Some Aspects on 2-Fuzzy 2-Anti Metric Space

Thangaraj Beaula^{#1}, Beulah Mariya^{*2} [#]Associate Professor T.B.M.L College, Porayar, Nagapattinam Tamilnadu, India

Abstract

In this paper the paper 2- fuzzy 2- anti equicontinuity, α -2- anti standard metric, α -2- anti standard bounded metric, α -2 anti uniform metric are introduced. It turns out that 2-fuzzy 2- anti metric space is compact if and only if it is fuzzy complete and fuzzy totally bounded. Some more theorems related to these concepts are proved

Keywords — *fuzzy* 2- *anti equicontinuity,* α -2- *anti standard metric,* α -2- *anti standard bounded metric,* α -2 *anti uniform metric.*

I. INTRODUCTION

Fuzzy set theory is a useful tool to describe situations in which the data are imprecise or vague. Fuzzy set handle such situation by attributing a degree to which certain object belongs to a set. The idea of fuzzy set was initiated by Zadeh [15] in 1965and thereafter several authors diversified it in various branches of pure and applied mathematics. The concept of fuzzy norm was investigated by Katsaras [10]in 1984. After that in 1992, Felbin [5,6] inducted the theory of fuzzy normed linear space. Cheng and Mordeson [4] 1994 established an idea of a fuzzy norm on a linear space.

A satisfactory theory of 2- norm on a linear space has been brought out and developed by Gahler [7]. The concept of fuzzy 2- normed linear space introduced by A.K. Meenakshi and Cokilavani [11] in 2001. R.M SomasundaramamdThangarajBeaula[13] defined the concept of 2-fuzzy 2- normed linear space in 2009. Later, Jebril and Samanta [8] established the definition of fuzzy anti- normed linear space depending on the idea of fuzzy anti norm was introduced by Bag and Samanta [1,2,3] and investigated their important properties.Jialuzhang [9] have defined fuzzy norm in a different way. In 2011 B.Surender Reddy introduced the idea of fuzzy anti 2- normed linear space. In 2012 ParijitSinha, Divya Mishra and GhanshyamLal [12] developed some results on fuzzy anti 2- normed linear space.ThangarajBeaula and Beulah Mariya [14] introduced some apscets on 2- fuzzy 2- anti normed linear space in 2017.

In this paper the concept of 2- fuzzy 2- anti equicontinuity, α -2- anti standard metric, α -2- anti standard bounded metric, α -2 anti uniform metric are defined. Further 2-fuzzy 2-anti euclidean space is developed and some theorems related to above concepts are proved.

II. PRELIMINARIES

For the sake of completeness we reproduce the following definitions due to Gahler[7]RM.Somasundaram and ThangarajBeaula[13] and ThangarajBeaula and Beulah Mariya[14].

Definition2.1

A fuzzy set in X is a map from X to [0,1] it is an element of $[0,1]^X$

Definition 2.2[7]

Let X be a real linear space of dimension greater that one and let $\|.,.\|$ be a real valued function on X xX satisfying the following conditions

- (i) ||x, y|| = 0 if and only if x, y are linearly dependent.
- (ii) ||x, y|| = ||y, x||.
- (iii) $\|\alpha x, y\| = |\alpha| \|x, y\|$ where α is real.
- (iv) $||x, y + z|| \le ||x, y|| + ||x, z||.$

 $\|., \|$ is called a 2- norm on X and the pair $(X, \|., \|)$ is called 2- norm linear space.

Definition 2.3[13]

Let $F(X) = [0,1]^X$ denote the set of all fuzzy sets in X. A 2- fuzzy set on X is a fuzzy set on F(X)

Definition 2.4[13]

Let F(X) be a linear space over the real field K a fuzzy subset N of $F(X) \ge F(X) \ge R$, (R is the set of all real numbers) is called a 2- fuzzy 2-norm on X if and only if

(N1) for all $t \in R$ with $t \leq 0$, N(f_1, f_2, t) = 0

(N2) for $t \in R$ with t > 0, $N(f_1, f_2, t) = 1$ if and only if f_1 , f_2 are linearly dependent

(N3)N(f_1, f_2, t) is invariant under any permutation of f_1, f_2

(N4) for all $t \in \mathbb{R}$ with $t \ge 0$, $N(f_1, cf_2, t) = N(f_1, f_2, \frac{t}{|c|})$ if $c \ne 0 c \in \mathbb{K}$ (field)

(N5) for all $s,t \in \mathbb{R}$, $N(f_1, f_2 + f_3, s+t) \ge \min N\{(f_1, f_2, s), N(f_1, f_3, t)\}$

(N6) N($f_1, f_2, .$) = (0, ∞) \rightarrow [0,1] is continuous.

(N7) lim N(f_1, f_2, t) = 1.

Then the pair (F(X), N) is a fuzzy 2- normed linear space.

Definition2.5[14]

Let X be the linear space over the real field K. A fuzzy subset N*of $F(X) \ge F(X) \ge R$. (R, the set of all real numbers) is called a 2- fuzzy 2 - anti norm on X if and only if

(A-N1) for all $t \in R$ with $t \le 0$, N*(f_1, f_2, t) = 1.

(A-N2) for all $t \in R$ with $t \ge 0$, $N^*(f_1, f_2, t) = 0$ if and only if f_1 and f_2 are linearly dependent.

(A-N3) N*(f_1, f_2, t) is invariant under any permutation of f_1, f_2 .

(A-N4) for all $t \in \mathbb{R}$ with $t \ge 0$, $\mathbb{N}^*(f_1, cf_2, t) = \mathbb{N}^*(f_1, f_2, \frac{t}{|a|})$ if $c \ne 0$, $c \in \mathbb{K}$ (field).

(A-N5) for all s, t \in R, N*(f₁, f₂ + f₃, s + t) \leq max {N*(f₁, f₂, s), N*(f₁, f₃, t)}.

(A-N6) N*(f_1, f_2, \cdot) : $(0, \infty) \rightarrow [0,1]$ is continuous.

(A-N7) lim N*(f_1, f_2, t) = 0.

Then $(F(X), N^*)$ is a fuzzy 2- anti normed linear space or (X, N^*) is a 2- fuzzy 2- anti normed linear space.

III. MAIN RESULTS

First of all we define 2- fuzzy metric space and the induced α –metric. Later 2- fuzzy 2- anti metric on $C(\mathcal{F}(X), \mathcal{F}(Y))$, the space of all continuous functions from $\mathcal{F}(X)$ to $\mathcal{F}(Y)$ is defined. Various metrics like Standard bounded metric, uniform metric and supremum metric are defined on it.

3. 2- Fuzzy 2- anti metric space Definition3.1

A 3 - triple (X, M, *) is said to be a 2 fuzzy metric space if X is an arbitrary set, *is continuous t - norm and M is a fuzzy set on $F(X) \ge F(X) \ge 0$, satisfying the following condition for all f, g, $h \in F(X)$ with s, t > 0.

(i) M(f, g, t) > 0.

(ii) M (f, g, t) = 1 if and only if x = y. (iii) M (f, g, t) = M (g, f, t).

(iv) M (f, g, t) *M (g, h, s) \leq M (f, h, t+s).

(v) M (f, g, t) : $(0, \infty) \rightarrow (0,1]$ is continuous.

Then M is called a fuzzy metric on X.

Theorem 3.1

Let (X, M, *) be a fuzzy metric space assume that M(f,g,t) > 0 for all t > 0 and M(f,g,0) = 0 for all $f,g\in F(X)$. Define $d_{\alpha}(f, g) = \inf \{ t : M(f, g, t) \ge \alpha \}$ is an ascending family of α -metric on X. induced by the fuzzy metric M.

Proof

Let M : F(X) x F(X) x $(0,\infty) \rightarrow [0,1]$ be the fuzzy metric on F(X)

(i) If $\inf \{t: M(f, g, t)\} \ge \alpha / \alpha \in (0,1) = 0$

Then by the definition $d_{\alpha}(f, g) = 0$ if and only if f = g. also if $\{t: M(f, g, t) \mid b \geq \alpha / \alpha \in (0,1)\} > 0$ it is implies that $d_{\alpha}(f, g) > 0$ for all $f, g \in F(X)$

(ii) $d_{\alpha}(x, y) = \inf\{ t: M(f, g, t) \} \ge \alpha/t \ge 0 \}$ for all f, g $g \in F(X)$ = $\inf\{ t: M(g, f, t) \} \le \alpha/t \le 0 \}$ which implies $d_{\alpha}(f, g) = d_{\alpha}(g, f)$

(iii) Further to prove that $d_{\alpha}(f, g) \leq d_{\alpha}(f, h) + d_{\alpha}(h, g)$ $d_{\alpha}(f, h) + d_{\alpha}(h, g) = \inf \{ t: M(f, h, t)) \geq \alpha / t \geq 0 \} + \inf \{ t: M(h, g, s)) \geq \alpha / t \geq 0 \}$ $= \inf \{ t+s: M(f, h, t)) \ge \alpha \text{ and } M(h, g, s)) \ge \alpha \}$ = inf { r: M(f, g, t)) ≥ α where t + s = r} = d_{\alpha} (f, g)

Therefore { $d_{\alpha}(.,.): \alpha \in (0,1)$ } is a family of α metrics on corresponding to fuzzy metric on X. *Definition3.2*

Let $\mathcal{C}(\mathcal{F}(X), \mathcal{F}(Y))$ be the space of all continuous functions from $\mathcal{F}(X)$ to $\mathcal{F}(Y)$. The 2- fuzzy 2- anti metric, M on $\mathcal{C}(X, Y)$ is a mapping from $\mathcal{C}(X, Y) \ge \mathcal{C}(X, Y) \ge (0, \infty)$ to [0, 1].

such that M(f, g , h , t) = N*(f-g, h, t) for every f, g, $h \in F(X)$, and t ,s $\in R$ where N* is a 2- fuzzy 2- anti norm satisfying the following conditions

 $(i) \qquad N^* \left(\ f, \ g \ , \ h \ , \ t \right) \ = N^* (\ f-g, \ h, \ t) = 1 \ with \ t \le 0 \ for \ t \ {\in} R$

- (ii) $N^*(f, g, h, t) = N^*(f-g, h, t) = 0 \text{ with } t > 0 \text{ for } t \in \mathbb{R}$

Definition 3.3

Let $(F(X), M, \emptyset)$ be a 2- fuzzy 2- anti metric space. Let \mathcal{F} be the subset of the $\mathcal{C}(\mathcal{F}(X), \mathcal{F}(Y))$. If $f_0 \in \mathcal{F}$, the space \mathcal{F} of functions is said to be 2- fuzzy 2- anti equicontinuous at f_0 if for given $\varepsilon \in (0,1)$

 $N^*(F(f) - F(f_0), G(g), t) < \varepsilon \text{ for } F, G \in \mathcal{C}(\mathcal{F}(X), \mathcal{F}(Y)) \text{ and } f, g, f_0 \in F(X).$

Definition 3.4

The α - 2- standard metric d_{α} corresponding to the 2- fuzzy 2- anti metric N* on $\mathcal{C}(\mathcal{F}(X), \mathcal{F}(Y))$ is defined as $d_{\alpha}(F, G) = \inf\{t : N^* (F(f) - G(g), H, t) \le \alpha \text{ for all } F, G, H \in \mathcal{C}(\mathcal{F}(X), \mathcal{F}(Y))\}.$

Definition 3.5

The α - 2- standard bounded metric \overline{d}_{α} corresponding to the 2- fuzzy 2- anti metric N* on $\mathcal{C}(\mathcal{F}(X), \mathcal{F}(Y))$ is defined as \overline{d}_{α} (F,G) = min { d_{α} (F,G), 1} **Definition 3.6**

The α - 2- uniform metric $\overline{\rho}_{\alpha}$ on $\mathcal{C}(\mathcal{F}(X), \mathcal{F}(Y))$ is defined as $\overline{\rho}_{\alpha}$ (F,G) = sup{ \overline{d}_{α} (F,G) / f, g \in

$\mathcal{F}(X)$ } **Definition 3.7**

A fuzzy 2- anti metric space (F(X), M, \Diamond) is said to be fuzzy totally bounded if for everyr $\in (0,1)$, there is a finite covering for \mathcal{F} by r- balls, B(f, g, r, t) with 0 < t < 1.

Definition 3.8

If F(X) is a 2- fuzzy 2- anti normed linear space and $(F(Y), M, \emptyset)$ is a 2- fuzzy 2- anti metric space. Define a supremum metric on $\mathcal{B}(\mathcal{F}(X), \mathcal{F}(Y))$ the set of all bounded functions from $\mathcal{F}(X)$ to $\mathcal{F}(Y)$ as,

 ρ_{α} (F,G) = Sup{ d_{α} (F(f),G(g)) / f, g $\in \mathcal{F}(X)$ where d_{α} is the α -metric induced by M.

Definition 3.9

F(X) is said to be fuzzy compact space if every open covering of F(X) contains finite sub collection that also covers F(X).

Theorem 3.2

Let $(\mathcal{C}(\mathcal{F}(X), \mathcal{F}(Y), M, \delta)$ be a 2- fuzzy 2- anti metric space Assume that M (F, G, h, t) < 0 for all t > 0and M (F, G, h, θ) = 1 for all F, G $\in \mathcal{C}(\mathcal{F}(X), \mathcal{F}(Y))$ define the α metric

 $d_{\alpha}(F, G) = \inf \{ t : N^{*}(F(f) - G(g), H, t) \leq \alpha / \alpha \in (0,1) \} \text{ where } H \in \mathcal{C}(\mathcal{F}(X), \mathcal{F}(Y) \text{ is a descending family of } \alpha \text{ metric on } \mathcal{C}(\mathcal{F}(X), \mathcal{F}(Y).$

(i) If inf {t : N*(F(f) -G(g), H, t) $\leq \alpha / \alpha \in (0,1)$ } = 0 then d_a (F, G, H) = 0 if and only if F = G By definition, inf{N*(F(f) -G(g), H, t) $\leq \alpha / \alpha \in (0,1)$ } ≥ 0 , so d_a (F, G, H) ≥ 0 for all f, g, h $\in \mathcal{F}(X)$

(ii)
$$\begin{aligned} &d_{\alpha}\left(F,G,H\right) &= \inf\left\{t:N^{*}(F(f)-G(g),H,t) \leq \alpha\right\} \\ &= \inf\left\{t:N^{*}(-G(g)-F(f),H,t) \leq \alpha\right\} \end{aligned}$$

(iii)

$$= \inf\{t : N^{*}(G(g) - F(f), H, \frac{t}{|-1|}) \le \alpha\}$$

= $d_{\alpha}(G, F, H)$
= $d_{\alpha}(F, G, H) = d_{\alpha}(F, P, H) + d_{\alpha}(P, G, H)\}$
 $d_{\alpha}(F, P, H) + d_{\alpha}(P, G, H) = \inf\{t : N^{*}(F(f) - P(p), H, t) \le \alpha$
 $+ \inf\{s : N^{*}(P(p) - G(g), H, t) \le \alpha\}$
= $\inf\{t + s : N^{*}(F(f) - G(g), H, t) \le \alpha; r = s + t\}$
= $d_{\alpha}(F, G, H)$

Therefore $\{ d_{\alpha}(.,.): \alpha \in (0,1) \}$ is a descending family of α metric on $\mathcal{F}(X)$ corresponding to the 2-fuzzy 2- anti metric on $\mathcal{F}(X)$.

Let $0 < \alpha_1 < \alpha_2$ then d_{α_1} (F,G, H) = inf { t : N*(F(f) - G(g), H, t) $\leq \alpha_1$ } d_{α_2} (F,G, H) = inf { t : N*(F(f) - G(g), H, t) $\leq \alpha_2$ }

As $\alpha_1 < \alpha_2$

 $\begin{array}{l} \{t: N^*(F(f) - G(g), H, t) \geq \alpha_2\} \supseteq \{t: N^*(F(f) - G(g), H, t) \geq \alpha_1\} \\ \text{implies} \quad \text{inf} \{t: N^*(F(f) - G(g), H, t) \geq \alpha_2\} \supseteq \text{inf} \{t: N^*(F(f) - G(g), H, t) \geq \alpha_1\} \\ \quad \text{Therefore, } d_{\alpha_2} (F, G, H) \leq d_{\alpha_1} (F, G, H) \end{array}$

Hence, $0 < \alpha_1 < \alpha_2$ implies d_{α_1} (F,G, H) $\geq d_{\alpha_2}$ (F,G, H) therefore it is a descending family of α –

metric. *Example3.1*

Let $\mathcal{F}(X)$ be the non empty set and N* : $\mathcal{C}(X, Y) \ge \mathcal{C}(X, Y) \ge (0, \infty) \rightarrow [0, 1]$ be defined by N*($\Gamma(t) = \mathcal{C}(t) \ge U(t) = (0, t) = (0, t)$

$$N^{*}(F(t) - G(g), H, t) = \begin{cases} 1 & \text{for } t \le d(f, g, t) \end{cases}$$

Then fore $\alpha \in [0,1)$, $d_{\alpha}(f,g) = d(f,g)$ is the 2- fuzzy 2- anti crisp metric.

Theorem3.3

The space ($\mathcal{F}(X)$, d_{α}) is complete if every cauchy sequence in $\mathcal{F}(X)$ has a convergent subsequence. **Proof:**

Let (f_n) be a Cauchy sequence in $(\mathcal{F}(X), d_{\alpha})$ to show that if (f_n) has a subsequence $\{f_{n_i}\}$ that converges to a point f then the sequence (f_n) itself converges to f.

Given ε ($0 < \varepsilon < 1$) choose N large enough that $d_{\alpha}(f_n, f_m) < \frac{\varepsilon}{2}$ for $n, m \ge N$. [using the fact (f_n) is a Cauchy sequence]

Then choose an integer i large enough that $n_i \ge N$ and $d_{\alpha}(f_{n_i}, f, g) < \frac{\epsilon}{2}$.

Using the fact $n_1 < n_2 < \dots$ is an increasing sequence of integer and suppose f_{n_i} converges to f for all $n \ge N$,

$$\begin{aligned} d_{\alpha}(f_{n}, f) &\leq d_{\alpha}(f_{n}, f_{n_{i}}) + d_{\alpha}(f_{n_{i}}, f) \ d_{\alpha}(f_{n}, f_{n_{i}}) + d_{\alpha}(f_{n_{i}}, f) \\ &= \inf\{\ t : N^{*}(f_{n} - f_{n_{i}}, g, t) \leq \alpha \ \} + \inf\{\ s : N^{*}(f_{n_{i}} - f, g, t) \leq \alpha \ \} \\ &= \inf\{\ t + s : N^{*}(f_{n} - f, g, t) \leq \alpha \ \} \\ &= \inf\{\ r : N^{*}(f_{n} - f, g, t) \leq \alpha \ \} \\ &= d_{\alpha}(f_{n}, f) < \varepsilon. \end{aligned}$$

Theorem 3.4

A fuzzy 2- anti metric space (F(X), d_{α}) is compact if and only if it is fuzzy complete and fuzzy totally bounded.

Proof

Suppose F(X) is a fuzzy compact metric space, every open covering of F(X) contains a finite sub collection covering F(X) and so F(X) is fuzzy totally bounded.

Conversely, let F(X) be a fuzzy 2 complete and fuzzy2- totally bounded to prove that F(X) is sequentially fuzzy compact.

Let (f_n) be a sequence of functions in F(X). Construct a subsequence (f_{n_i}) which is a cauchy sequence, so that it is necessarily converges. First cover F(X) by finitely many balls B (f, g, r, t₁) with radius r, where 0 < r < 1 so that atleast one of these balls contains infinitely many f_n 's

Let J_1 be the subset of \mathbb{Z}_+ consisting of those indices n for which $f_n \in B_1$ (f, g, r, t₁). Next cover F(X) by finitely many balls with radius $\frac{r}{2}$. Because J_1 is infinite at least one of these balls say B_2 (f, g, $\frac{r}{2}$, t₂) must contain f_n for infinitely many values of n in J_1 .

Choose J_2 to be the set of those indices n for $n \in J_1$ and $f_n \in B_2$ (f, g, $\frac{r}{2}$, t_2). In general given J_k set of positive integer. Choose J_{k+1} to be the subset of J_k such that there is a ball B_{k+1} (f, g, $\frac{r}{k+1}$, t_{k+1}) of radius $\frac{r}{k+1}$ that contains f_n for all $n \in J_{k+1}$

Choose $n_1 \in J_1$ given n_k , choose $n_{k+1} \in J_{K+1}$ such that $n_{k+1} > n_k$. Now $i, j \ge k$ the indices both n_i and n_j belongs to J_k (because $J_1 \supset J_2$ nested sequence) Therefore the function f_{n_i} and f_{n_j} are contained in a ball B_k (f, g, $\frac{r}{k}$, t_k). It follows that the sequence (f_{n_i}) is a Cauchy sequence as desired.

Theorem3.5

Let F(X) be a fuzzy 2- anti normed linear space. Let $(F(Y), M, \emptyset)$ be a 2- fuzzy 2- anti metric space. If the subspace \mathcal{F} of $\mathcal{C}(\mathcal{F}(X), \mathcal{F}(Y))$ is totally bounded under the uniform metric $\overline{\rho}_{\alpha}$ corresponding to the 2- fuzzy 2- anti metric d_{α} then \mathcal{F} is equicontinuous under the metric d_{α} . **Proof**

Assume \mathcal{F} is totally bounded, \mathcal{F} is covered by finite number of \in -balls, B(F₁, G, ε , t), B(F₂, G, ε , t), B(F_n, G, ε , t). where $\delta = \frac{\varepsilon}{3} 0 < \delta < 1$ and $0 < \varepsilon < 1$ in $\mathcal{C}(\mathcal{F}(X), \mathcal{F}(Y))$, $F_i \in \mathcal{C}(\mathcal{F}(X), \mathcal{F}(Y))$. As each F_i is continuous at f_0 , d_α (F_i (f), F_0 (f)) $< \delta$ for each $f \in B(f, f_0, \varepsilon, t)$

Let F be the arbitrary function of \mathcal{F} then F belongs to at least one of the δ - balls say $B(F_i, G, \epsilon, t)$. Then for any $f \in B(f, f_0, \epsilon, t)$

$$\begin{array}{l} \overline{d}_{\alpha} \left(\mathrm{F}(\mathrm{f}) \,,\, \mathrm{F}_{\mathrm{i}}(\mathrm{f}) \,< \delta \right. \\ \left. \begin{array}{l} \mathrm{d}_{\alpha} \left(\mathrm{F}_{\mathrm{i}}\left(\mathrm{f} \right) ,\, \mathrm{F}_{\mathrm{i}}(\mathrm{f}_{0}) < \delta \right. \\ \overline{d}_{\alpha} \left(\mathrm{F}_{\mathrm{i}}\left(\mathrm{f}_{0} \right) ,\, \mathrm{F}(\mathrm{f}_{0}) \,< \delta \right. \end{array} \end{array}$$

The first and third inequality holds because $\overline{\rho}_{\alpha}$ (F, F_i, G, H) < δ and the second inequality holds because $f \in B(f, f_0, \varepsilon, t)$. Since $\delta < 1$ the first and third inequality also hold if \overline{d}_{α} is replaced by d_{α} then the triangle inequality implies that for all $f \in B(f, f_0, \varepsilon, t)$ and F, $G \in C(\mathcal{F}(X), \mathcal{F}(Y))$.

 $d_{\alpha}(F(f), F(f_0) < \varepsilon$ as desired.

Theorem3.6

Let \mathcal{F} be a subset of $\mathcal{C}(\mathcal{F}(X), \mathcal{F}(Y))$. \mathcal{F} is totally bounded under supremum metric ρ_{α} is equivalent to \mathcal{F} is totally bounded under uniform metric $\overline{\rho}_{\alpha}$.

Proof

To show that every ε – ball under ρ_{α} is equivalent to the ε – ball under $\overline{\rho}_{\alpha}$ where ρ_{α} is supremum metric and $\overline{\rho}_{\alpha}$ is the uniform metric corresponding to the 2- fuzzy 2- anti normed linear space.

By definition, ρ_{α} (F, H) = sup { d_{α} (F(f), H(h))/ f, g \in F(X) } and

$$\overline{\rho}_{\alpha} (F, H) = \sup \left\{ d_{\alpha} (F(f), H(h)) / f, g \in F(X) \right\}$$

where \overline{d}_{α} (F, H) = min { d_{α} (F, H), 1} implies \overline{d}_{α} (F, G) $\leq d_{\alpha}$ (F, G)

Therefore,

$$\overline{\rho}_{\alpha} (F, H) = \sup \{ \overline{d}_{\alpha} (F(f), H(h) / f, g \in F(X) \} \\ \leq \sup \{ d_{\alpha} (F(f), H(h) / f, g \in F(X) \} \\ = \rho_{\alpha} (F, G)$$

Which implies

 $\overline{\rho}_{\alpha} (F, H) \leq \rho_{\alpha} (F, H)$ If H is an element in $B_{\rho_{\alpha}} (F, H, \varepsilon, t)$ then $\rho_{\alpha} (F, H) < \varepsilon$ (By using the above inequality) Implies $\overline{\rho}_{\alpha} (F, H) < \varepsilon$. Therefore, $H \in B_{\rho_{\alpha}} (F, G, \varepsilon, t)$. Let $B_{\overline{\rho}_{\alpha}} (F, G, \varepsilon, t) \subset B_{\rho_{\alpha}} (F, G, \varepsilon, t)$. Let H be an element in $B_{\overline{\rho}_{\alpha}} (F, G, \varepsilon, t)$ Then $\overline{\rho}_{\alpha} (F, H) < \varepsilon$ Sum $(\overline{d} - F(f) - H(b))/f |\alpha| \in F(X)$ $|\alpha| < \varepsilon$

$$\begin{split} & \text{Sup} \left\{ \begin{array}{l} d_{\alpha} \left(\text{F(f)} , \text{ H(h)/ f, g \in F(X) } \right\} < \epsilon \\ & \overline{d}_{\alpha} \left(\text{F(f)} , \text{H(h)/ f, g \in F(X) } \right\} < \epsilon \\ & \text{min} \left\{ \begin{array}{l} d_{\alpha} \left(\text{F(f)} , \text{H(h)} , 1 \right\} < \epsilon \\ & \left\{ \overline{d}_{\alpha} \left(\text{F(f)} , \text{H(h)} \right\} \right\} < \epsilon \\ & \text{Sup} \left\{ \begin{array}{l} d_{\alpha} \left(\text{F(f)} , \text{H(h)/ f, g \in F(X) } \right\} < \epsilon \\ & \Rightarrow \rho_{\alpha}(\text{ F, G, H)} < \epsilon \end{array} \right. \end{split}$$

Assume that \mathcal{F} is equicontinuous given $\varepsilon > 0$ cover \mathcal{F} - by finitely many ε - balls $B_{\rho_{\alpha}}$ (f, f_0, ε , t). with respect to metric such that

N*(F(f)- F(f_0), G(g), t) < δ for all f, f_0 \in F(X) and F,G $\in C(\mathcal{F}(X), \mathcal{F}(Y))$.

We cover F(X) by finitely many ε - balls, $B_{d_{\alpha}}(f_1, u, \varepsilon, t)$, $B_{d_{\alpha}}(f_2, u, \varepsilon, t)$ $B_{d_{\alpha}}(f_k, u, \varepsilon, t)$ Then again cover F(Y) by finitely many ε - balls $B_{d_{\alpha}}(g_1, h, \varepsilon, t)$, $B_{d_{\alpha}}(g_2, h, \varepsilon, t)$ $B_{d_{\alpha}}(g_m, h, \varepsilon, t)$ Let J be the collection of functions exist a function $\alpha : \{1, \ldots, k\} \rightarrow \{1, \ldots, m\}$ given $\alpha \in J$ if there exist a function F of \mathcal{F} . Such that F(f_i) $\in B_{d_{\alpha}}(g_{\alpha_i}, h, \varepsilon, t)$ for each $i = 1, \ldots, k$, denote the function $F_{f_{\alpha}}$ the collection of $\{f_{\alpha}\}$ is indexed by a J of the index J

To assert that the ε - balls $B_{\rho_{\alpha}}$ (F, f_{α} , ε , t) for $\alpha \in J$ cover \mathcal{F} . Let G be an element of \mathcal{F} for each i=1,....k cover \mathcal{F}

Choose an integer α (i) such that $F(f_i) \in B_{d_{\alpha}}(G_{\alpha(i)}, H, \varepsilon, t)$ then the function α is in J['] we assert that F belongs to the ball $B_{\rho_{\alpha}}$ (F, F_{α}, ϵ , t).

Let $g \in F(X)$ choose i so that $g \in B_{\rho_a}$ (f, f_i, ε , t). Let $g \in F(X)$, choose i so that $f \in (f, f_i, \varepsilon, t)$

Then we get $N^*(F(g) - F(f_i), H(h), t) < \delta$ $\begin{array}{l} N^{\ast}(\;F(f_i)-F_{\alpha}\;(f_i),\,H(h),\,t)\;<\delta\\ N^{\ast}(F_{\alpha}\;(f_i)-F_{\alpha}(g),\,H(h),\,t)<\delta \end{array}$

It follows that N*(F(g) - F_{\alpha}(g), H(h), t) $\leq \max \{ N^*(F(g) - F(f_i), H(h), t), N^*(F(f_i) - F_{\alpha}(f_i), H(h), t), \dots \}$ $N^*(F_\alpha(f_i) - F_\alpha(g), H(h), t)$

 $<\delta$

Since this inequality holds, $\rho_{\alpha}(F,F_{\alpha},H) = \max \{d_{\alpha}(F(g),F_{\alpha}(g))\}$ and

 $d_{\alpha}(F(g), F_{\alpha}(g), H) = \inf \{ t : N^*(F(g) - F_{\alpha}(g), H(h), t) \le \alpha \}$. Therefore $F \in B_{\rho_{\alpha}}(F, F_{\alpha}, \varepsilon, t)$.

REFERENCES

- T. Bag and S.K.Samanta, Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math. 11(3) (2003), 687-705. [1]
- [2] T. Bag and S.K.Samanta, Fuzzy bounded linear operator, Fuzzy Sets and Systems. 115 (2005), 513-547.
- [3] T. Bag and S.K. Samanta, A comparative study of fuzzy norms on a linear space, J. Fuzzy sets and systems. 153 (2008), 670-684.
- [4] S.C. Cheng J.N Mordeson, Fuzzy linear operator & Fuzzy normed linear spaces, Bull. Cal. Math. Soc 86(1994), 429-436.
- [5] C. Felbin, Finite dimensional Fuzzy normed linear spaces, Fuzzy Sets and Systems. 48 (1992), 239-248.
- [6] C. Felbin, The completion of Fuzzy normed linear space, Journal of mathematical analysis and application. 174(2) (1993), 428-440.
- [7]
- S.Gahler, Lineare 2- normierteRaume, Math Nachr. 28 (1964), 1-43. Iqbal H. Jebril&SamantaT.K, Fuzzy anti- normed space, Journal of Mathematics Technology.(2010) 66-77. [8]
- [9] J. Zhang, The continuity and boundedness of fuzzy linear operators in fuzzy normed space, J. Fuzzy Math. 13 (2009), No. 3 519-536.
- [10] [10] Katsaras, Fuzzy topological vector spaces II, Fuzzy Sets and Systems. 12(1984), 143-154.
- A.R Meenakshi and R.Cokilavany, On fuzzy 2- normed linear space, J. Fuzzy math. 92(2001), 345-351. [11]
- [12] [arijatSinha, Divya Mishra and GhanshyamLal. Some results on fuzzy anti 2- normed linear space, International Journal of Applied Engineering Research 11(2012)
- R.M Somasundaram and ThangarajBeaula, Some aspect of Fuzzy 2- Normed linear space, Bull. Malays Math. Sci. Soc (2), 32(2) [13] (2009), 211-221.
- ThangarajBeaula and Beulah Mariya, Some aspects on 2- fuzzy 2- anti Normed Linear space, Global Journal of Pure and Applied [14] Mathematics13(2) (2017), 324-332
- L.A Zadeh, Fuzzy Sets, Information and Control. 8(1965), 338-353. [15]