Some Special Type of CI-Algebras

Pulak Sabhapandit¹, Kulajit Pathak²

¹Department of Mathematics, Biswanath College, Biswanath Chariali, Assam, India ²Department of Mathematics, B.H.College, Howly, Assam, India

ABSTRACT

In this paper we introduce some special type of CI-algebras which are obtained from a given CIalgebra. They are Cartesian product of CI–algebra, function algebra of CI–algebra and CIalgebra of matrices.

Keywords: BE-algebra, CI-algebra

Mathematics Subject Classification: 06F35, 03G25

1. INTRODUCTION

In 1966,Y.Imai and K.Iseki [2] introduced the notion of a BCK-algebra. There exist several generalizations of BCK-algebras, such as BCI-algebras [3],BCH-algebras [1],BH-algebras [4],d-algebras [8],etc. In [5], H.S.Kim and Y.H.kim introduced the notion of a BE-algebra as a dualization of a generalization of a BCK-algebra.As a generalization of BE-algebras, B.L.Meng [7] introduced the notion of CI-algebras and discussed its important properties. In this paper we introduce some special type of CI-algebras which are obtained from a given CI-algebra.They are Cartesian product of CI–algebra, function algebra of CI–algebra and CI-algebra of matrices.

2. PRELIMINARIES

Definition 2.1. ([5]) - A system (X; *, 1) of type (2, 0) consisting of a non-empty set X, a binary operation * and a fixed element 1 is called a BE–algebra if the following conditions are satisfied:

(BE 1) x * x = 1
 (BE 2) x * 1 = 1
 (BE 3) 1 * x = 1
 (BE 4) x * (y * z) = y * (x * z)

for all $x, y, z \in X$.

Definition 2.2 ([7]) - A CI–algebra is an algebra (X; *, 1) of type (2, 0) consisting of a nonempty set X, a binary operation * and a fixed element 1satisfying the following conditions:

(CI 1)
$$x * x = 1$$

(CI 2) $1 * x = x$
(CI 3) $x * (y * z) = y * (x * z)$

for all $x, y, z \in X$.

Example 2.3.[9] - Let $X = R^+ = \{x \in R : x > 0\}$

For x, $y \in X$, we define x * y = y $\frac{1}{x}$

Then (X; *, 1) is a CI – algebra

Example 2.4.- The simplest example of a BE–algebra and a CI–algebra are the following.

Let $X = \{0, 1\}$. We consider binary operations * and o given by the Cayley tables

*	0	1			0	0	1
0	1	1			0	1	0
1	0	1			1	0	1
Table 2.1		Table 2.2					

Then (i) (X; *, 1) is a BE-algebra,

(ii) (X; o, 1) is a CI–algebra but not a BE–algebra.

Example 2.5 ([7]):- Let $X = \{1, a, b, c, d\}$ and let the binary operation * be given by the Cayley table

*	1	а	b	c	d
1	1	а	b	c	d
a	1	1	b	b	d
b	1	а	1	а	d
c	1	1	1	1	d
d	d	d	d	d	1

Then (X; *, 1) is a CI-algebra.

Lemma 2.6. ([6]) - In a CI–algebra following results are true:

(1)
$$x * ((x * y) * y) = 1$$

(2) $(x * y) * 1 = (x * 1) * (y * 1)$
(3) $1 \le x \text{ imply } x = 1$

for all $x, y \in X$.

§. 3 SOME SPECIAL CI-ALGEBRAS

Here we establish the following results:

Theorem 3.1.- Let (X; *, 1) be a system consisting of a non–empty set X, a binary operation * and a distinct element 1. Let $Y = X \times X = \{(x_1, x_2) : x_1, x_2 \in X\}$. For $u, v \in Y$ with $u = (x_1, x_2)$, $v = (y_1, y_2)$, we define an operation \otimes in Y as

 $u \otimes v = (x_1 * y_1, x_2 * y_2)$ Then (Y; \otimes , (1, 1)) is a CI–algebra iff (X; *, 1) is a CI–algebra.

Proof: Suppose that $(Y; \otimes, (1, 1))$ is a CI-algebra. Let $x \in X$ and we choose $u = (x, 1) \in Y$. Then

- (1) $u \otimes u = (1, 1) \Rightarrow (x * x, 1 * 1) = (1, 1)$ $\Rightarrow x * x = 1$, since 1 * 1 = 1. (2) $(1, 1) \otimes u = u \Rightarrow (1 * x, 1 * 1) = (x, 1)$
 - $(1, 1) \otimes u = u \Longrightarrow (1 * x, 1 * 1) =$ $\Rightarrow 1 * x = x.$
- (3) Let x, y, $z \in X$ and we choose u = (x, 1), v = (y, 1) and w = (z, 1). Then $u \otimes (v \otimes w) = v \otimes (u \otimes w)$ $\Rightarrow (x * (y * z), 1 * (1 * 1)) = (y * (x * z), 1 * (1 * 1))$

ISSN: 2231 - 5373

http://www.ijmttjournal.org

$$\Rightarrow$$
 x * (y * z) = y * (x * z).

Thus we see that (X; *, 1) is a CI-algebra.

Conversely, suppose that (X; *, 1) is a CI–algebra. Let $U = (x_1, x_2) \in Y$. Then

(1)
$$u \otimes u = (x_1, x_2) \otimes (x_1, x_2)$$

= $(x_1 * x_1, x_2 * x_2)$
= $(1, 1)$.
(2) $(1, 1) \otimes u = (1, 1) \otimes (x_1, x_2)$
= $(1 * x_1, 1 * x_2)$
= (x_1, x_2)
= u

(3) Let $u = (x_1, x_2)$, $v = (y_1, y_2)$ and $w = (z_1, z_2)$ be any three elements of Y.

Then $\mathbf{u} \otimes (\mathbf{v} \otimes \mathbf{w}) = (\mathbf{x}_1, \mathbf{x}_2) \otimes ((\mathbf{y}_1, \mathbf{y}_2) \otimes (\mathbf{z}_1, \mathbf{z}_2))$

$$= (x_1, x_2) \otimes (y_1 * z_1, y_2 * z_2)$$

= $(x_1 * (y_1 * z_1), x_2 * (y_2 * z_2))$
= $(y_1 * (x_1 * z_1), y_2 * (x_2 * z_2))$
= $(y_1, y_2) \otimes (x_1 * z_1, x_2 * z_2)$
= $(y_1, y_2) \otimes ((x_1, x_2) \otimes (z_1, z_2))$
= $v \otimes (u \otimes w).$

Hence $(Y; \otimes, (1, 1))$ is a CI–algebra.

Corollary 3.2. - If (X; *, 1) and (Y; o, e) are two CI–algebras, then $Z = X \times Y$ is also a CI–algebra under the binary operation defined as follows:

For
$$u = (x_1, y_1)$$
 and $v = (x_2, y_2)$ in Z,
 $u \otimes v = (x_1 * x_2, y_1 \circ y_2)$

Here the distinct element of Z is (1, e).

Note 3.3. - The above result can be extended for finite number of CI-algebras.

Theorem 3.4. - Let (X; *, 1) be a CI–algebra and let F(X) be the class of all functions $f: X \to X$. Let a binary operation o be defined in F(X) as follows:

For f,
$$g \in F(X)$$
 and $x \in X$,

$$(f \circ g)(x) = f(x) * g(x).$$

ISSN: 2231 - 5373

Then $(F(X); o, 1^{\sim})$ is a CI-algebra where 1^{\sim} is defined as $1^{\sim}(x) = 1$ for all $x \in X$.

Here two functions f, $g \in F(X)$ are equal iff f(x) = g(x) for all $x \in X$.

Proof: Let f, g, $h \in F(X)$. Then for $x \in X$, we have

- (i) $(f \circ f)(x) = f(x) * f(x) = 1 = 1^{(x)} \Rightarrow f \circ f = 1^{;}$
- (ii) $(1^{\circ} o f)(x) = 1^{\circ}(x) * f(x) = f(x) \Rightarrow 1^{\circ} o f = f;$
- (iii) $(f \circ (g \circ h))(x) = f(x) * (g \circ h)(x)$

= f(x) * (g(x) * h(x))= g(x) * (f(x) * h(x)) = g(x) * (f o h)(x) = (g o (f o h)) (x).

 \Rightarrow fo (g o h) = g o (f o h).

This proves that $(F(X); o, 1^{\sim})$ is a CI–algebra.

Theorem 3.5.- Let (X; *, 1) be a CI-algebra and let M(X) be the class of all m x n matrices $(a_{ij})_{m \times n}$ with entries $a_{ij} \in X$. For $A = (a_{ij})_{m \times n}$, $B = (b_{ij})_{m \times n}$ we define

(a) $A = B \text{ iff } a_{ij} = b_{ij}; 1 \le i \le m, 1 \le j \le n,$ (b) a binary operation o in M(X) as

A o B = C = $(c_{ij})_{m \times n}$

Where $c_{ij} = a_{ij} * b_{ij}$; $1 \le i \le m, 1 \le j \le n$.

Then (M(X); o, I) is a CI-algebra with distinct element

 $I = (e_{ij})_{m \times n}$ where $e_{ij} = 1$ for $1 \le i \le m, 1 \le j \le n$.

Proof :- Let $A = (a_{ij})_{m \times n} \in M$ (X). Then

- (i) A o A = $(l_{ij})_{m \times n}$ where $l_{ij} = a_{ij} * a_{ij} = 1 = e_{ij}$;
- $1 \le i \le m, \ 1 \le j \le n$, which means that A o A = I;
- (ii) I o A = $(k_{ij})_{m \times n}$ where $k_{ij} = e_{ij} * a_{ij} = 1 * a_{ij} = a_{ij}$;

 $1 \le i \le m, \ 1 \le j \le n$, which means that I o A = A ;

(iii) Let $A = (a_{ij})_{m \times n}$, $B = (b_{ij})_{m \times n}$ and $C = (c_{ij})_{m \times n}$ be elements of M(X). Then A o (B o C) = $(x_{ij})_{m \times n}$

Where $x_{ij} = (a_{ij} * (b_{ij} * c_{ij}))$; $1 \le i \le m, 1 \le j \le n$.

Also B o (A o C) = $(y_{ij})_{m \times n}$

Where $y_{ij} = (b_{ij} * (a_{ij} * c_{ij}))$; $1 \le i \le m, 1 \le j \le n$.

Since $(a_{ij} * (b_{ij} * c_{ij})) = (b_{ij} * (a_{ij} * c_{ij}))$; $1 \le i \le m, 1 \le j \le n$,

we see that $A \circ (B \circ C) = B \circ (A \circ C)$.

Hence (M (X); o, I) is a CI-algebra.

Conclusion: Here we discussed some special type of CI-algebras such as Cartesian product of CI-algebras, function algebra of CI-algebras and CI-algebra of matrices from a given CI-algebra. There is a scope of further study in different structures of CI-algebra relating to Cartesian product of CI-algebras, function algebra of CI-algebras and CI-algebra of matrices etc.

References

- [1] Hu Q.P.,Li X, "On BCH-algebras", Math.Seminer Notes 11 (1983). p.313-320
- [2] Imai Y., Iseki k., "On axiom systems of propositional calculi XIV", Proc. Japan. Academy 42

(1966),p.19-22

- [3] Iseki k., "An algebra related with a propositional calculus", Proc. Japan Acad. 42(1966), p.
 26 29
- [4] Jun Y.B., Roh E.H., Kim H.S., "On BH-algebras", Sci. Math.1 (1998), p.347-354
- [5] Kim H.S., Kim Y.H., "On BE-algebras", Sci. Math. Japonicae 66 (2007), p.113-116
- [6] Kim H.K.," A Note On CI-algebras" Int. Mathematical Forum, Vol. 6.2011, no.1.p.1-5
- [7] Meng B.L.,"CI-algebras", Sci.Math.japonicae, e-2009 p. 695-701
- [8] Negger J.,Kim H.S., "On d-algebras",Math.Slovaca 40 (1999) p.19-26
- [9] Sabhapandit, P. and Chetia, B.C., "CI-Algebras and its Fuzzy Ideals", Int. J. of Trends and Tech., Vol. 33 (2) (2016), pp. 135 - 141

Dr. Pulak Sabhapandit (corresponding author) Department of mathematics Biswanath College Biswanath chariali-784176 Sonitpur, Assam India