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Abstract: 

In this paper we introduce in new concept call 2-isolate inclusive sets in graphs. Every 2-isolate 

inclusive set is an isolate inclusive set of 𝐺 . We characterize maximal 2-isolate inclusive set of a graph. We 

deduce that every maximal 2-isolate inclusive sets of 𝐺 is a distance-2 dominating set of 𝐺. We also define    2-

isolate inclusive number of a graph and we observe that it is less then or equal to isolate inclusive number of the 

graph. We also prove that if the  < 𝑆 > has the maximum number of 2-isolated vertices among all the 2-isolate 

inclusive sets then 𝑆 is a maximum  2-packing of 𝐺. We also prove several other related results. 
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I. INTRODUCTION  
The concept of isolate inclusive set was introduced in [3]. Several interesting results have been proved 

about isolate inclusive sets. We now introduce a new concept called 2-isolate inclusive sets in graphs. If 

S ⊂ V(G) and 𝑣 ∈ 𝑆 then 𝑣 is said to be 2-isolated vertex in 𝑆. If 𝑑 𝑣, 𝑢 > 2 distance between 𝑣 and 𝑢 stractly 

grather then 2, for all 𝑢 ∈ 𝑆 if 𝑢 ≠ 𝑣. A set 𝑆 of vertices is said to be 2-isolate inclusive set if it contains a 2-

isolated vertex. We consider maximum 2-isolate inclusive sets and  maximal 2-isolate inclusive sets in graphs. 

We prove that every maximal 2-isolate inclusive set is a distance-2 dominating set of 𝐺. 

 

We observe that isolate inclusive number [3] of any graph is at least as be as 2-isolate inclusive number 

of the graph. We further observe that if a graph has an isolated vertex then it has only one 2-isolate inclusive set 

namely vertex set of the graph. 

 

Here, we also introduce 2-isolate distance-2 dominating set in graphs. We further study the effect of 

removing a vertex from the graph on 2-isolate distance-2 domination number of a graph. We also consider the 

operation of edge removal an observe its effect on 2-isolate distance-2 domination number of the graph.  

 

II. PRELIMINARIES AND NOTATIONS 

If 𝐺 is a graph then 𝑉 𝐺  denotes the vertex set of the graph 𝐺 and  𝐸(𝐺) denotes the edge set of the 

graph  𝐺. If 𝑣 is vertex of the graph 𝐺 then 𝐺 − 𝑣 is the subgraph of 𝐺 induced by all the vertices different from  

𝑣.  

We will consider only simple undirected graphs with finite vertex set. 

 

III. DEFINITIONS AND EXAMPLES 

Definition 3.1 (2-isolated vertex ) : 

Let G be a graph and S ⊂ V(G) a vertex 𝑣 ∈ 𝑆 is said to be 2-isolated vertex of S if 𝑑 𝑣, 𝑢 > 2, for all 𝑢 ∈ 𝑆 

with 𝑢 ≠ 𝑣. 

 

Definition 3.2 (2-isolate inclusive set ) : 

Let G be a graph and S ⊂ V(G) then  𝑆 is said to be 2-isolate inclusive set if 𝑆 contains a  2-isolated vertex. 

       It is obvious that every 2-isolated vertex of 𝑆 is an isolated vertex of 𝑆 and every 2-isolate inclusive is an 

isolate inclusive set. 

Example 3.3: Consider the path graph 𝑷𝟓 with 5 vertices {𝟏 , 𝟐 , 𝟑 , 𝟒, 𝟓} 

 

 
Let 𝑆 =  1, 2, 5 . 
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In 𝑆, 5 is a 2-isolated vertex of  𝑆 and therefore 𝑆 is a 2-isolate inclusive set. 

  

Consider the path graph  𝑃5  as above. 

And let 𝑇 =  1, 2, 4 . Then 4 is an isolate in 𝑇 but it is not 2-isolate of 𝑇. 

 

Remark 3.4: 

Let 𝐺 be a graph and 𝑣 ∈ 𝑉(𝐺). Then 𝑣 is 2-isolated vertex of 𝑉(𝐺) if and only if 𝑣 is an isolated vertex of  𝐺. 

Definition 3.5 (2-packing ) :[7] 

Let G be a graph and S ⊂ V(G) then  𝑆 is said to be a 2-packing if 𝑑 𝑢, 𝑣 > 2, for all 𝑢, 𝑣 ∈ 𝑆. 

Let G  be a graph. A 2-packing of G  with maximum cardinality is called maximum 2-packing of G . The 

cardinality of a maximum 2-packing is called the packing number of G and it is denoted as 𝛿 G . 

Remark 3.6: 

Let 𝑆 be a 2-packing of G then every vertex of 𝑆 is a 2-isolated vertex of 𝑆. 

 

Definition 3.7 (maximum 2-isoinc set) : 

Let 𝐺 be a graph. A 2-isolate inclusive set with maximum cardinality is called a maximum 2-isoinc set and its 

cardinality is denoted as   𝛽2𝑖𝑠 𝐺 . 

 

Example 3.8: Consider the path graph P5 with 5 vertices {1 , 2 , 3 , 4, 5} 

 

 
Let 𝑆 =  1, 2, 5  then 𝑆 is a maximum 2-isoinc set and  𝛽2𝑖𝑠 5 = 3. 

 𝛽2𝑖𝑠 𝐺 =  𝑆 ≤  𝛽𝑖𝑠 𝐺  

 𝛽2𝑖𝑠 𝐺 ≤  𝛽𝑖𝑠 𝐺  

 

Example 3.9: Consider the cycle graph C5 with 5 vertices {1 , 2 , 3 , 4, 5} 

 

 

Let S =  1, 2, 3, 5   then  𝛽𝑖𝑠 𝐺 = 4 and  

Let 𝑆 =  1, 2, 5   then  𝛽2𝑖𝑠 𝐺 = 3. 

Therefore  𝛽2𝑖𝑠 𝐺 <  𝛽𝑖𝑠 𝐺 . 

 

Definition 3.10 (maximal 2-isoinc set) : 

Let 𝐺 be a graph and S ⊂ V(G) be a 2-isoinc set then S is said to be a maximal 2-isoinc set if it is not properly 

contain in any isoinc set. Obviously every maximum 2-isoinc set is a maximal isoinc set. 

 

Example 3.11: Consider the path graph P5 with 5 vertices {1 , 2 , 3 , 4, 5} 

 

 
Let 𝑆 =  2, 5  then 𝑆 is a maximal 2-isoinc set but it is not a maximum 2-isoinc set. 

 

Definition 3.12 (distance-𝒌 dominating set) :[7] 

Let 𝐺 be a graph and 𝑆 ⊂ 𝑉(𝐺). Then 𝑆 is said to be a distance-𝑘 dominating set, if for every 𝑣 ∈ 𝑉 𝐺 − 𝑆, 

there is a vertex 𝑢 in 𝑆 such that 𝑑 𝑣, 𝑢 ≤ 𝑘,  𝑘 ≥ 1 .  

 

Definition 3.13 (distance-𝟐 open neighbourhood) :[7] 

Let 𝐺 be a graph and 𝑣 ∈ V(G). Then the distance-2 open neighbourhood of  𝑣, 
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𝑁2 𝑣 =  𝑢 ∈ 𝑉 𝐺 ∋ 𝑢 ≠ 𝑣 & 𝑑 𝑢, 𝑣 ≤ 2  also the distance- 2  close neighbourhood of 𝑣 ,                    

 𝑁2 𝑣 = 𝑁2 𝑣 ∪  𝑣 . 
 

Definition 3.14 (2-degree of vertex) : 

Let 𝐺  be a graph and 𝑣 ∈ V(G). Then the cardinality of  𝑁2 𝑣   will be called the 2-degree of vertex. The 

minimum 2-degree of a graph 𝐺 will be denoted as 𝛿2 𝐺 . 

 

Example 3.15: Consider the path graph P5 with 5 vertices {1 , 2 , 3 , 4, 5} 

 

 
Note that if 𝑣 is an isolated vertex then 2-degree of 𝑣 = 0. Conversely, also if 2-degree of 𝑣 = 0 then 𝑣 is an 

isolated vertex. 

If 𝑑 𝑣 = 1 then it is not necessary that 𝑑2 𝑣 = 1. 

 

Example 3.16: Consider the path graph P5 with 5 vertices {1 , 2 , 3 , 4, 5} 

 

 

 

Here, 𝑑 1 = 1 but 𝑑2 1 = 1. 

 

Definition 3.17 (distance-𝟐 dominating set) :[7] 

Let 𝐺 be a graph and 𝑆 ⊂ 𝑉(𝐺). Then 𝑆 is said to be a distance-2 dominating set if for every 𝑣 ∈ 𝑉 𝐺 − 𝑆, 

there is a vertex 𝑢 in 𝑆 such that 𝑑 𝑣, 𝑢 ≤ 2.  

 

A distance-2 dominating set with minimum cardinality is called a minimum distance-2 dominating set. 

 

The cardinality of a minimum distance-2 dominating set is called the distance-2 domination number of the 

graph and it is denoted as 𝛾≤2 𝐺 . 

 

Definition 3.18 (minimal distance-𝟐 dominating set) :[7] 

A distance-2 dominating set 𝑆 is said to be a minimal distance-2 dominating set if 𝑆 −  𝑣  is not a distance-2 

dominating set, for each 𝑣 ∈ 𝑆. 

  

Note that every minimum distance-2 dominating set is minimal distance-2 dominating set. 

 

Definition 3.19 (𝟐-isolate distance-𝟐 dominating set) : 

Let 𝐺 be a graph and 𝑆 ⊂ 𝑉(𝐺). Then 𝑆 is said to be a 2-isolate distance-2 dominating set if  

(1) 𝑆 is a distance-2 dominating set 

(2) < 𝑆 > contains a 2-isolated vertex. 

 

Let G be a graph. A 2-isolate distance-2 dominating set with minimum cardinality is called a minimum 2-isolate 

distance-2 dominating set. It is denoted as 𝛾0≤2-set. 

 

The cardinality of a 𝛾0≤2-set is called the 2-isolate distance-2 domination number of the graph and it is denoted 

as 𝛾0≤2 𝐺 . 

 

Example 3.20: Consider the path graph P5 with 5 vertices {1 , 2 , 3 , 4, 5} 

 

 
Let 𝑆 =  2, 5  then 𝑆 is a minimum 2-isolate distance-2 dominating set of a graph. 
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Let 𝑇 =  1, 4, 7  then 𝑇 is a minimum 2-isolate distance-2 dominating set of a graph. 

Note that  𝑇 <  𝑆 . 

 

Definition 3.21 (distance-𝟐 private neighbourhood) : 

Let G be a graph and S ⊂ V(G) and 𝑣 ∈ 𝑆. Then distance-2 private neighbourhood of 𝑣 with respect to the set  S 

is equal to   𝑃𝑟𝑛𝑑 2 𝑣, 𝑆 =  𝑤 ∈ 𝑉 𝐺 ∋ 𝑁2 𝑤 ∩ 𝑆 =  𝑣  . 

 

Remark 3.22: 

Let 𝐺 be a graph, 𝑣 ∈ 𝑉(𝐺) and 𝑣 ∈ 𝑆. 

(1)  If 𝑑 𝑣, 𝑢 > 2 for every 𝑢 ∈ 𝑆 with 𝑢 ≠ 𝑣 then 𝑣 ∈ 𝑃𝑟𝑛𝑑 2 𝑣, 𝑆 . 
(2)  If 𝑥 ∈ 𝑆 and 𝑥 ≠ 𝑣 then 𝑥 ∉ 𝑃𝑟𝑛𝑑 2 𝑣, 𝑆 . 
(3)  If 𝑤 ∈ 𝑉 𝐺 − 𝑆 then 𝑤 ∈ 𝑃𝑟𝑛𝑑 2 𝑣, 𝑆  if and only if 𝑣 is the only vertex in 𝑆 whose distance from 𝑤 is ≤ 2. 

 

Example 3.23: Consider the cycle graph C7 with 7 vertices {1 , 2 , 3 , 4, 5, 6, 7} 

 

 
 

Let 𝑆 =  2, 5 . Let 𝑣 =  2 . 

(1)  𝑣 ∉ 𝑃𝑟𝑛𝑑 2 𝑣, 𝑆  because 𝑣 ∈ 𝑆, 1 ∈ 𝑆 and 𝑑 𝑣, 1 ≤ 2. 

(2)  1 ∉ 𝑃𝑟𝑛𝑑 2 𝑣, 𝑆  because 1 ∈ 𝑆 and 1 ≠ 𝑆. 

(3)  3 ∉ 𝑆 but 3 ∈ 𝑃𝑟𝑛𝑑 2 𝑣, 𝑆  because 𝑑 3, 2 ≤ 2 and also 𝑑 3, 1 ≤ 2. 

(4)  4 ∉ 𝑆 but 4 ∈ 𝑃𝑟𝑛𝑑 2 𝑣, 𝑆  because 𝑑 4, 𝑣 = 2 and also 𝑑 4, 1 = 3. Which is > 2.  

       Similarly  5 ∈ 𝑃𝑟𝑛𝑑 2 𝑣, 𝑆 . 
(5)  6 ∉ 𝑆 but 6 ∉ 𝑃𝑟𝑛𝑑 2 𝑣, 𝑆  because 𝑑 6, 𝑣 = 3 > 2. 

 

IV. MAIN RESULT 

Proposition 4.1:  Let 𝐺   be a graph,  S ⊂ V(G) and 𝑣 ∈ S then 𝑣  is a 2-isolated vertex of 𝑆  if and only if 

𝑁 𝑣 ∩ 𝑁 𝑢 = ∅, for every 𝑢 ∈ 𝑆 with 𝑢 ≠ 𝑣. 

 

Proof: Suppose 𝑣 is 2 -isolated in 𝑆 and suppose 𝑢 is in 𝑆, 𝑁 𝑣 ∩ 𝑁 𝑢 ≠ ∅. 

Let 2 ∈ 𝑁 𝑣 ∩ 𝑁 𝑢 . Then 𝑣 is adjacent to 2  and 2 is adjacent to 𝑢. 

Therefore 𝑑 𝑣, 𝑢 ≤ 𝑑 𝑣, 𝑧 + 𝑑 𝑧, 𝑢 = 1 + 1 = 2. 

This is a contradiction. 

Therefore for every 𝑢 ∈ 𝑆 with 𝑢 ≠ 𝑣. 

𝑁 𝑣 ∩ 𝑁 𝑢 = ∅. 

 

Conversely, suppose condition is holds. 

Then 𝑑 𝑣, 𝑢 > 2, for every 𝑢 ∈ 𝑆 with 𝑢 ≠ 𝑣. 

Therefore 𝑣 is 2 isolated in 𝑆▐ 

 

Proposition 4.2: Let 𝑆  be a 2-isoinc set and  𝑣 ∈ 𝑉 𝐺 − 𝑆. Then 𝑆 ∪  𝑣  is not a 2-isoinc set if and only if  

𝑑 𝑣, 𝑢 ≤ 2, for all 2-isolated verties  𝑢 of 𝑆. 

 

Proof: Suppose 𝑆 ∪  𝑣  is not a 2-isoinc set. 

Then 𝑑 𝑢, 𝑥 ≤ 2, for every isolate 𝑢 of 𝑆 and for some 𝑥 ∈ 𝑆 ∪  𝑣  but 𝑑 𝑢, 𝑤 > 2. 

For each 𝑤 ∈ 𝑆 therefore 𝑑 𝑢, 𝑣 ≤ 2, for each 2-isolated vertex 𝑢 of 𝑆. 
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Conversely, suppose 𝑑 𝑢, 𝑣 ≤ 2, for each 2-isolated vertex 𝑢 of 𝑆. 

Then obviously 𝑆 ∪  𝑣  does not have any 2-isolated vertex.▐ 

 

Theorem 4.3: Let 𝐺  be a graph and 𝑆 be a 2-isoinc set of  𝐺. Then 𝑆 is a maximal 2-isoinc set if and only if for 

every 𝑣 ∈ 𝑉 𝐺 − 𝑆, 𝑆 ∪  𝑣  is not a 2-isoinc set of  𝐺. 

 

Proof: Suppose 𝑆 is maximal 2-isoinc set. 

Let 𝑣 ∈ 𝑉 𝐺 − 𝑆. Since  𝑆 ∪  𝑣  properly contain 𝑆, 𝑆 ∪  𝑣  cannot be a 2-isoinc set of  𝐺. 

 

Conversely, suppose the condition holds. 

Suppose 𝑇 ⊂ 𝑉 𝐺  is such that 𝑆 is a proper subset of 𝑇 if 𝑇 = 𝑆 ∪  𝑣  for some 𝑢 ∈ 𝑉 𝐺 − 𝑆 then by the 

given condition 𝑇 cannot be a 2-isoinc set of  𝐺. 

Therefore  we may assume that  𝑇 −  𝑆 ≥ 2 . 

Let 𝑣 ∈ 𝑇 − 𝑆 by the given condition 𝑆 ∪  𝑣  does not have any 2-isolated vertex. 

Let 𝑢 ∈ 𝑇 − 𝑆 be such that 𝑆 ∪  𝑢  does not have any 2-isolated vertex.  

Continuing this way, we see that  𝑇 = 𝑆 ∪  𝑥1, 𝑥2, ………… , 𝑥𝑘  is not a 2 -isoinc set 

𝑇 − 𝑆 =  𝑥1, 𝑥2, ………… , 𝑥𝑘 . 

Thus, the theorem is prove. ▐ 

 

Theorem 4.4: Let 𝐺  be a graph with  𝛽2𝑖𝑠 𝐺 ≥ 2 then  𝛽2𝑖𝑠 𝐺 <  𝛽𝑖𝑠 𝐺 . 

 

Proof: Let 𝑆 be a maximum 2-isoinc set of  𝐺. 

Let 𝑣, 𝑣 ′ ∈ 𝑆 and assume that 𝑣 is 2-isolated vertex of 𝑆. Then 𝑑 𝑣, 𝑣 ′ > 2. 

Suppose 𝑑 𝑣, 𝑣 ′ = 3. 

Let 𝑣𝑢1𝑢2𝑣
′  with a shortest path joining 𝑣 & 𝑣 ′  in 𝐺. Then 𝑢1 ∉ 𝑆 and 𝑢2 ∉ 𝑆. 

Also note that 𝑢2 is not adjacent to 𝑣. 

Let 𝑆1 = 𝑆 ∪  𝑢2 . Since 𝑣 is not adjacent to 𝑢2 and 𝑣 is also not adjacent to any vertex of 𝑆. It follows that 𝑣 is 

not adjacent to any vertex of  𝑆1. 

Therefore 𝑆1 is an isoinc set of 𝐺. 

Therefore  𝛽𝑖𝑠 𝐺  ≥  𝑆1 >  𝑆 = 𝛽2𝑖𝑠 𝐺 . 

Thus  𝛽2𝑖𝑠 𝐺 <  𝛽𝑖𝑠 𝐺 . ▐ 

 

Remark : If  𝛽2𝑖𝑠 𝐺 = 1 then the above theorem is not true. 

 

Example 4.5: Consider the triangle with vertices {1 , 2 , 3} 

 
 

 

Then 𝛽𝑖𝑠 𝐺 = 1 and  𝛽2𝑖𝑠 𝐺 = 1. 

However, it is also not true that  𝛽𝑖𝑠 𝐺 =  𝛽2𝑖𝑠 𝐺  if  𝛽2𝑖𝑠 𝐺 = 1. 

 

Example 4.6: Consider the path graph 𝐺 = 𝑃3 with 3 vertices {1 , 2 , 3} 
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Here,  𝛽2𝑖𝑠 𝐺 = 1 and  𝛽𝑖𝑠 𝐺 = 2. 

 

Theorem 4.7: Let 𝐺 be a graph and 𝑆 ⊂ 𝑉 𝐺  be a 2-isoinc set of  𝐺. Then 𝑆 is a maximal 2-isoinc set if and 

only if  for each 𝑣 ∈ 𝑉 𝐺 − 𝑆, 𝑑 𝑣, 𝑢 ≤ 2 for every 2-isolated vertex 𝑢 of 𝑆. 

 

Proof: Suppose 𝑆 is a maximal and 𝑣 ∈ 𝑉 𝐺 − 𝑆. 

Let 𝑆1 = 𝑆 ∪  𝑣 . Then 𝑆1 does not have any 2-isolated vertex. This means that 𝑑 𝑣, 𝑢 ≤ 2 for every 2-isolated 

vertex 𝑢 of 𝑆, 𝑆 ∪  𝑣  cannot have any 2-isolated vertex. 

Thus, 𝑆 is a maximal 2-isoinc set of  𝐺. 

 

Corollary 4.8: Let 𝐺 be a graph and 𝑣 be an isolated vertex of 𝐺. If 𝑆 is any maximal 2-isoinc set then 𝑣 ∈ 𝑆. 

 

Proof: Suppose for some maximal 2-isoinc set 𝑆, 𝑣 ∉ 𝑆. Then 𝑑 𝑣, 𝑢 ≤ 2, for every 2-isolated vertex 𝑢 of 𝑆. 

This implies that 𝑣 is not a isolated vertex in 𝐺. 

Which is a contradiction. 

Thus the result is proved. 

 

Corollary 4.9: Let 𝐺  be a graph and 𝑆 ⊂ 𝑉 𝐺  be a maximal 2 -isoinc set of 𝐺 . Then 𝑆  is a distance- 2 

dominating set of G. 

 

Proof: Let 𝑣 ∈ 𝑉 𝐺 − 𝑆. 

By theorem-4.5, 𝑑 𝑣, 𝑢 ≤ 2 for every 2-isolated vertex 𝑢 of 𝑆. 

There is a vertex 𝑢 in 𝑆 which is a 2-isolated vertex of 𝑆. 

Therefore 𝑑 𝑣, 𝑢 ≤ 2. 

Thus 𝑆 is a distance-2 dominating set of  𝐺. ▐ 

 

Example 4.10: Consider the path graph 𝑃5 with 5 vertices {1 , 2 , 3 , 4, 5} 

 

 
Note that if 𝑣 is an isolated vertex then 𝛿2 𝑣 = 0. Conversely also if 𝛿2 𝑣 = 0 then 𝑣 is an isolated vertex. 

If 𝑑 𝑣 = 1 then it is not necessary that 𝑑2 𝑣 = 1. 

 

Theorem 4.11: Let 𝐺 be a graph and 𝑣 ∈ 𝑉 𝐺 ∋ 𝑑2 𝑣 = 𝛿2 𝑣 . Let 𝑇 = 𝑉 𝐺 − 𝑁2 𝑣  then 𝑇 is a maximum  

2-isoinc set of 𝐺.   

 

Proof: Obviously, 𝑇 is a 2-isoinc set of 𝐺.  

Suppose 𝑇 is not a maximum 2-isoinc set of 𝐺. 

Then there is a  2-isoinc set of 𝐺 such that  𝑆 >  𝑇 . 

Let 𝑥 be any 2-isolated vertex of 𝑆. Then 

(1) 𝑑2 𝑣 = 𝛿2 𝑣 .  

(2) 𝑁2 𝑥 ⊂ 𝑉 𝐺 − 𝑆. 

Therefore 𝑆 ⊂ 𝑉 𝐺 − 𝑁2 𝑥 ⊂ 𝑉 𝐺 − 𝑁2 𝑥 = 𝑇 and  

Therefore  𝑆 ≤  𝑇 . 

Which is a contradiction. 

Therefore 𝑇 is a maximum 2-isoinc set of 𝐺. ▐ 

 

Theorem 4.12: Let 𝐺 be a graph and 𝑇 be a maximum 2-isoinc set of 𝐺. Then there is 𝑣 ∈ 𝑇 ∋ 𝑑2 𝑣 = 𝛿2 𝐺  

and  𝑇 = 𝑉 𝐺 − 𝑁2 𝑣 . 

 

Proof: Let 𝑣 be any isolated vertex of < 𝑇 > then 𝑁2 𝑣 ⊂ 𝑉 𝐺 − 𝑇 or  𝑇 ⊂ 𝑉 𝐺 − 𝑁2 𝑣 . 

Now 𝑉 𝐺 − 𝑁2 𝑣  is an isoinc set of  𝐺 and also note that  𝑇 ≤  𝑉 𝐺 − 𝑁2 𝑣  . 
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Therefore 𝑇 be a maximum 2-isoinc set of 𝐺. 

 𝑇 =  𝑉 𝐺 − 𝑁2 𝑣  . Since 𝑇 ⊂ 𝑉 𝐺 − 𝑁2 𝑣 , 𝑇 = 𝑉 𝐺 − 𝑁2 𝑣 . 

Suppose 𝑑2 𝑣 > 𝛿2 𝐺 . 

Let 𝑥 be a vertex of  𝐺 such that 𝑑2 𝑥 = 𝛿2 𝐺 , by above theorem-4.8 𝑉 𝐺 − 𝑁2 𝑣 is a maximum 2-isoinc 

set of 𝐺. Since 𝑑2 𝑣 > 𝑑2 𝑥 . 

 𝑉 𝐺 − 𝑁2 𝑣  <  𝑉 𝐺 − 𝑁2 𝑥  .  

Then this implies that 𝑉 𝐺 − 𝑁2 𝑣  is not a maximum 2-isoinc set of 𝐺. 

Which is a contradiction. 

Thus 𝑑2 𝑣 = 𝛿2 𝐺 . ▐ 

 

Corollary 4.13: Let 𝐺 be a graph and 𝑣 be an isolated vertex then 𝑉 𝐺  is the only maximum 2-isoinc set of 𝐺.  

 

Proof: Since 𝑣 is an isolated vertex, 𝑁2 𝑣 = ∅ and by the above theorem, 𝑉 𝐺 − 𝑁2 𝑣 = 𝑉 𝐺  is a 

maximum 2-isoinc set of 𝐺.  

If  𝑆 is a proper subset of 𝑉 𝐺  then obviously 𝑆 cannot be a maximum 2-isoinc set of 𝐺.  

Thus  𝑉 𝐺  is the only maximum 2-isoinc set of 𝐺. ▐ 

 

Theorem 4.14: Let 𝐺 be a graph and 𝑆 ⊂ 𝑉 𝐺  be such that < 𝑆 > has the maximum number of  2-isolated  

vertex among all the 2-isoinc set of 𝐺. Then 𝑆 is a maximum 2-paking of 𝐺.  

 

Proof: Let 𝑆1 be the set of all 2-isolated  vertices of  < 𝑆 >. 

Let 𝑀 be a maximum 2-paking of 𝐺. Then  𝑆1 ≥  𝑀 = 𝛿 𝐺 . 

Note that  𝑆1 itself  2-paking of 𝐺 with  𝑆1 ≥  𝑀 . 

Therefore  𝑆1 =  𝑀 . 

Thus 𝑆1  is a maximum 2-paking of 𝐺.  

Suppose  𝑆 >  𝑆1 . Let 𝑥 ∈ 𝑆 ∋ 𝑥 ∉ 𝑆. Since 𝑆1is a maximum 2-paking, 𝑑 𝑥, 𝑦 ≤ 2, for some 𝑦 in 𝑆1 but then 

this means that 𝑦 is not a 2-isolated  vertices in the  < 𝑆 >. 

Which is a contradiction. 

Thus  𝑆1 =  𝑆  and hence 𝑆1 = 𝑆 and  

Therefore 𝑆 is a maximum 2-paking of 𝐺. ▐ 

 

Proposition 4.15: If 𝑆 is a maximum 2-isoinc set then 𝑆 is a 2-isolate distance-2 dominating set of 𝐺. 

 

 Proof: Let 𝑣 ∈ 𝑉 𝐺 − 𝑆. 

Then by theorem-4.5, there is a vertex 𝑢 in 𝑆 such that 𝑑 𝑣, 𝑢 ≤ 2. 

Thus 𝑆 is a 2-isolate distance-2 dominating set of 𝐺. ▐ 

 

Theorem 4.16: Let 𝑆 is a maximum 2-isoinc set of 𝐺  

(1) For each 2-isolated vertex 𝑣 of 𝑆, 𝑁2 𝑣 = 𝑉 𝐺 − 𝑆. 

(2) If 𝑢 and 𝑣 are 2-isolates of 𝑆 then 𝑑2 𝑢 = 𝑑2 𝑣 . 

 

Proof: (1) Let 𝑣 be an 2-isolated vertex of 𝑆 then 𝑁2 𝑣 ⊂ 𝑉 𝐺 − 𝑆. 

Let 𝑥 ∈ 𝑉 𝐺 − 𝑆 . 

Since 𝑆 is maximal, 𝑑 𝑥, 𝑤 ≤ 2, every 2-isolated vertex  𝑤 of 𝑆. 

Therefore 𝑥 ∈ 𝑁2 𝑣 . 

Thus 𝑁2 𝑣 = 𝑉 𝐺 − 𝑆. 

 

(2) If 𝑢 and 𝑣 be two 2-isolates of 𝑆 then 

 𝑑2 𝑢 =  𝑁2 𝑢  =  𝑉 𝐺 − 𝑆 =  𝑁2 𝑣  = 𝑑2 𝑣 . 

Thus 𝑑2 𝑢 = 𝑑2 𝑣 . ▐ 
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Remark 4.17: Let 𝐺 be a graph and 𝑣 be an isolated vertex in 𝐺. It is obvious that 𝑑 𝑥, 𝑦  in 𝐺 is equal to 

𝑑 𝑥, 𝑦  in 𝐺 − 𝑣 as 𝑣 is an isolated vertex in 𝐺. 

 

Theorem 4.18: Let 𝐺 be a graph and 𝑣 be an isolated vertex in 𝐺. Then 𝛾≤2 𝐺 ≤ 𝛾≤2 𝐺 − 𝑣  if and only if for 

every minimum 2-isolate distance-2 dominating set 𝑆 of 𝐺. The following condition is satisfied 

C: 𝑣 is the only 2-isolated vertex in the < 𝑆 >. 

 

Proof: Suppose 𝛾≤2 𝐺 ≤ 𝛾≤2 𝐺 − 𝑣 .  

Let 𝑆 be any minimum 2-isolate distance-2 dominating set of 𝐺. Since 𝑣 is an isolated vertex of 𝐺, 𝑣 ∈ 𝑆. 

Suppose there is vertex 𝑣 ′ ∈ 𝑆 ∋  𝑣 ′ = 𝑣 & 𝑣 ′  is 2-isolated vertex of 𝑆. 

Now let 𝑆1 = 𝑆 −  𝑣 . Consider the subgraph 𝐺 − 𝑣. 

Let 𝑥 ∉ 𝑆1. Then there is a vertex 𝑦 in 𝑆 such that 𝑑 𝑥, 𝑦 ≤ 2 in 𝐺. Obviously 𝑦 ≠ 𝑣. 

Therefore 𝑑 𝑥, 𝑦 ≤ 2 in 𝐺 − 𝑣 also. 

Thus 𝑆1 is a 2-isolate distance-2 dominating set of 𝐺 − 𝑣. 

Therefore 𝛾≤2 𝐺 − 𝑣 ≤  𝑆1 <  𝑆 = 𝛾≤2 𝐺 . 

This contradict the hypothesis that  𝛾≤2 𝐺 ≤ 𝛾≤2 𝐺 − 𝑣 . 

Therefore 𝑣 is the only 2-isolated vertex of  𝑆. 

 

Conversely, suppose the condition is satisfied. 

For any minimum 2-isolate distance-2 dominating set of 𝐺. 

Let 𝑇 be any set of vertices of 𝐺 − 𝑣 such that  𝑇 < 𝛾≤2 𝐺 . 

Suppose 𝑇 is a 2-isolate distance-2 dominating set in 𝐺 − 𝑣. 

Let 𝑥 be any vertex of 𝐺 such that 𝑥 ≠ 𝑣 and 𝑥 ∉ 𝑇. There is a vertex 𝑦 in 𝑇 such that 𝑑 𝑥, 𝑦 ≤ 2 in 𝐺 − 𝑣. 

Since 𝑣 is an isolated vertex, by the above remark 𝑑 𝑥, 𝑦 ≤ 2 in 𝐺 also. 

Note let 𝑆 = 𝑇 ∪  𝑣  then 𝑆 is a minimum 2-isolate distance-2 dominating set of 𝐺. 

Then  𝑆 = 𝛾≤2 𝐺  and 𝑆 contains two 2-isolated vertices including 𝑣.  

Which is a contradicyion. 

Therefore if  𝑇 < 𝛾≤2 𝐺  then 𝑇 cannot be 2-isolate distance-2 dominating set of 𝐺. 

Therefore  𝑇 ≥ 𝛾≤2 𝐺 . 

Therefore 𝛾≤2 𝐺 − 𝑣 ≥ 𝛾≤2 𝐺 . ▐ 

 

Theorem 4.19: Let 𝐺 be a graph and 𝑣 be an isolated vertex of 𝐺. Then 𝛾≤2 𝐺 − 𝑣 < 𝛾≤2 𝐺  if and only if 

there is a minimum 2-isolate distance-2 dominating set 𝑆 of 𝐺 such that 𝑆 contains an isolate different from 𝑣. 

   

Proof: Suppose 𝛾≤2 𝐺 − 𝑣 < 𝛾≤2 𝐺 .  

Let 𝑆1 be a minimum 2-isolate distance-2 dominating set of 𝐺 − 𝑣. 

Then 𝑆1 cannot be 2-isolate distance-2 dominating set of 𝐺 because  𝑆1 = 𝛾≤2 𝐺 − 𝑣 < 𝛾≤2 𝐺 . 

Let 𝑆 = 𝑆1 ∪  𝑣 . 

Let 𝑥 be a vertex of 𝑆1  such that 𝑥 ∉ 𝑆 and 𝑥 ∉ 𝑆1  also. Since 𝑆1  is a 2-isolate distance-2 dominating set of 

𝐺 − 𝑣, 𝑑 𝑥, 𝑦 ≤ 2 in 𝐺 − 𝑣, for some 𝑦 in 𝑆. Then 𝑑 𝑥, 𝑦 ≤ 2 in 𝐺 also.  

Thus 𝑆 is a 2-isolate distance-2 dominating set of 𝐺 such that 𝑣 ∈ 𝑆. Since  𝑆 =  𝑆1 + 1, 𝑆 is a minimum 2-

isolate distance-2 dominating set of 𝐺. 

Let  𝑣′ be if 2-isolated vertex of  𝑆1 then 𝑣′ is also 2-isolated vertex of  𝑆 as 𝑣 is an isolated vertex of 𝐺. 

Thus 𝑆 is a minimum 2-isolate distance-2 dominating set of 𝐺 which contains an isolate different from 𝑣. 

 

Conversely, suppose there is a minimum 2-isolate distance-2 dominating set 𝑆  of 𝐺  such that 𝑆  contains a         

2-isolate different from 𝑣. Since 𝑣 is an isolated vertex in 𝐺, 𝑣 ∈ 𝑆. 

Let 𝑆1 = 𝑆 −  𝑣 . Then 𝑆1 contains a 2-isolate (which is different from 𝑣 ). 

Therefore 𝑆1 is a 2-isolate distance-2 dominating set of 𝐺 − 𝑣. 

Thus 𝛾≤2 𝐺 − 𝑣 ≤  𝑆1 <  𝑆 = 𝛾≤2 𝐺 . 

Thus 𝛾≤2 𝐺 − 𝑣 < 𝛾≤2 𝐺 . ▐ 
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Example 4.20: Consider the graph 𝐺 with vertices {1 , 2 , 3 , 4, 5, 6, 7, 8} mansion blow.  

 

 
 

We may note that the set 𝑆 =  1, 2, 8  is a minimum 2-isolate distance-2 dominating set of 𝐺. Also note that for 

any minimum set 𝑇 of 𝐺, 8 is the only 2-isolated vertex of 𝑇. 

  

Now consider the subgraph 𝐺 − 8. Consider the set 𝑆1 =  1, 6, 7 . Then 𝑆1is a minimum 2-isolate distance-2 

dominating set of 𝐺 − 8. 

Thus 𝛾≤2 𝐺 − 8 = 𝛾≤2 𝐺 . 

 

Example 4.21: Consider the graph 𝐺 with vertices {1 , 2 , 3 , 4, 5} mansion blow.  

 

 
Let  𝑆 =  1, 4, 5 . Then 𝑆 is a minimum 2-isolate distance-2 dominating set of 𝐺. Note that 𝑆  contains 2-isolate 

different from 5.(infact 1 and 4 are both 2-isolates of 𝑆) 

  

Now consider the subgraph 𝐺 − 5. Let 𝑇 =  1, 4 . Then 𝑇 is a minimum 2-isolate distance-2 dominating set of 

𝐺 − 5. Therefore thus 𝛾≤2 𝐺 − 5 = 2 < 3 = 𝛾≤2 𝐺 . 

 

Corollary 4.22: Let 𝐺 be a graph and 𝑣1, 𝑣2, ……… , 𝑣𝑘  be all the isolated vertices of 𝐺 𝑘 ≥ 2 . Then     𝛾≤2 𝐺 −

𝑣𝑖 < 𝛾≤2 𝐺 , for all 𝑖 = 1, 2, ……… , 𝑘. 

  

Proof: Let 𝑆 be a minimum 2-isolate distance-2 dominating set of 𝐺. 

Then 𝑣𝑖 ∈ 𝑆, for every 𝑖 = 1, 2, ……… , 𝑘. 

Then by above corollary, 

 𝛾≤2 𝐺 − 𝑣𝑖 < 𝛾≤2 𝐺 , for all 𝑖 = 1, 2, ……… , 𝑘. ▐ 

 

Corollary 4.23: If there is a 2-isolated vertex 𝑣 such that  𝛾≤2 𝐺 − 𝑣 ≥ 𝛾≤2 𝐺  then the graph has only one    

2-isolated vertex namely 𝑣.  

 

Proof: Obvious . ▐ 

 

Theorem 4.24: Let 𝐺 be a graph and 𝑣 be a non isolated vertex in 𝐺. Then 𝛾≤2 𝐺 − 𝑣 > 𝛾≤2 𝐺  if and only if  

the following two conditions are satisfied. 

(1) For every a minimum 2-isolate distance-2 dominating set 𝑆 of 𝐺, 𝑑 𝑣, 𝑆 ≤ 1 

(2) There is no subset 𝑆  of 𝑉 𝐺 − 𝑁2 𝑣  such that  𝑆 ≤ 𝛾≤2 𝐺  and 𝑆  is a minimum 2-isolate distance-2 

dominating set of 𝐺 − 𝑣. 

  

Proof: Suppose 𝛾≤2 𝐺 − 𝑣 > 𝛾≤2 𝐺 . 

(1) Let 𝑆 be a minimum 2-isolate distance-2 dominating set of 𝐺. 

If 𝑣 ∈ 𝑆 then 𝑑 𝑣, 𝑆 = 0 < 1.  

Suppose  𝑣 ∉ 𝑆. 

Consider the subgraph 𝐺 − 𝑣 . Since  𝑆 ≤ 𝛾≤2 𝐺 − 𝑣 , 𝑆  cannot be 2-isolate distance-2  dominating set of 

𝐺 − 𝑣. 

Note that any 2-isolate of  𝑆 in 𝐺 is also 2-isolate of  𝑆 in 𝐺 − 𝑣. 
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Therefore the < 𝑆 > in 𝐺 − 𝑣 contains 2-isolated vertices. It follows that 𝑆 is not a distance-2 dominating set of 

𝐺 − 𝑣. 

Therefore there is a vertex 𝑥  in 𝐺 − 𝑣  such that 𝑥 ∉ 𝑆  and 𝑑 𝑥, 𝑆 ≥ 3  in 𝐺 − 𝑣 . Since 𝑆  is a distance- 2 

dominating set of 𝐺, 𝑑 𝑥, 𝑆 ≥ 2 in 𝐺. 

Let 𝑃 be a path joining 𝑥 to some vertex 𝑧 of 𝑆 such that length of 𝑃 ≤ 2. Obviously this path contain 𝑣.Since 

𝑥 ≠ 𝑣, 𝑥 is adjacent to 𝑣 and 𝑣 is adjacent to 𝑧 in 𝐺.  

Thus 𝑑 𝑣, 𝑆 = 1. 

Therefore from both the above cases it follows that 𝑑 𝑣, 𝑆 ≤ 1. 

 

(2) Suppose there is a set 𝑆 ⊂ 𝑉 𝐺 − 𝑁2 𝑣  such that  𝑆 ≤ 𝛾≤2 𝐺  and 𝑆 is a 2-isolate distance-2 dominating 

set of 𝐺 − 𝑣. Then 𝛾≤2 𝐺 − 𝑣 ≤  𝑆 ≤ 𝛾≤2 𝐺 . Which implies that 𝛾≤2 𝐺 − 𝑣 ≤ 𝛾≤2 𝐺 . 

which is a contradiction. 

Therefore (2) is also proved.  

 

Thus the theorem is proved. 

 

Now we state and prove a necessary and sufficient condition under which 2-isolate distance-2 domination 

number decreases when vertex is remove from the graph. 

 

Theorem 4.25: Let 𝐺  be a graph and 𝑣 ∈ 𝑉 𝐺 . Then 𝛾0≤2 𝐺 − 𝑣 > 𝛾0≤2 𝐺  if and only if  there is a  

minimum 2-isolate distance-2 dominating set of  𝑆 such that 

(1) 𝑆  contains a 2-isolate different from  𝑣. 

(2) 𝑣 ∈ 𝑆 and 𝑃𝑟𝑛𝑑 2 𝑣, 𝑆 =  𝑣 . 

  

Proof: Suppose 𝛾0≤2 𝐺 − 𝑣 < 𝛾0≤2 𝐺 . 

Let 𝑆1 be a minimum 2-isolate distance-2 dominating set of 𝐺 − 𝑣. Let 𝑧 be a 2-isolate of  𝑆1 in 𝐺 − 𝑣. Since 

 𝑆1 = 𝛾0≤2 𝐺 − 𝑣 < 𝛾0≤2 𝐺 , 𝑆1 cannot be a  2-isolate distance-2 dominating set of 𝐺.  

Therefore there is a vertex 𝑥 in 𝐺 such that 𝑑 𝑥, 𝑆1 > 2 in 𝐺.  

If 𝑥 ≠ 𝑣  then 𝑑 𝑥, 𝑆1 ≤ 2  in 𝐺 − 𝑣  because 𝑆1  is a  2 -isolate distance- 2  dominating set of 𝐺 − 𝑣  . Then 

𝑑 𝑥, 𝑆1  in 𝐺 is ≤ 2. 

Which is a contradiction. 

Therefore 𝑥 ≠ 𝑣 is not  possible. 

Therefore 𝑥 = 𝑣 and 𝑑 𝑥, 𝑆1 > 2  in 𝐺. 

Let 𝑆 = 𝑆1 ∪  𝑣 . Then 𝑣 ∈ 𝑆. Since 𝑑 𝑣, 𝑧 > 2 in 𝐺, 𝑧 is also a  2-isolate of  𝑆 in 𝐺. 

If  𝑦 ∈ 𝑉(𝐺) and 𝑦 ∉ 𝑆 then as prove (1) above 𝑑 𝑦, 𝑆1 ≤ 2 in 𝐺. 

Therefore 𝑑 𝑦, 𝑆 ≤ 2  in 𝐺 .Therefore 𝑆  is a  2-isolate distance-2  dominating set of 𝐺  containing 𝑣 . Since 

𝑑 𝑣, 𝑆1 > 2, 𝑑 𝑣, 𝑢 > 2 , for all 𝑢 ∈ 𝑆 with 𝑢 ≠ 𝑣. 

Therefore 𝑣 ∈ 𝑃𝑟𝑛𝑑 2 𝑣, 𝑆 . 

Let 𝑇 ∈ 𝑉 𝐺 − 𝑆 such that 𝑑 𝑇, 𝑣 ≤ 2 . Now 𝑇 ∉ 𝑆1 and 𝑆1 is a distance-2 dominating set of 𝐺 − 𝑣. Therefore 

there is a vertex 𝑇′  in 𝑆1 such that 𝑑 𝑇, 𝑇′   ≤ 2 in 𝐺 also. 

Thus we have proved that 𝑑 𝑇, 𝑣 ≤ 2 in 𝐺. 

Therefore 𝑇 ∉ 𝑃𝑟𝑛𝑑 2 𝑣, 𝑆 . 

Thus 𝑃𝑟𝑛𝑑 2 𝑣, 𝑆 =  𝑣 . Also note that 𝑆 contain a 2-isolate different from 𝑣. 

 

Conversely, suppose there is a minimum 2-isolate distance-2 dominating set 𝑆 of 𝐺 such that 

(1) 𝑆 contain a 2-isolate different from 𝑣. 

(2) 𝑃𝑟𝑛𝑑 2 𝑣, 𝑆 =  𝑣 . 

Let 𝑆1 = 𝑆 ∪  𝑣 . Let 𝑧 be 2-isolate of  𝑆 different from 𝑣. Then 𝑧 ∈ 𝑆1 and 𝑧 is a 2-isolate of  𝑆1 in 𝐺 − 𝑣. 

Let 𝑥 be any vertex of 𝐺 − 𝑣 such that 𝑥 ∉ 𝑆 also. Since 𝑆 is a distance-2 dominating set of 𝐺. There is some 𝑦 

in 𝑆 such that 𝑑 𝑥, 𝑦 ≤ 2 in 𝐺. 

 

Case(1):  suppose 𝑦 = 𝑣.  
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Since 𝑥 ∉ 𝑃𝑟𝑛𝑑 2 𝑣, 𝑆 . There is a vertex 𝑦′  in 𝑆 such that 𝑦′ ≠ 𝑣 and 𝑑 𝑥, 𝑦′   ≤ 2 in 𝐺. Any path in 𝐺 joining 𝑥 

to 𝑦′  whose length is ≤ 2 cannot contain 𝑣 as an internal vertex because 𝑑 𝑥, 𝑦′   > 2. Therefore Any path 

joining 𝑥 to 𝑦′  in 𝐺 having length ≤ 2 is also a path in 𝐺 − 𝑣. 

Therefore 𝑑 𝑥, 𝑦′   ≤ 2 in 𝐺 − 𝑣. 

 

Case(2):  suppose 𝑦 ≠ 𝑣.  

Then 𝑦 ∈ 𝑆1 and 𝑑 𝑥, 𝑦  ≤ 2 in 𝐺. By the same argument given above 𝑑 𝑥, 𝑦  ≤ 2 in 𝐺 − 𝑣 also. 

Thus we have proved that any vertex of  𝐺 − 𝑣 which is not in 𝑆1 satisfies 𝑑 𝑥, 𝑦  ≤ 2 in 𝐺 − 𝑣, for some 𝑦 in 

𝑆1. 

Therefore 𝑆1 is a 2-isolate distance-2 dominating set of 𝐺 − 𝑣. Therefore 𝛾0≤2 𝐺 − 𝑣 ≤  𝑆1 <  𝑆 = 𝛾0≤2 𝐺 . 

Hence, 𝛾0≤2 𝐺 − 𝑣 < 𝛾0≤2 𝐺 . 

Thus the theorem is prove. 

 

Example 4.26: Consider the path graph 𝑃6 with 6 vertices {1 , 2 , 3 , 4 , 5 , 6} 

 

 
 

 

Let 𝑆 =  3, 6 . It is obvious that 𝑆 is a minimum 2-isolate distance-2 dominating set of 𝐺. Now consider the 

graph 𝐺 − 6 which is the path graph  𝑃5 with vertices {1 , 2 , 3 , 4 , 5} 2-isolate distance-2 domination number =1 

Thus 𝛾0≤2 𝐺 − 𝑣 < 𝛾0≤2 𝐺 .  

Observe that 6 ∈ 𝑆 and 𝑃𝑟𝑛𝑑 2 6, 𝑆 =  6 . 
Also 𝑆 contains a 2-isolate different from 6. 

 

Corollary 4.27: Let 𝐺 be a graph without isolated vertices. Suppose  𝛾0≤2 𝐺 − 𝑣 < 𝛾0≤2 𝐺  . Then there is a 

minimum 2-isolate distance-2 dominating set  𝑆 of 𝐺 such that 𝑣 ∉ 𝑆. 

  

Proof: Since  𝛾0≤2 𝐺 − 𝑣 < 𝛾0≤2 𝐺 .   

There is a minimum 2-isolate distance-2 dominating set of  𝑆1of 𝐺 such that (which contains isolate different 

from 𝑣) 𝑃𝑟𝑛𝑑 2 𝑣, 𝑆 =  𝑣 . 

Since 𝑣 is not an isolated vertex of 𝐺. There is a vertex 𝑣 ′  such that 𝑑 𝑣, 𝑣 ′   ≤ 2. Obviously 𝑣 ′ ∉ 𝑆1. 

Let 𝑆 =  𝑆1 −  𝑣  ∪  𝑣 ′ . Then  𝑆 =  𝑆1 . 

Let 𝑥 be any vertex of 𝐺 then 𝑥 ∉ 𝑆. 

If 𝑥 = 𝑣 then 𝑑 𝑣, 𝑣 ′   ≤ 2 and 𝑣 ′ ∈ 𝑆. 

If 𝑥 ≠ 𝑣 then 𝑥 ∉ 𝑆1. Since 𝑆1 is a 2-isolate distance-2 dominating set of 𝐺. There is a vertex  𝑧 in 𝑆1 such that 

𝑑 𝑥, 𝑧  ≤ 2. 

If  𝑧 = 𝑣 then there is another vertex 𝑤 in 𝑆1 such that 𝑑 𝑥, 𝑤 ≤ 2 in 𝐺 because 𝑥 ∉ 𝑃𝑟𝑛𝑑 2 𝑣, 𝑆1  then 𝑤 ∈ 𝑆 

and 𝑑 𝑥, 𝑤 ≤ 2. 

If 𝑑 𝑥, 𝑣 ′ ≤ 2  in 𝐺 then  𝑣 ′ ∈ 𝑆 and 𝑑 𝑥,   𝑣 ′ ≤ 2 . 

Thus for any 𝑥  not in  𝑆 . There is some vertex 𝑦 in 𝑆  such that 𝑑 𝑥, 𝑦 ≤ 2 in 𝐺 . This proves that 𝑆  is a 

minimum 2-isolate distance-2 dominating set of 𝐺. Note that 𝑣 ∉ 𝑆. 

 

Proposition 4.28: Let 𝐺 be a graph and 𝑣 be an isolated vertex of 𝐺. If  𝑆 is a  2-isolate distance-2 dominating 

set of 𝐺 then 𝑣 ∈ 𝑆. 

  

Proof: Suppose 𝑣 ∉ 𝑆. Then 𝑑 𝑣,   𝑆 ≤ 2. Then there is a vertex 𝑢 ∈ 𝑆 such that 𝑑 𝑣,   𝑢 ≤ 2. This implies 

that 𝑣 is not isolated vertex. 

Which is a contradiction. 

Therefore 𝑣 ∈ 𝑆. 

 

Theorem 4.29: Let 𝐺  be a graph and 𝑣1, 𝑣2, ……… , 𝑣𝑘  be all the isolated vertices of  𝐺  𝑘 ≥ 2 . Then   

𝛾0≤2 𝐺 − 𝑣𝑖 < 𝛾0≤2 𝐺  for  𝑖 = 1, 2, ……… , 𝑘. 



International Journal of Mathematics Trends and Technology ( IJMTT ) – Volume 63 Number 2 - November 2018 

 

ISSN: 2231-5373                            http://www.ijmttjournal.org                                   Page 100 
 

  

Proof: Let 𝑆 be a minimum 2-isolate distance-2 dominating set of 𝐺 . By the above proposition 28, 𝑣𝑖 ∈ 𝑆, for 

all  𝑖 = 1, 2, ……… , 𝑘.  

Consider 𝑣𝑖 . Now 𝑣1 ∈ 𝑆 and 𝑆 also contains a 2-isolate vertex of 𝑆 different from 𝑣1. Also 𝑃𝑟𝑛𝑑 2 𝑣1, 𝑆 =  𝑣1 .  

Therefore   𝛾0≤2 𝐺 − 𝑣1 < 𝛾0≤2 𝐺 .   

Similarly, it can be proved that  𝛾0≤2 𝐺 − 𝑣𝑖 < 𝛾0≤2 𝐺  for  𝑖 = 1, 2, ……… , 𝑘. 

Thus the theorem is proved. 

 

Corollary 4.30: Let 𝐺 be a graph and  𝑣 be an isolated vertex of 𝐺. If  𝛾0≤2 𝐺 − 𝑣 ≥ 𝛾0≤2 𝐺  . Then 𝑣 is the 

only isolated vertex of 𝐺 . 

  

Proof: Suppose there is vertex 𝑣 ′  of 𝐺 such that 𝑣 ′ ≠ 𝑣 and 𝑣 ′  is also isolated vertex. 

Let 𝑆 be a minimum 2-isolate distance-2 dominating set of 𝐺. Then 𝑣, 𝑣 ′ ∈ 𝑆. 

Also 𝑃𝑟𝑛𝑑 2 𝑣, 𝑆 =  𝑣 . And therefore   𝛾0≤2 𝐺 − 𝑣 < 𝛾0≤2 𝐺 .   

Which is a contradiction. 

Then 𝑣 is the only isolated vertex of 𝐺. 

 

Now we consider the operation of edge removal in graph. 

Proposition 4.31: Let 𝐺 be a graph and 𝑒 be an edge of 𝐺. If 𝑢, 𝑣 ∈ 𝑉 𝐺 . Then 𝑑 𝑢, 𝑣 in 𝐺 − 𝑒 ≥ 𝑑 𝑢, 𝑣  in𝐺.  

  

Proof: If there is no path joining 𝑢 and 𝑣 in 𝐺 . Then there is no path joining 𝑢 and 𝑣 in 𝐺 − 𝑒, 𝑑 𝑢, 𝑣 =  ∞ in 

𝐺. In this case there is no path joining 𝑢 and 𝑣 in 𝐺 − 𝑒 also. And therefore 𝑑 𝑢, 𝑣 =  ∞ in 𝐺 − 𝑒 also. 

Thus the result is prove in this case. 

Suppose 𝑑 𝑢, 𝑣 =  𝑘 in 𝐺 − 𝑒, for some positive integer 𝑘. Then there is a path of length 𝑘 joining 𝑢 and 𝑣 in 

𝐺 − 𝑒. This is also a path joining 𝑢 and 𝑣 in 𝐺 − 𝑒. 

Therefore  𝑑 𝑢, 𝑣  in 𝐺 is ≤ the length of the path 𝑃 which is = 𝑘 which is = 𝑑 𝑢, 𝑣  in 𝐺 − 𝑒. 

Therefore 𝑑 𝑢, 𝑣  in 𝐺 ≤ 𝑑 𝑢, 𝑣  in 𝐺 − 𝑒. 

Thus the result is proved. 

 

Now we prove the following  theorem. 

 

Theorem 4.32: Let 𝐺 be a graph and 𝑒 =  𝑢𝑣  be an edge of  𝐺. Then  𝛽2𝑖𝑠 𝐺 − 𝑒 ≥ 𝛽2𝑖𝑠 𝐺  . 

  

Proof: Let 𝑆 be a maximum 2-isoinc set of 𝐺. Let 𝑢 ∈ 𝑆 be a 2-isolated vertex of 𝑆. Then 𝑑 𝑢, 𝑥 > 2 in 𝐺, for 

every 𝑥 ∈ 𝑆 with 𝑥 ≠ 𝑢. Let 𝑤 be 2-isolated vertex of 𝑆. Then 𝑑 𝑤, 𝑥 > 2 in 𝐺, for every 𝑥 ∈ 𝑆 with 𝑥 ≠ 𝑤. 

Then 𝑑 𝑤, 𝑥 > 2 in 𝐺 − 𝑒 also, for every 𝑥 ∈ 𝑆 with 𝑥 ≠ 𝑤. 

Thus 𝑤 is a 2-isolated vertex of 𝑆 in 𝐺 − 𝑒. 

Moreover, if  𝑎, 𝑏 ∈ 𝑆 then 𝑑 𝑎, 𝑏 > 2 in 𝐺, for all 𝑎, 𝑏 ∈ 𝑆. Therefore 𝑑 𝑎, 𝑏 > 2, for all 𝑎, 𝑏 ∈ 𝑆 in 𝐺 − 𝑒 

also. 

Thus 𝑆 is a 2-isoinc set in  𝐺 − 𝑒 also. 

Therefore 𝛽2𝑖𝑠 𝐺 − 𝑒 ≥  𝑆 = 𝛽2𝑖𝑠 𝐺 . 

Therefore 𝛽2𝑖𝑠 𝐺 − 𝑒 ≥ 𝛽2𝑖𝑠 𝐺 . 

 

Now we state and prove a necessary and sufficient condition under which 2-isoinc number of a graph increases 

when an edge is remove on the graph. 

 

Theorem 4.33: Let 𝐺 be a graph and and 𝑒 =  𝑢𝑣  be an edge of  𝐺. Then  𝛽2𝑖𝑠 𝐺 − 𝑒 > 𝛽2𝑖𝑠 𝐺   if and only 

if  for every maximum 2-isoinc S of  𝐺 − 𝑒. The following conditions are satisfied. 

(1) If 𝑢, 𝑣 ∈ 𝑆  then for every 2-isolate 𝑧 of 𝑆. There is a vertex 𝑤 in 𝑉 𝐺 − 𝑆, which is adjacent to 𝑧 and 𝑢 or 

there is a vertex 𝑤 ′  in 𝑉 𝐺 − 𝑆, which is adjacent to 𝑧 and 𝑣. 

(2) If  𝑢 ∉ 𝑆 and 𝑣 ∈ 𝑆 then for ervery 2-isolate 𝑧 of 𝑆, 𝑧 is adjacent to 𝑢. 

(3) If  𝑣 ∉ 𝑆 and 𝑢 ∈ 𝑆 then for ervery 2-isolate 𝑧 of 𝑆, 𝑧 is adjacent to 𝑣. 
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Proof: First suppose that 𝛽2𝑖𝑠 𝐺 − 𝑒 ≥ 𝛽2𝑖𝑠 𝐺 .  

Let 𝑆 be a maximum 2-isoinc of  𝐺 − 𝑒. Since  𝑆 > 𝛽2𝑖𝑠 𝐺 , 𝑆 cannot be a 2-isoinc of  𝐺.  

Therefore if  𝑧 is any 2-isolate of 𝑆 in 𝐺 − 𝑒 then 𝑧 cannot be a 2-isolated vertex  𝑆 in 𝐺. 

Therefore 𝑑 𝑧, 𝑥 ≤ 2 in 𝐺 some 𝑥 in 𝑆. 

Case(1): 𝑢 ∈ 𝑆 & 𝑣 ∈ 𝑆 

It follows that 𝑢 = 𝑥 or 𝑣 = 𝑥. 

If 𝑥 = 𝑢 then there is a vertex 𝑤 in 𝑉 𝐺 − 𝑆 such that 𝑤 is adjacent to both 𝑢 & 𝑧. 

If 𝑥 = 𝑣 then there is a vertex 𝑤 in 𝑉 𝐺 − 𝑆 such that 𝑤 ′  is adjacent to both 𝑣 & 𝑧. 

 

Case(2): 𝑢 ∉ 𝑆 & 𝑣 ∈ 𝑆 

In this case it follows that 𝑥 = 𝑣. Since 𝑑 𝑧, 𝑣 > 2 in 𝐺 − 𝑒  and 𝑑 𝑧, 𝑣 ≤ 2, 𝑧 must be adjacent to 𝑢. 

 

Case(3): 𝑣 ∉ 𝑆 & 𝑢 ∈ 𝑆 

In this case it follows that 𝑥 = 𝑢. Since 𝑑 𝑧, 𝑢 > 2 in 𝐺 − 𝑒  and 𝑑 𝑧, 𝑢 ≤ 2, 𝑧 must be adjacent to 𝑣. 

 

Conversely, suppose conditions (1), (2) and (3) are any one is satisfied, for any maximum 2-isoinc set 𝑆 of 

𝐺 − 𝑒. 

Let 𝑆 be subset of 𝑉 𝐺  such that  𝑆 ≥ 𝛽2𝑖𝑠 𝐺 − 𝑒 . Suppose 𝑆 is a 2-isoinc of 𝐺, 𝑆 must be a 2-isoinc set 𝑆 of 

𝐺 − 𝑒 also. 

Thus here  𝑆 ≥ 𝛽2𝑖𝑠 𝐺 − 𝑒  and 𝑆 is a 2-isoinc set 𝑆 of 𝐺 − 𝑒. 

This is a contradiction.  

Thus 𝑆 cannot be a 2-isoinc set 𝑆 of 𝐺 if   𝑆 ≥ 𝛽2𝑖𝑠 𝐺 − 𝑒 . 

Suppose  𝑆 = 𝛽2𝑖𝑠 𝐺 − 𝑒 . Suppose 𝑆 is a 2-isoinc of 𝐺. Now 𝑆 is also a maximum 2-isoinc of 𝐺 − 𝑒. By the 

assumption  conditions (1), (2) or (3) are satisfied by 𝑆 and therefore 𝑆 cannot be a 2-isoinc set of 𝐺. 

Which is again contradiction. 

Thus we have prove that  𝑆 ≥ 𝛽2𝑖𝑠 𝐺 − 𝑒  then 𝑆 cannot be a 2-isoinc set of 𝐺.  

Therefore if  𝑇 is any maximum 2-isoinc set of 𝐺 then  𝑇 < 𝛽2𝑖𝑠 𝐺 . 

Therefore 𝛽2𝑖𝑠 𝐺 − 𝑒 > 𝛽2𝑖𝑠 𝐺 . 

 

Example 4.34: Let 𝐺 be the cycle graph 𝐶6 with 6 vertices {1 , 2 , 3 , 4 , 5 , 6} 

 

 
 

In this graph 𝑆 =  1, 4 ,  2, 5 ,  3, 6  are the only maximum 2-isoinc sets of 𝐺. 

Now consider the graph 𝐺 − 𝑒. Which is the path graph  𝑃6 with 6 vertices {1 , 2 , 3 , 4 , 5 , 6}. 

 

In this graph 𝑆1 =  1, 4, 5, 6  and 𝑆1 =  1, 2, 3, 6  are the only maximum 2-isoinc sets of 𝐺 − 𝑒. 

Note that  1, 6 ∈ 𝑆1 and  1, 6 ∈ 𝑆2 also. Let 𝑤 = 2 then 𝑤 is the adjacent to 1 for the set 𝑆1. Let 𝑤 = 5 then  

𝑤 is the adjacent to 6 for the set 𝑆2. 

 

Example 4.35: Consider the complete graph 𝐾𝑛  with 𝑛 ≥ 3. 

  

Then 𝛽2𝑖𝑠 𝐾𝑛 = 1. Remove any edge from the graph 𝐾𝑛  then 𝛽2𝑖𝑠 𝐾𝑛 − 𝑒 = 1. 

Here, 2-isoinc number does not increases when any edge remove from the graph. 
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V. CONCLUDING REMARKS 

In this paper we have consider 2-isolate inclusive set. It may be possible to study those sets which do 

not contain 2-isolated vertices. These sets can be studied and can be compared with totally dominating sets.  
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