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Abstract

In this paper, we establish the existence of common coupled fixed point results of two covariant
mappings in a complete bipolar metric spaces under Geraghty type contraction by using weakly compatible
mappings with an example. We have also provided an applications to Homotopy theory.
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I. INTRODUCTION

This work is motivated by the recent work on extension of Banach contraction principle on Bipolar metric
spaces, which has been done by Mutlu and Girdal [1]. Also they investigated some fixed point and coupled
fixed point results on this spaces (see [1], [2]). Later, we proved some fixed point theorems in our earlier papers
(see [3], [4]). Subsequently, many authors established coupled fixed point theorems in different spaces (see [5]-

(8D

In 1982, Sessa [9] initiated to studied common fixed point theorems for weakly commuting pair of
mappings. Afterward, in 1986, Jungck [10] introduced concept of weakened weakly commuting mappings to
compatible mappings in metric spaces and established compatible pair of mappings commute on the sets of
coincidence point of the involved mappings. In 1998, the weak compatibility notion initiated by Jungck and
Rhoades [11], if they commute at their coincidence points and proved that compatible mappings are weakly
compatible but the converse does not hold. In 1973, Geraghty ([12]) introduced a generalization of Banach
contraction principle ([13]) in which the contraction constant was replaced by a function having some specified
properties. Later, many authors refereed it to Geraghty type fixed point results and extended different types of
distance spaces (see [14],[15]).

The aim of this paper is to initiate the study of a common coupled fixed point results for two covariant
mappings under Geraghty type contractive conditions in bipolar metric spaces. We also given illustrate the
validity of the hypotheses of our results.

Definition 1.1: ([1]) Let A, B be two non-empty sets. Suppose that d: AXB — [0, «©) be a mapping satisfying
the below properties:
(By) Ifd(a, b)=0,ifandonly if a=b for all (a, b) € AxB,

(Bz) Ifd (a, b) =d (b, a), for all a, b € ANB

(By) Ifd(ay, by) = d(ay, by) + d(a; |, by) + d(az, b;) forall ay, a; €A, and by, by EB.

Then the mapping d is termed as Bipolar-metric of the pair (A, B) and the triple (A, B, d) is termed as Bipolar-
metric space.

Definition 1.2: ([1]) Assume (4; ,E; ) and (4;, E;) as two pairs of sets and a function as

F:d4; WEB; — A, UE,is said to be a covariant map. If F (4;)E 4; and F (84)E E;, and denote this with F:
(A1, By) = (A3, B1,)). And the mapping F: 4; UE; — A; U E; is said to be a contravariant map. If F (4;) €
E,, and F (E,)ZE A, and write F: (4;. E,) 2 (43, E;). In particular, if €, and & are bipolar metric on (4;. E;)
and (Az, E; ) respectively, we sometimes use the notation F: (4;. By.dy) = (47, By, d;) and F: (43, By.dy) 2
(A:’ B:: d:)-
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Definition 1.3: ([1]) Assume (A, B, d) as a bipolar metric space. A point v €A UB is termed as a left point if v
£ A, a right point if v € B and a central point if both. Similarly, a sequence {a,} on the set A and a sequence
{b,} on the set B are called a left sequence and right sequence respectively. In a bipolar metric space, sequence
is the simple term for a left or right sequence. A sequence {1, } is considered convergent to a point v, if and only
if {u,} is the left sequence, v is the right point and r!:rr::: d{w,.v) =0; or {m,}is aright sequence, v is a left

point and lim d{v.13,} = 0. A bi-sequence ({an}, {#,}) on (A, B, d) is a sequence on the set A xB. If the
s

sequence {a,} and {&,} are convergent, then the bi-sequence ({a,}, {b,}) is said to be convergent. ({a,},
{b,}) is Cauchy sequence, if lim dia,.b,) = 0. In a bipolar metric space, every convergent Cauchy bi-
M=z

sequence is bi-convergent. A bipolar metric space is called complete, if every Cauchy bi-sequence is convergent
hence bi-convergent.

Definition 1.4: ([1]) Let (4;. By.d;) and (A, By, d;) be bipolar metric spaces.

(i) Amap F: (A;. By.d,) =t (Az, By, d3) is called left-continuous at a point a; € Ay, if for every >0, thereis
a &>0 such that d,(mg, b)< & implies that d;(F(ap), F(b))< £ for all be E,.

(i) AmapF: (4;. By.d;) =% (A3, B4, d3) is called right-continuous at a point by € By, if for every £>0, there is
ad>0 suchthat d,(@. bp)< & implies d2(F(a), F( by))<e forallae 4;.

(iif) A map F is considered continuous, if it left continuous at each point a€ A,and righty continuous at each
point be E,.

(iv) A contravariant map F: (4;. By.d,) 2 (43,84, d;) is continuous if and only if F: (4. By.d;) = (45,

B, d;) itis continuous as a covariant map.

It is observed from the definition (1.3) that a contravariant or a covariant map F from(A4;. Ey.d;) to (A;,

E;, d;) is continuous if and only if (u;,)— von (4;. BEy.d;) implies F((uy)) =F(v) on (4, B;, d5).

I1. MAINRESULTS

In this section, we give some common coupled fixed point theorems for two covariant mappings satisfying
Geraghty type contractive conditions using weakly compatible property in bipolar metric spaces.

Definition 2.1: Let (A, B, d) be a bipolar metric space, F: (4%, B*) =(A, B) and S:(A, B) = (A. B)be two
covariant mappings.
(i) IfF(a, b)=a and F(b, a)=b for (a, b)e 4% U E*then (a, b) is called a coupled fixed point of F.
(ii) If F(a, b)=Sa and F(b, a)=Sh for (a, b)e 4% U EZthen (a, b) is called a coupled coincidence point of F
and S.
(iii) If F(a, b)=Sa=a and F(b, a)=Sh=b for (a, b)e 4% u B* then (a, b) is called a common coupled point of F
and S.

Definition 2.2: Let (A, B, d) be a bipolar metric space, F: (A%, B*) =(A, B) and S:(A, B) = (A. B)be two
covariant mappings. Then
(i) (F,S) is called weakly compatible if S(F(a, b))=F(Sa, Sh) and S(F(b, a))=F(Sbh, Sa) whenever for all (a,
b)e 4% U E?such that F(a, b)=Sa and F(b, a)=Sb.
(ii) (F,S) is called compatible if lim d{F(Sa,.5b, ).5F(p,. qﬂ]]:rgim d(SF(ay. b, ). F(Sp,.5q,))=0
and lim d(F(Sb,.5a, ), 5F(gn.p,))=lim d(5F (b,.a, ). F(5g,. 5p, )}=0 for bi-sequences
M= oo

===

({en}, {pn}) and ({Br}, {g3}) in (A, B) such that
lim F{a,.b,)=lim Sa,=lim §p, = lim F{p,.q,) and
M=% M= oo === M= oo

lim F(b,.a,)=lim 5b,=lim Sq,= lim F{g,.p,)
=== == === ===

Lemma 2.3: Let (A, B, d) be a bipolar metric space, F: (4%, B*) =(A, B) and S:(A, B) = (4. Elbe two
covariant mappings. If (F, S) is compatible then (F, S) is @-compatible.

Proof. Let F(a, b)=Sa, F(b, a)=Sb and F(p, q)=Sp, F(q, p)=Sq for some a, b €A, p, qEB. Consider the constant
sequences &, =p, b, =qand g, =a, g, =b for all neN.

It is obvious thatF(a,. b,) = Sa, — Sp, F(b,. a,) = §b, - 5q as n— = andF(p,.q,) = §p, — 5a,
Flg,.p,) =5g, — Sb as n— . Since (F, S) is compatible, d(F(Sa,. 5b, L. 5F(p,.q,0) = 0,
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d(SF(ay. by LF(5p,.5q9,)) = 0and d(F(Sb,. Sa, ). SF(gq. p)) = 0, d(SF (b0, ). F(Sq,.5p,)) = 0.
Thus SF(p, g)= F(Sa, Sh), F(Sp, Sq)=SF(a, b) and SF(q, p)= F(Sb, Sa), F(Sq, Sp)=SF(b, a).
On the other hand

d(a, p)=d( lim py , lim @, )=1im d(gy, p)=0
and
d(b, q):duim G s rEim by ):;Em d(b,.g,1=0. Hence (F, S) is weakly compatible. But converse is need not be

true. For example, let A=(0, ©2) and B=[-1, 1], define d:AxB—[0, %) as d(a, b)=la* — b*| for all (a, b)= 4 x B.
Then obviously, (A, B, d) is bipolar"metrig space.
Define two covariant mappings F:A* U E* =AUB and S: A UB— A UB as follows;

1-2a+2 acl 2] belt 5 a acl 2]
F(a, b)= . : : , Sa=y, :
Z,ae(2,®),be(-12] =, ae(20)
and
1-p+ag. pE[— ) qIE[ 1] B2 pel-1, 0]
F(p. a)= , Sp= ‘1
L pelie)gend pe ;.
Now we define the bi-sequences (&,. ) and (by.qy) as a,= 1+ by 1+— and Pn= =1-= ~ Gn= 1- then
Fila,. by)= 1+——~ 1 asn— o2, Sa,= 1+— — lasn—= oo, F(b,, ar.j-— SE:

and Fip,.g,)= 1+——~ 1 as n— 2, Sp, = 1'_;»-_' 1 asn— o2, Fig,. ;v.rr.]—— Sqr. =2

But lim d(F(Say, SBy ), SF (P, gn))=lim n d(F (1 +; 3).sa +ir|:]]—llm .:z(— hatso,
1

i (5P (80 ). F G Sac=Jim a5 (142 )71 - 2. 5)<lim o .

also, we have lim d(F (Shy, Say ), SF(qn 2 ))=lim d(F(3.1+3) S@)=lim d(2+ 7,

lim d(SF (by, @y ), F(Sqn. SpaV=lim d (5 (3 ). FG. 1 - 2))=lim d(5.5)=0.

N—s = 2 2 In - 3 2

Thus the pair (F, S) is not compatible. Also, the coupled coincidence point of F and S is (E —1) It is namely that

1. 15
::]_I

a=p= —and b= q—— F(a, b)=1-2a+2b= 1-—+1 ~=5a , F(b, a)=Sb= —and F(p, q)=1-p+q= 1-—+—-——— =Sp,
F(q, p) Sq- Then we get SF(a, b)= S( )= -F(Sa Sh), meanwhlle SF(b, a)= S( )- -F(Sb Sa) Which implies

that (F, S) is Weakly compatible but not compatlble
Let ©={&:&: [0, o) x: [0, 02 =[O0, 1)} be the class of functions, which satisfies the following conditions.
(i) f(a, b)=¢(b,a) foralla, be [0 )

(if) For any two sequences {&, } and {k,} of non-negative real numbers & (&, b,)—= 1 = a,, b, = 0.

Theorem 2.4: Let (A, B, d) be a complete bipolar metric space, F: (4%, B*) =(A, B) and S:(A, B) = (A, B)be
two covariant mappings satisfying the following conditions
() d(F(a, b), Fip.q)) = 8(d(5a,5p), d(5b 5q)) max{d(Sa, Sp), d(Sh, Sq)}
Where & € ©and a, be 4, p, g€ E.
(¥,) F(4* U BY=S(AUB).
(31) The pair (F, S) is compatible.
(33) S is continuous.
Then the mappings F: 4* U B* — AU B and S: AUB— AUB have unique common fixed point.
Proof. Let &g, by €A and g, gy B and from (3;), we construct the bi-sequences ({a }.{zn }), {#n}.{gn}),
({wn}{xn}) and ({{n}{xn}) in (A, B) as
F(an, bn)=Say.1=wy, F(Zn, Gn)=SPn+1=¥n,
F(by, 6n)=Sby,1=Ey, F(qn, Pn)=Sqn+1=%n, forn=0, 1,2, 3...
Now from (i), we have
d(ey, ¥ns+1)=d(F(@n, bn), F(@as1, Gns1))
= E{d{s'ﬂ'w Sn +1.:]J d (5hy, 5"-?r1+1:]:] max{d(Say, Spn +1), d(Sby, Sqn.1)}
< max{d(Sey, Spn+1), d(Shy, Sqn.1)}
= maX{ d(mi’!—ll j':i’!)! d(':lri"!—ll iIYi"!) } (1)
and

d(€n, ®ne1)=d(F(En, @n), F(Fn+1, Pns1))
= 6(d(5b,.59,., ). d(Say. 5o, . )) max{ d(Sby, Sqn.), d(San. 5p, .1}
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<max{ d(Sky, Sgn+1), 5. Spn 21}

=max{ d(§n—1, %) , d(wn_g, ¥n)} (2
Combining (1) and (2), we get
mae [0 Gy 1008 (£ 2133 -

e Gl prdt o = 0@ 2n) A Enms )<L ©)
Letting n— oz, it follows that & (d{cwy _g. ¥ hd(Epy_y.5n))— 1 4)
By the property of & €6, we obtain d{cy, _y. ¥» ) — 0 and d(&,_;.%,)—0 as n— &z,

Therefore, max{ d(cep_1, ¥n), d(fn_y, %n) }—= 0 as n— oo, (5)

On the other hand
d(en o1, ¥n)=0d(F(Gp 41, Brss), F(En, Gn))
= E{d{s‘ﬂ'n+vspﬂl d{5&ﬂ+1’5q|i’!:]:] max{d(Say +1, Spn), d(Sbyn.1, Sqn)}
< max{d(Sey +1, Spn ), d(Shy.1, Sqn)}
; =max{ d(e#, ¥n-1), d(n, ¥n-1) } (6)
an

d(£ne1, %n)=d(F(bras, Ensa), F(Gn, 21))
= E{d{Sbn+1J5'-F|'nl d(San. 1, Sf-’r!:l} max{ d(Sbp.1, Sqn), d(Say 1. 5,1}
<max{ d(Skn+1, Sqn), d{Say, +1-'5pi’!:]}

=max{ d(£n, ®n-1) , d(con, ¥n-1)} ()
Combl_ining (6?dqu (7),~lyve get
e ) < 640 ) Al )L ©
Letting n— ¢, it follows that & (d{cy. ¥pm_s b d(Eq.xn s )= 1. 9)
By the property of & €0, we obtain d{ ¢y, ¥,_1) = 0 and d(£,. x,_;)—0 as n— co,
Therefore, max{ d(cey, ¥n_1), d(£n, K1) }—= D asn— o, (10)

Moreover,

d(con, ¥n)=d(F(ayn, By), F(Pn, Gn))
= ﬁ'{d{Sﬂn,SFﬂl d{SEJqun:]:l max{d(Sa,, Sp, ), d(Sky, Sgn)}
< max{d(Se, Sp ), d(Sbx, Sqa)}

=max{ d(wy _1, ¥n-1), d(fn_1, Kn_1) } (11)
and

d(5n, 7n)=d(F(by, &n), F(gn, n))
< 8(d(5b,.5q,). d(Say,. 5p,)) max{ d(Sby, Sqn), d(Say. 5p, )}

< max{ d(Shy, Sgy), d(Sa,. Sp, )}

=max{ d({n, ®Kn-1) , d(en, ¥n-1)} (12)
Combinipg (1})&(\9 (12~|)ﬁ, we get
e aedn 5l — < 9(d(wn-t, fn-1) G n-))<L (13)
Letting n— o=, it follows that & (d{coy _g. ¥p_y A& s )= 1. (14)
By the property of & €0, we obtain de; _y. ¥n_y) — 0and di,,_;.%,_;)—=0 as n— oo,
Therefore, max{ d(eiy_1, ¥n_1), d(Fn_y, ¥n_1) }—= 0 asn— oo, (15)

Now we shall show ({e, }{xn}) and ({5 }.{xn}) are Cauchy bi-sequences in (A, B).Suppose to the contrary
that ({een 1 {xn}) and ({£,}.{x}) are not Cauchy bi-sequences. Then there exists £>0, for which we can find

sub sequences {n, }, {em; } Of {eon}, {rm, o {¥my } of {rndand {&n ) {€m, } of {&nd, {rn, } {F0m, } Of {7}
with ng>m;, =k such that

Ry=max{ d(eny ¥my ), A(Eny%omy) 32 €

max{ d(en,,_,» ¥myg), d(Eny o Ky ) }< € (16)
and
e =max{ d(mmy}:nk)’ d(':rrr.;cJ h-i’!i:) Yz e

max{ d(':":'rr.;c_iJl}fr!;:)7 d(‘frr.i:_i* Kr!;c) }<e 17)

By view of (16) and triangle inequality, we get
€ = Ry=max{ d(&n, ¥m,), d(Eny Bm,) }

< maX{ d(mi’!;c-'}:i’!;c_i)! d('Jri’!;c-'xi’!;c_i) }+ ma.X{ d(mi’!k_i-'}:i’!;c_i)l d(Ei’!,‘,C_i-' il‘-i’!;‘:_i) }

+ max{ d(wn,_,» ¥my), d(€np, s Bmy) }

< max{ d(mn;c#l'n;c_i)’ d(fnyxnk_i) 3 max{ d(mnk_,g}fr!;c_i): d(‘:rr!;:_f xr!;c_i) e
Letting k— ©=, we obtain
Ap=max{ d(en, ¥m ), d(EnpoKom,) = € (18)
Again by means of triangle inequality, we have
Rp=max{ d(ep, - ¥m, ), d(Enp-%m) }
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< max{ (e, ¥ny.y)s A(Eny g, ) 1 max{ d(en, ., Xng.y)s AEngeyr Bngey) 3
+ max{ d(wn, - kmy), d(':rr!;:_f Mme) }
< max{ d(eny: ¥ngy ) dEngofne.y) H max{ d(@ng.y Xnge) dEnpey Kngey) 3
+8(deony Xy ) Ay Ky, )) MaX{ d(eny e Zmg ), AEngrimy ) T
Letting n— oz, it yields that E{d{mﬂ.ﬂ,xm.ﬂ_ij, d(£n, - ”mn-ij} — 1. Now by means of property of &. It follows
A(en,  ¥m,_, ) — 0 and d(&, . %, _ ) — 0as k= o, which implies that
lm Rp= lim max{ d(wn,. ¥m, ) d($n, % ) 3=0. (19)

H=s== K=o

Similarly, we can prove
lim n= lim max{ d{wm, . o) d(&m, %0, ) 120 (20)

Which are contracts with (16) and (17). Thus ({eiy }.{¥=}) and ({£.}.{7n}) are Cauchy bi-sequences in (A, B).
Therefore, f!mi {cdp }:m]:imi {(£n. ®m)=0. Since (A, B, d) is complete, there exist u, ve 4 and w, ze E with

lim o, =1lim F{a,, b, )=lim 5a,_ ;=w, lim £,=lim F{b,,a,)=lim 5b, ,=7,

=== M=z M=z n—s=o N—oo f—oe

lim x4 =lim F(py, gq)=lim Spy 4=u, lim xpyy=lim F(gy.py )=1lim Sqp,,=v.

Since S:AUB— AUB is continuous,

lim 5%a,., =Sw, lim 5%b,,, =Sz, lim 5F(a,. b,) =Sw, lim 5F(b,.a,) =Sz
N—=== M=aoo n—5oo - ==
and )

i[m 5841 =SU, i[m 5%gn41 =SV, i[m SF(pn.ga) =SU, i[m SF(gn.pn) =Sv.

Since (F, S) is compatible, we have
F(5a,.5b,) —=Sw, F(5h,.5a,) =Sz and F(5p,.59,) —=Su, F{5g,.5p,) —=Sv.
Putting (a, b)= (5a,. 55,1, (p, q)= (5p,. 59, in the inequality (3;), we have
d(F(Say. 5by,), F(5p,. Sg, )= 8(d(5Sa,. S5, ), d(E5h,. 55g,0) max{ d(55a,. 55p,), dEShk,. 555,70}
< max{ d(55a,. 55p,), d(55b,. 554,11}
Letting n— 2, we obtain d(Sw, Su)< max{ d(Sw, Su), d(Sz, Sv) } (22)
and putting (a, b)= (5b,. 5, (p, Q)= (5g,. 51, ) in the inequality (1), we have
d(F(5by. Say ), F{5g,. 5p, D= 8(d(55h,, 55,0 d(55ay,, 558, ) max{ d(55k,. 55g,). d(55a,, 55p,0}
< max{ d(55b,,. 55q,,). d(55a,. 55p,)}
Letting n— 2, we obtain d(Sz, Sv)< max{ d(Sz, Sv) , d(Sw, Su) }. (22)
Combining with inequalies (21) and (22), we get
max{ d(Sw, Su) , d(Sz, Sv) }< max{ d(Sw, Su), d(Sz, Sv) }. It is contraction. Therefore, Sw=Su and Sz=Sv.
Now we shall show Sw=F(w, z), Sz=F(z, w) and Su=F(u, v), Sv=F(v, u).
From (i), we have
d(F(U, V): SW)‘:_: d(F(U, V), Spr! +1)+ d(Sar! +1 Spﬂ +1)+ d(Sar! +1 SW)
= d(F(u, V), F(Bn.» Gn)+ d(Saty 41, SPn+1)+ d(Say 14, SW)
= B(d(Su, Spn,), d(Sv: 5g5,)) max { d(Su, Spn,), d(Sv. 5g5))}+ d(Ser 41, SPr+1)t d(San+1, SW)
<max { d(Su, Sgn,,), d(SV. 5qn))}+ d(Say 41, SPr+1)+ d(Say g, SW)— 0 asn— o,
Therefore, d(F(u, v), Sw)=0 implies F(u, v)=Sw.
Similarly, we can show F(v, u)=Sz, F(w, z)=Su and F(z, w)=Sv.
Analogously, we can also obtain that F(u, v)=Sw=Su=F(w, z) and F(v, u)=Sz=Sv=F(z, w).
Now we prove Su=u, Sv=v and Sw=w, Sz=z.
Now consider,
d(Su, x¥n)=d(F(u, v), F(#n. g=))= 8(d(Su, Sp»), d(Sv, Sgx))max{ d(Su, Sp»), d(Sv, Sg»)}
<max{ d(Su, Sg,), d(Sv, Sg.)}.
Letting n = =2, we get d(Su, u)<max{d(Su, u), d(Sv, v)} (23)
and similarly, we shall show d(Sv, v)<max{d(Sv, v), d(Su, u)} (24)
Therefore, from (23) and (24), we get max{d(Su, u), d(Sv, v)}< max{d(Su, u), d(Sv, v)}, which implies that
Su=u and Sv=v. Similarly, we can prove Sw=w and Sz=z.
Therefore,
F(w, z)=w=Sw=Su=u=F(u, v) and F(z, w)=z=Sz=Sv=v=F(v, u), therefore, (u, v) A* N B? is coupled fixed point
of covariant mappings F and S.
Now we prove uniqueness, we begin by taking (u*, v*) € 4* U B be another coupled fixed point of F and S.
If (u*,v*) € A, then we have
d(u, u")=d(F(u, v), F(u". v"))
= @(d(Su, Su™}, d(Sv, Sr"}) max{ &(Su, Su"}, d(Sv, S¥*} }
< max{ d(Su, Su"}, d(Sv, Sv*1}
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=max{ d(u, u"}, d(v, ¥*) } (25)
and
d(v, ¥")=d(F(v, u), F(x".u"))
= 6(d(Sv,5v").d(Su, Su™) max{d(Sv.5v"). d(Su, Su*)}
< max{d(Sv, Sv*), d(Su, Su")}
= max{d(v, v" 1 d(u, u")} (26)
Combining (25) and (26), we get max{ d(u, u™}, d(v, *"} }< max{ d(u, u™}, d(v, ¥} }.
Therefore, d(u, «*)=0 and d(v, ¥*} = 0 implies that u= «* and v = v*. Similarly, if (u*.v*) € B?, then we have
u=u"and v = v*.Then (u, v) A* N B is unique common coupled fixed point of covariant mappings F and S.
Finally, we will show u=v.
d(u, v)=d(F(u, v), F(v, u))= &{d(Su, Sv), d(Sv, Su))max{ €(Su, Sv), d(Sv, Su)}
<max{ 2(Su, Sv), d(Sv, Su)}
= max{ d(u, v), d(v, u)} (27)
and
d(v, u)=d(F(v, u), F(u, v))= &{d(Sv, Su), d(Su, Sv))max{ &(Sv, Su), d(Su, Sv)}
< max{ €(Sv, Su), d(Su, Sv)}
= max{ d(v, u), d(u, v), } (28)
Combining (27) and (28), we get max{ d(u, v), d(v, u)}< max{ d(u, v), d(v, u)}.
Therefore, d(u, v)=0 implies that u=v. Hence (u, u) is common fixed point of F and S.
Corollary 2.5: Let (A, B, d) be a complete bipolar metric space, F: (4%, B%) =(A, B) be a covariant mapping
satisfying the condition
diF(a.b). F(p.q)) = 8(dla.p). d(b.q)) max{d(a, p), d(b, 9)}
where & € © and for all a, be 4, p, g€ B. Then the mapping F: A* UB* = AU B has a unique fixed point.
Theorem 2.6: Let (A, B, d) be a complete bipolar metric space, F: (4%, %) =(A, B) and S:(A, B) = (4. BJbe
two covariant mappings satisfying the following conditions
(W) d(F(a. b). F(p.q)) = 8(d(Sa.5p). d(5b.5gq)) max{d(Sa, Sp), d(Sb, Sq)}
Where & E© and a, be 4, p, qe E.
(¥.) F(4* U BYHE=S(AUB).
(13) The pair (F, S) is weakly compatible.
(1s) S(AUB) is closed in AUB.
Then the mappings F: A* U B* = AU B and S: AUB— AUB have unique common fixed point.
Proof. Let ag, by €A and gy, g €B and from Theorem 2.4, we construct the bi-sequences, ({cu, },{¥»}) and
{£.}{xn}) in (A, B) are Cauchy bi-sequences. Since (A, B, d) is complete, ({w, },{¥=}) and ({£,}.{x.}) are
converges sequences and its sub-sequences converges as follows

il_ﬂ f":'r!+1.:rl![_’n;‘= Flag. s bn+1:|:rl![_’n;‘= S8y 2=W, il_ﬂ ‘:rr!+1.:rl![_f£ F':br!+rﬂ'ﬂ+1.:]:rl![_f£ Sby2=7,
FEL_E?: }:n+::rl![_f£ F(Pn1e t?r!+1.:]:rl![_ﬂ SPn+2=U, FEL_E?: Kﬂ+::r|i|.'_’t?= F(gn+1:Pn +L:]:rl![_ﬂ SGn+2=V.

Since S( AUB is closed in (A, B, d), s0 {ey 41 }o{¥me1} {Enst h{km+1 IS S(AUB) are converges in the
complete bipolar metric spaces (S(A), S(B), d), therefore, there exist u, ve S(A), w, ze S(B) with

il_’n;‘: b +1=W ill_’rg £n+1=z and ikl_ﬂ Kn+1=U, ill_’rg Hne1=V.
Since S: AUB— AUB and u, ve S(A), w, ze S(B) , there exist I, me 4 and r, s€B such that Sl=u, Sm=v and
Sr=w, Ss=z.
Putting (a, b)= (@,. &4, (p, q)=(r. =) in the inequality (iy), we get
d(F( ey By, F(r, 8))= 8(d(Say, Sr), d(Sh,, Ss)) max{ d(Sa,, Sr), d(Sk,,, Ss)}

< max{ d(Sa,,, Sr), d(Sk;,, Ss)}.

Letting n— oz, it yields that rEl_,”i d{F(a,. b, ). F(r.5)) = rEl_‘tI:e max{ d(Sa,. 5r), d(5h,.5511=0.

It follows that F(r, s)=w=Sr. Similarly, we can show F(s, r)=z=Ss, F(l, m)=u=SI and F(m, I)=v=Sm.
Since (F, S) is o- compatible mappings, we have F(u, v)=Su, F(v, u)=Sv and F(w, z)=Sw, F(z, w)=Sz.
Now we shall prove that Su=u, Sv=v and Sw=w, Sz.
Consider,
d(SU, }:i’!):d(':(u! V)! F(pi‘!." qu"))£ 5‘( d(SU, Spi’!)l d(SV, St?i"))max{ d(SU, Spi’!)l d(SV, Squ")}
< max{ d(Su, Sgx,), d(Sv, Sg)}.

Letting n — =2, we get d(Su, u)<max{d(Su, u), d(Sv, v)} (29)
and similarly, we shall show d(Sv, v)<max{d(Sv, v), d(Su, u)} (30)
Therefore, from (29) and (30), we get max{d(Su, u), d(Sv, v)}< max{d(Su, u), d(Sv, v)}, which implies that
Su=u and Sv=v. Similarly, we can prove Sw=w and Sz=z.
Therefore,

F(r, s)=Sr=w=Sw=F(w, z), F(s, r)=Ss=z=Sz=F(z, w),
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and
F(l, m)=Sl=u=Su=F(u, v), F(m, I)=Sm=v=Sv=F(v, u),
On the other hand
d(S1, Sr)=d(u, w)=d( lim o lim @y )=lim d(en. 1a)=0
and

d(Sm, Ss)=d(v, 2)= d( lim r, , lim &, )=1im d(&n.%)=0.
So u=w and v=z. Therefore, (u, v) is coupled fixed point of F and S.
As in the proof of the Theorem 2.4, uniqueness of the coupled fixed point and unique common fixed point of F
and S can be shown easily.
Example 2.7: Let A = {U, (R)/U, (R) is upper triangular matrices over R} and

B = {L(R)/L:(R) is lower triangular matrices over R}.

Define d: Ax B— [0, %) asd (P, Q) = Zfl-. pya5| forall P=(py) € Ugy(R)
and Q = {qij}mxm e L,(R). Then obviously, (A, B, d) is a bipolar metric spaces.

Let the covariant maps F: (42, B?) =3 (A, B) be defined as F (P, Q) = ( + q:’)

& TR

(P= {p,]}m Q= {q,]}mm) € 42U B%and S:(A, B) =3 (A, B) be defined as S(P)=(3z;; )
where P = Ep,] EAUB

MXIm

L=n

d(F(P, Q). F(U, V))=d( (22 + qé’j'm* {ﬂ“*)m)

& 2
=IRL L+ (2
= :Eu 1 |F"|] |]|+ |] 1 |':l|] 1"|]|
qiE,] =1 |3Pij-3ﬂij |+- =1 |3'=1ij-31f“ij|

= imax{d(sp sv), d(SQ sSV)}
= E‘{d{SP 507, d(5Q. SVImax{d(SP, SU), d(SQ, SV)}.

Clearly F and S are satisfies all the conditions of Theorem 2.6 and{ Q' e, Omecm) 1S the coupled fixed point.
Definition 2.8: Let (A, B, d) be a bipolar metric space, F: (AxB E = A) =(A, B) be a covariant mapping. If
F(a, p)=aand F(p, a))=p for a= A and beB then (a, p) is called a coupled fixed point of F.
Theorem 2.9: Let (A, B, d) be a complete bipolar metric space, F: (AxB E = A) =%(A, B) and
S:(A, B) = [A. EJbe two covariant mappings satisfying the following conditions
(%) dFla.p), F(g.b)) = 8(d(Sa.5q). d(5b.5p)) max{d(Sa, Sq), d(Sb, Sp)}

Where & E© and a, be 4, p, qe E.
(#,) F((AxB) U (B x 4)) SS(AUB).
(#;) The pair (F, S) is compatible.
(#;) S is continuous
Then the mappings F: (A=xB} U (E = A)—= AUB and S: AUB— AUB have unique common fixed point.
Theorem 2.10: Let (A, B, d) be a complete bipolar metric space, F: (AxB E = 4) =(A, B) and
S:(A, B) = (A. EJbe two covariant mappings satisfying the following conditions
(%) dFla.p), F(g.b)) = 8(d(Sa.5q). d(5b.5p)) max{d(Sa, Sq), d(Sb, Sp)}

Where & E© and a, be 4, p, qe E.
(#,) F((AxB) U (B x 4)) SS(AUB).
(#4) The pair (F, S) is @-compatible.
(¥s5) S(AUB) is closed in AUB
Then the mappings F: (A=xB} U (E = A)— AUB and S: AUB— AUB have unique common fixed point.

,...

111.LAPPLICATION TO HOMOTOPY

Theorem 3.1: Let (A, B, d) be a complete bipolar metric space, (U, V) be an open subset of (A, B) and (&7, ¥) be
closed subset of (A, B) such that (U, V)< (T, V). Suppose H:(T* U ¥7%)= [0, 1]=AUB be an operator with
following conditions

(f2y) u=H(u, v, ¥) and v#H(v, u, ) for each u, v& UL 3V and x£[0, 1] (Here @UW 2Vis boundrary of ULV
in AUB)

() dlH (w, v, x), Hix,y,x)) = 80w, x), dv,v)) max{ dlu.x), d(v.v)}

Forallu,ve 7, x, ye ¥ and @ €0, k[0, 1]

(22;) 3 M>0 such that d(H (u, v, x), H(x v.{)) =Mlx — | forevery u, ve 77, x, ye ¥ and «.{ €[0, 1].
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Then H(., 0) has a coupled fixed point < H(., 1) has a coupled fixed point.
Proof. Let the set
X={x e [0.1]:u = H{wv.x). v = Hlv, u,x} for some u.v € U} and
Y={{ e [0.1]:u = H(x,v.{}), v =H{y.x.{) for some x.y €V}.
Since H(., 0) has a coupled fixed point in U* U ¥? we have that (0, 0) € X* n¥*, So that ¥* n ¥? is non-
empty set.
Now we show that X 1 ¥ is both closed and open in [0, 1] and hence by the connectedness X=Y=[0,1].
Let ({1 27z, £ dmna)S(X, Y) With (0. Za) —(x, O [0, 1] as n— oo,
We must show that k=g X N ¥. Since (#,.{,) €(X,Y) for n=0, 1, 2,..., there exist bi-sequences (uy, x,) and
(Vn, ¥n) With 2y =H (U, ¥ 8y), Prpa=H( W, U iy) and x5 =H(, ¥ae $0), Yoe o =HOR, 200 80).
Consider,
d(um -rr!+1.:]:d(H(ur!—1: V-1 il'ri'!—:l.)’ H(J.'ﬂ, Y ':-?r'))
= 8(d(un—1. ), AWy, ¥n)) Max{ d(un_y. x4), d(Vn_y, ¥)}
< max{ d(tn_1. %), d(Vn_1, ¥u)} (31)
and
d(vn, ¥a+1)=d(H(vn_y, U g Bn_y), HO%, 2n.n))
= B(d(vn-1, ¥n), d(ttn-1, %)) max{ d(vn_1, ¥n), d(un-s. %p) }
< max{ d(¥n—1, ¥n), d(tbn_g, )} (32)
Comﬂtiining (?%) and (3;2), we get
e S (4 ), s L
Letting n— 2, we get &(d(uy_y. xy), d(¥y_1, ¥ ))— 1. By the property of &, we obtain that
d(tp_1. x5)—0, d(vp_y, ¥,) =0 as n— o2,

Therefore, max{ d(zt;_1. x4), d(¥n_y, ¥)} =0 as n— o2, (33)
Similarly, , max{ d(uy.xn_1), d(¥%, ¥ _1)} =0 as n— oo, (34)
and , max{ d(zy.xy), d(t%, %)} =0 as n— o2, (35)
For each n, meN, n<m. Using the property (Ez), we have
d('ur!v -rrr.)':—:: d('ur!x -rr!+1)+ d(unﬂ.x ‘ri’!+1)+ --------- + d(ui‘ﬁ—ll -rrr.—l)'l' d(urr.—j.v -rrr.)
= B(d(un_y, ¥n), d(Vny, ¥a)) Max{ d(un_y, %4), d(¥n_s, ¥u)}
Ml oy — us+o + Ml _y — Gy
+B(dWm-z, Tm-1), d(Vm—z, ¥m 1)) Max{ d(Wm_z, ¥*m_1), d(Vim_z, ¥m-1)}
<max{ d(tn—1, %), d(@n_s, Yu) Mgy = GroslHo + Mgy — G|
+max{ d(um-z, *m-1), A(Vm-2, ¥m-1)} (36)
and
d(r"r!: }"rr.)d—: d(l:"i’!l ¥n +1.)+ d(l:"r!+1: ¥n +i)+ ---------- + d(“m—i’ }rrr.—i)"' d(v"m—ia }"rr.)
= B(d(vn_g, ¥n), d(un_g, xy)) max{ d(vn_y, ¥), d(tin_y, x0)}
+M|Nﬂ+1_fn+j_|+ ............ +Mlxm_1_fm_j_|
+ E(d('l:-'m_:, j"‘i"r.—i)i d(’um_:, -rr'r.—j_)) maX{ d(vm—:! j"‘i"r.—i)l d(ui‘f..—:v -rrr.—j_)}
<max{ d(¥n_1, ¥), d(2tn_1, 'ri’!)}+M|xi’! 1 in +1|+ ----------- + Mlxm—i - ';'rr.—il
+max{ d(¥m—z, ¥m-1), d(Um_z, Tm_1)} (37)

Combining (36) and (37), we get
max{ d(tn, Xm), d(¥n, ¥m)} < max{ d(un-1, ¥n), d(¥pn_4, }’ﬂ)}"'Mlxﬂ ot = Gnaal

+ max{ d(Um_z, Xm—_1), A(Vm_z, ¥m—_1)}— D asn— oo
It follows thati[m max{ dt,. 1) d (. ¥ 13 =0. Similarly, we can prove that

rl|[m| max{ d( iy, Xy ) d (¥ ¥, )} =0. Therefore, (u,.x,}and (1%, ¥, ) are Cauchy bi-sequences in (U, V). By the

completeness, there exist &, veU and 3, nEV with
lim u,=3, lim ¥,=n and lim x,=¢ lim y,=v. (38)
== === === ===
Now consider,
d(H(E, v, ¥), 8)= d(H(E, v, K),¥ n+1)+0(Uns 1 Xna 1)t d(in 41, 0)
= d(H(E, v, ), H{x g ¥ e JHA(H (20 v 8 0 H (000 900§ )+ d(44:0)
< B(d(§, xn), AV, ) max{ d(&, xn), d(v, ¥ )}+Ml. 1y — Znl
+ d(ur!+i* 8)
<max{ d(&, xy), d(v, ¥ )}+Ml. 5, — T+ d(2tp,1.8) =0 as n— oo,
It follows that d(H(E, v, ), )= 0 implies H(E, v, k)= 6. Similarly, we obtain H(v , &, k)=n and H(3, 1, {)=¢,
H(n, 3, O)=v.
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On the other hand
de, S)Zd{g_l_ggxw lim uy, Ht_gg d(tp.x)=0
and

dv, )= d( 1im yp ., Jim vy J=1im d(v3)=0.
Therefore, £&=8 and v=n and hence «=(. Thus (k, {) € X* N ¥*. Clearly, X* n ¥? is closed in [0, 1].
Let (xg, {p)E(X, Y), then there exist bi-sequences (ug, * ) and (¥, %) wWith wp=H (g, 1. &p), vp=H(vp, g &p)
and xg=H(x g, ¥5. {o), Yo =H(¥s, x5.). Since U2 U ¥ is open, then there exist r>0 such that
Xs(ug, NS U UVE Xy (vy, NS U? UV? and X (xp, 1)C U? U VE Xd (}D, ne v F:
Choose KE((D —€,{y + ), (E(%p — £, Ky + €) such that |x — 7| = <5 17—l =; < and
ey — &l == < then for xe By, (up, r)={x, o EV/d(up, X)*ir+d(un.,.rn)}
yE E‘XU,_,.{LD,T:] {y,},_, EV/d(v, y)=r+d(vp, ¥o)}, UE By (r. 2 )={u, up €V/d(u. xp)=r+d(up, %)} and
VE By (. v )={v, v €V/d(v. ¥p)=r+d(vo, ¥)}-
Also,
d(H(u, v, ), xg)= d(H(u, v, x), H(xp.%.4 )
=dH(u v, %), H(X, y, . L) +d(H(ug. v, 6}, HX, y, 2 o))
+ d(H (ug.vp. &), H(xp.3.8))
x), d(¥p, y)) max{ d(ug, x), d(ve, y)}-
Letting n— &2, we get d(H(u Vv, K), X< max{ d(uyg, x), d(vg, y) }- (39)
Similarly, we show that d(H(v, u, k), ¥y} < max{ d(ug, x), d(¥g, y)}. (40)
Combining (39) and (40), we get
Max{ d(H(u, v, ¥), ¢}, d(H(v, u, x), ¥3} }< max{ d(ug, x), d(vp, y)}
< max{r+ d(ug, xp), r+d (¥, ¥p)}
Similarly, we show that max{d(up, H(x,y, 0)), d(vg, H(y, %, {))}< max{r+ d(y, x), r+d (v, 7))}
On the other hand
d(ug, x0)=d(H (o, vo: %o), H(xo, ¥o.50))=Mlicy — G| = M —-<—— — Dasn— @,
and

d(vg, ¥p)=d(H(vg, ug. %g), HOG, 0.80))=Mlxy — &l = M w-<w- -1

S0 uy= xyand ;=3 and hencex = {. Thus for each fixed & € (% — €, &y + £),

H(., K): By (tig. ¥) = By (tig. r) and H(, K): By y (¥5.7) = Byyy (Vg ¥). Then all the conditions of
Theorem 3.1 are satisfied. Thus we conclude that H(,, k) has a coupled fixed point in(7* rn ¥?). But this
must be in U* n V2,

Therefore, (k, )€ X* N¥? for x €(xy — €, 1 + €). Hence (rp — €, &y + €)C X* NV, Clearly, X% N ¥Zis
openin [0, 1].

To prove the reverse, we can use the similar process.

— [ asn— o2,

IV.CONCLUSIONS

In this paper we conclude some applications to homotopy theory by using coupled fixed point theorems in
Bipolar metric spaces.
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