And ordinal data may also consists of integers where 

the individual values fall on an unpredictable scale and only the relative ranking is important. While count data 

include simple counts such as the number of thunderstorm in a calendar year, earthquakes and accidents. The 

statistical analysis of counts within the framework of discrete parametric distributions for univariate 

independently identically distributed random variables has a long and rich history (Johnson, Kemp, and Kotz, 

2005). 

Significant early developments in count models took place in actuarial science, biostatistics, and demography 

[1]. In recent years these models have also been used extensively in economics, political science, and sociology. 

The special features of data in their respective fields of application have fueled developments that have enlarged 

the scope of these models. An important milestone in the development of count data models for regression was 

the emergence of the ―generalized linear models,‖ of which the Poisson regression is a special case [2] [3], first 

described by Nelder and Wedderburn (1972) and detailed in McCullagh and Nelder (1983, 1989). Building on 

these contributions, the papers by Gourieroux, Monfort, and Trognon (1984a, b) and the work on longitudinal or 

panel count data models by Hausman, Hall, and Griliches (1984) have also been very influential in stimulating 

applied work in the econometric literature [4]. 

For such type of data Poisson distribution or some modification should be the first choice [6]. The Poisson 

distribution was derived as a limiting case of the binomial by Poisson (1837). The apparent simplicity of 

Poisson comes with two restrictive assumptions (Sturman, 1999). First, the variance and mean of the count 

variable are assumed to be equal. In reality, however, the variance is usually much greater than the mean (i.e., 

overdispersion) [5] and therefore Poisson models—though widely used to handle count data—may not be well 

suited to handle some types of count outcomes. Another restrictive assumption of Poisson models is that 

occurrences of the specified behavior are assumed to be independent of each other [6] [7]. This assumption is 

also frequently violated. For example, in the case of children's injuries, past injurious experiences are known to 

be related to future injury risk (Jacques & Finney, 1994). 

In this particular work, we aim to represent the residual facts points in models for count data and parameter 

estimation. In addition, we propose a graphical display and diagnosis for determining the impact of estimation 

techniques on parameter estimation. Using Gauss Newton and log-likelihood distance technique, some useful 

examples of parameter estimation and single and multiple outlier’s detection are given. The structure of this 
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paper is given, some models and parameter estimation are given in section 2, and the diagnostics method of 

single and multiple outlier’s detection by scatter plot and parameter estimation with some applicable examples is 

discussed in section 3, and section 4 summarizes the conclusion of this paper. 

II. THE MODELS AND THE PARAMETER ESTIMATION 

Regression analysis with generalized linear models is based on likelihoods. This section contains the basic 

inferential tools for parameter estimation, hypothesis testing, and goodness-of-fit tests, whereas more detailed 

material on model choice and model checking is deferred to Chapter 3. 

Given the sample , together with the covariates , or design vectors , a 

maximum likelihood estimator (MLE) of the unknown parameter vector  in the model  

is obtained by maximizing the likelihood. To treat the cases of individual data  and of grouped 

data  simultaneously, we omit  or  as the upper limit in summation signs. Thus, sums may run 

over  from 1 to  or from 1 to , and weights  have to be set equal to 1 for individual data and equal to  for 

grouped data. 

We first assume that the scale parameter  is known. Since  appears as a factor in the likelihood, we may set 

 in this case without loss of generality if we are only interested in a point estimate of . Note, however, 

that  (or a consistent estimate) is needed for computing variances of the MLE. Consistent estimation of an 

unknown  by a method of moments, which is carried out in a subsequent step, is described at the end of this 

subsection. The parameter  may also be considered as an overdispersion parameter, and it may be treated 

formally in the same way as a scale parameter. (Note, however, that only the mean  and the variance 

function are then properly defined, so that one has to start with the expression for the score function  

instead of the log-likelihood  in (1). 

We are using  as a generic symbol for log-likelihood. In the case of Poisson responses  we have 

 

By inserting the mean structure  finally we get 

 

According to the log-linear poison model 

    (1) 

  

The score function shows how sensitive a likelihood function  is to its parameter  

      

 

    (2)  

The observed information matrix is given by, 

 

     (3) 

The above equation (1) shows the likelihood function and the equation (2) shows the score function and 

equation shows the observed information matrix with response on the  individuals. 
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In case of nonlinear regression  then the  on the parmeter  of the observation information matrix  

 , score function  and the fisher information matrix  respectively. Certainly, other iterative 

approach may be applied to solve the likelihood equations. The Newton-Raphson approach is obtained from 

Fisher scoring if, the expected information  is changed by observed information . Computational, of 

nonlinear least square estimate need to apply the iterative numerical set of rules. 

 We may additionally use the Taylor expansion at the point . 

       (4) 

Until  ,  is an advance constant value  Will converge to  under some regular condition 

and, the pace of convergence will depend on the choose value of . 

III. STATISTICAL DIAGNOSTICS OF MODELS FOR COUNT DATA 

For assessing the fit of, a classical linear regression models diagnostics techniques are in ordinary use [8]. They 

are designed, to discrepancies among the data and the fitted values as well as discrepancies, among a few data 

and the rest. Nearly all these tools are based on graphical, presentations of residuals, hat matrix, and case 

deletion measures [9]. 

A. A General Approach to Influence 

         There are several cases of local influence methods [10]. It appeals because it allows the calculation of the 

effects of individual observations as well as the assessment of the effects of multiple observations. Influential 

observations are closely related to high leverage observations and outliers [7]. When analyzing high-leverage 

observations and outliers, you can gain a deeper understanding of the diagnostic measures used to detect 

influential observations [11]. 

Measures of the influence of the case on the maximum likelihood estimate  can be based on the sample 

influence curve  where denotes the ML estimates of  computed without the i-th case. It may 

be computationally expensive to implement since  ML estimates are needed, each of which may requires 

iteration. In such situation, it may be useful to consider quadratic approximation of the log of likelihood can 

be obtained after removing the i-th case: 

  (5) 

where  is the gradient vector with j-th element  evaluated at  and   has the 

(j,k)-th element  evaluated at  If  is positive definite, the quadratic 

approximation is maximized at  

     (6) 

We define a likelihood distance as 

     (7) 

While using one step estimator, 

     (8) 

This can be seen easily to be the general class with  The measures  and  can also be 

explained in terms of the asymptotic confidence region (Cox and Hinkley, 1974) 

 

Where  is the upper  point of chi-squared distribution with q df, and q is the dimension of . Log-

likelihood distance can accordingly be calibrated by comparison to the  distribution. If the log-likelihood 

contours are approximately elliptical then  can be usefully approximated by Taylor expansion of  

around . 
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since , 

    (9) 

A different approximation can be obtained by replacing the observed information  in the above equation 

be the expected information matrix evaluated at . 

B. Poison Regression and Generalized Linear Model 

            The standard model for count data is the Poisson regression model, which is a nonlinear regression 

model. A standard application of Poisson regression is to cross-section data. Typical cross-section data for 

applied work consist of independent observations, the of which is  [12]. The scalar dependent 

variable  is the number of occurrences of the event of interest, and is the vector of linearly independent 

regressors that are thought to determine . A regression model based on this distribution follows by 

conditioning the distribution of  on a k-dimensional vector of covariates, , and parameters β, 

through a continuous function , such that  

That is,  given  is Poisson distributed with density 

    (10) 

In the log-linear version of the model the mean parameter is parameterized as 

 

The log-likelihood for  is, 

    (11)        

Where,  and . The maximum likelihood estimates  of  is usually 

found applying Newton’s method. Using different notation defines  and let  

be a  diagonal matrix with  diagonal . Also suppose  be a  with  

element . One can show that, 

           (12) 

By using (11), finally we get this equation, 

         (13) 

Where,  is the  diagonal element of  Pregibon [1981] discusses, the 

accuracy of this one-step approximation and concludes that component wise, the approximation tends to 

underestimate totally iterated value but that this may be unimportant for identifying, influential cases. 

Measures, for the differences   can be derived applying elliptical approximation likelihood 

displacement or alteration in fitted value vectors as discussed in below. Following Pregibon [1981] we will 

allow for these to characterize, influence for  

          (14) 

We give extension for log likelihood distance  for binomial response data. 

One case of likelihood distance 

                                             (15) 
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 Putting the value of   in equation (14) we get, 

  (16) 

Multiple case of likelihood distance, 

                                          (17) 

                                            

Finally, substituting into (14), this form becomes 

  (18) 

Example 1: 

A company receives shipments of parts from three different suppliers. Each supplier sends the parts in the same 

sized batch. We need to determine whether one supplier produces fewer defects per batch than the other 

suppliers. To perform this analysis, we’ll randomly sample batches of parts from all suppliers. The inspectors 

examine all parts in each batch and record the count of defective parts. We’ll randomly sample 30 batches from 

each supplier. 

Supplier 1 1, 7, 3, 4, 4, 6, 3, 5, 2, 4, 4, 3, 3, 1, 2, 3, 5, 5, 3, 3, 4, 1, 3, 1, 5 , 6, 4, 6, 2, 4 

Supplier 2 1, 10, 4, 2, 0, 4, 8, 5, 8, 4, 4, 7, 6, 9, 4, 4, 5, 5, 4, 6, 12, 8, 2, 6, 4, 8, 7, 5, 5, 4 

Supplier 3 3, 5, 1, 7, 6, 10, 9, 4, 3, 7, 5, 2, 2, 6, 4, 4, 3, 9, 1, 5, 3, 8, 4, 3, 6, 1, 7, 4, 7, 11,  

 

Here we consider a bio-exponential characteristic to calculate Gauss newton method, 

                            (19) 

We observe the Guass newton method. 

    (20) 
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To solve this problem, we use MATLAB. Here, we chose the initial values 

of . After the iteration we 

get . Which 

is satisfied under circumstance biexponential regression feature to compute Gauss newton. 

The result of this estimation of the parameter is primarily based on 10 responses for the third subject are given 

in the above table. 

Example 3: 

I took into account table 1, I targeted on the second supplier to detect single case Outlier. Where  is the  

diagonal element  

 

 

 

 

 

 

 

 

Figure 2 (a) and Figure 2 (b) represent the single and multiple outliers for likelihood distance under model (16) 

and model (18) respectively. 

IV. CONCLUSION 
 

        Although a few or a small portion of observations differ from most facts in many respects, the model fitting 

system may be significantly affected because all observations are forced into the same regression. It is necessary 

to identify and ignore the observations of the deviation from the shape and the model fit under the affected 

conditions. As everyone knows, each observation does not play the same role in the regression analysis. As an 

example, an individual of the regression line can be determined only by some observation, and the maximum 

value of the information is mostly omitted. Observations of these incredible impact analysis are called 

influential comments. For regression analysis, detecting outliers can be a critical step. The literature and the 

number of studies on the impact analysis of nonlinear regression models are not as extensive as linear cases. In 

this paper, we propose a Gauss-Newton method for parameter estimation and correctly study the rebuttal version 

of the likelihood distance in single and multiple cases to detect the outlier data points of the count data. 

 

REFERENCES 
 

[1]  C.R.D and Presscot, "Approximation significance levels for detecting outlier in linear regression," Technometrics, vol. 23, pp. 59-64, 

1981.  

[2]  Hausman, J.A., B. Hall and Z. Griliches, "Econometric Models for Count Data with an Application to the Patents-R and D 

Relationship," Econometrica , vol. 52, pp. 909-938, 1984.  

[3]  Nelder, J.A and R. Wedderburn, "Generalized Linear Models," Journal of the Royal Statistical Society A, vol. 135, pp. 370-384, 1972.  

[4]  Mullahy and J, "Specification and Testing of some modified count data models," Journal of Econometrics, vol. 33, pp. 341-365, 1986.  

[5]  Cameron, A.C and P. Trivedi, "Count Data Models for Financial Data" in G.S Maddala and C.R. Rao, eds., Handbook of Statistics, vol. 

14, North-Holland: Statistical Methods in Finance, Amsterdam,, 1996.  

[6]  M. Ali, Z. Ali and A. Choo, "Diagnostics of Single and Multiple outliers on likelihood distance," AJER, vol. 07, pp. 352-357, 2018.  

[7]  McCullagh, p. and J. Nelder, Generalized Linear Models, edition 1 and 2, Lodon: Chapman and Hall, 1983, 1989.  

Fig.2 (a): Plot for table 1 for single case 

outlier under the model (15) 
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