# Some Special Type of CI-Algebras 

Pulak Sabhapandit ${ }^{1}$, Kulajit Pathak ${ }^{2}$<br>${ }^{1}$ Department of Mathematics,Biswanath College, Biswanath Chariali, Assam, I ndia<br>${ }^{2}$ Department of Mathematics, B.H.College, Howly, Assam, India


#### Abstract

In this paper we introduce some special type of Cl -algebras which are obtained from a given $\mathrm{Cl}-$ algebra. They are Cartesian product of CI-algebra, function algebra of CI-algebra and CIalgebra of matrices.


Keywords: BE -algebra, Cl -algebra

Mathematics Subject Classification: 06F35, 03G25

## 1. INTRODUCTION

In 1966,Y.Imai and K.Iseki [2] introduced the notion of a BCK-algebra. There exist several generalizations of BCK -algebras,such as BCl -algebras [3], BCH -algebras [1], BH -algebras [4],dalgebras [8],etc. In [5], H.S.Kim and Y.H.kim introduced the notion of a BE-algebra as a dualization of a generalization of a BCK-algebra.As a generalization of BE-algebras,B.L.Meng [7] introduced the notion of Cl -algebras and discussed its important properties. In this paper we introduce some special type of Cl -algebras which are obtained from a given Cl -algebra.They are Cartesian product of CI-algebra, function algebra of CI-algebra and CI-algebra of matrices.

## 2. PRELIMINARIES

Definition 2.1. ([5]) - A system ( $\mathrm{X} ; *, 1$ ) of type $(2,0)$ consisting of a non-empty set X , a binary operation $*$ and a fixed element 1 is called a BE-algebra if the following conditions are satisfied:

1. (BE 1) $x * x=1$
2. $(\mathrm{BE} 2) \mathrm{x} * 1=1$
3. (BE 3) $1 * x=1$
4. $($ BE 4) $\mathrm{x} *(\mathrm{y} * \mathrm{z})=\mathrm{y} *(\mathrm{x} * \mathrm{z})$
for all $x, y, z \in X$.

Definition 2.2 ([7]) - A CI-algebra is an algebra (X; *, 1) of type ( 2,0 ) consisting of a nonempty set X , a binary operation $*$ and a fixed element 1 satisfying the following conditions:

$$
\begin{aligned}
& \text { (CI 1) } \mathrm{x} * \mathrm{x}=1 \\
& (\mathrm{CI} 2) 1 * \mathrm{x}=\mathrm{x} \\
& (\mathrm{CI} 3) \mathrm{x} *(\mathrm{y} * \mathrm{z})=\mathrm{y} *(\mathrm{x} * \mathrm{z})
\end{aligned}
$$

for all $x, y, z \in X$.
Example 2.3.[9] - Let $X=R^{+}=\{x \in R: x>0\}$

For $\mathrm{x}, \mathrm{y} \in \mathrm{X}$, we define

$$
x * y=y \cdot \frac{1}{x}
$$

Then ( $\mathrm{X} ; *, 1$ ) is a CI - algebra
Example 2.4.- The simplest example of a BE -algebra and a CI -algebra are the following.
Let $X=\{0,1\}$. We consider binary operations * and o given by the Cayley tables

| $*$ | 0 | 1 |
| :---: | :---: | :---: |
| 0 | 1 | 1 |
| 1 | 0 | 1 |

Table 2.1


Table 2.2

Then (i) $(\mathrm{X} ; *, 1)$ is a BE-algebra,
(ii) ( $\mathrm{X} ; \mathrm{o}, 1$ ) is a $\mathrm{CI}-$ algebra but not a $\mathrm{BE}-$ algebra.

Example 2.5 ([7]):- Let $\mathrm{X}=\{1, \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ and let the binary operation $*$ be given by the Cayley table

| $*$ | 1 | a | b | c | d |
| :--- | :--- | :--- | :--- | :--- | :--- |
| c | 1 | a | b | c | d |
| a | 1 | 1 | b | b | d |
| b | 1 | a | 1 | a | d |
| c | 1 | 1 | 1 | 1 | d |
| d | d | d | d | d | 1 |

Then ( $\mathrm{X} ; *, 1$ ) is a CI-algebra.
Lemma 2.6. ([6]) - In a CI-algebra following results are true:
(1) $x *((x * y) * y)=1$
(2) $(\mathrm{x} * \mathrm{y}) * 1=(\mathrm{x} * 1) *(\mathrm{y} * 1)$
(3) $1 \leq x$ imply $x=1$
for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$.

## §. 3 SOME SPECIAL CI-ALGEBRAS

Here we establish the following results:
Theorem 3.1.- Let $(X ; *, 1)$ be a system consisting of a non-empty set $X$, a binary operation * and a distinct element 1. Let $\mathrm{Y}=\mathrm{X} \times \mathrm{X}=\left\{\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right): \mathrm{x}_{1}, \mathrm{x}_{2} \in \mathrm{X}\right\}$. For $\mathrm{u}, \mathrm{v} \in \mathrm{Y}$ with $\mathrm{u}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$, $\mathrm{v}=\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)$, we define an operation $\otimes$ in Y as

$$
u \otimes v=\left(x_{1} * y_{1}, x_{2} * y_{2}\right)
$$

Then $(\mathrm{Y} ; \otimes,(1,1))$ is a CI-algebra iff $(\mathrm{X} ; *, 1)$ is a CI-algebra.
Proof: Suppose that $(\mathrm{Y} ; \otimes,(1,1))$ is a CI-algebra. Let $\mathrm{x} \in \mathrm{X}$ and we choose $\mathrm{u}=$ $(\mathrm{x}, 1) \in \mathrm{Y}$. Then
(1) $\mathrm{u} \otimes \mathrm{u}=(1,1) \Rightarrow(\mathrm{x} * \mathrm{x}, 1 * 1)=(1,1)$
$\Rightarrow \mathrm{x} * \mathrm{x}=1$, since $1 * 1=1$.
(2) $(1,1) \otimes u=u \Rightarrow(1 * x, 1 * 1)=(x, 1)$

$$
\Rightarrow 1 * x=x
$$

(3) Let $x, y, z \in X$ and we choose $u=(x, 1), v=(y, 1)$ and $w=(z, 1)$. Then

$$
\mathrm{u} \otimes(\mathrm{v} \otimes \mathrm{w})=\mathrm{v} \otimes(\mathrm{u} \otimes \mathrm{w})
$$

$$
\Rightarrow(\mathrm{x} *(\mathrm{y} * \mathrm{z}), 1 *(1 * 1))=(\mathrm{y} *(\mathrm{x} * \mathrm{z}), 1 *(1 * 1))
$$

$$
\Rightarrow x *(y * z)=y *(x * z)
$$

Thus we see that $(\mathrm{X} ; *, 1)$ is a CI-algebra .
Conversely, suppose that ( $\mathrm{X} ; *, 1$ ) is a CI-algebra. Let $\mathrm{U}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \in \mathrm{Y}$. Then
(1) $u \otimes u=\left(x_{1}, x_{2}\right) \otimes\left(x_{1}, x_{2}\right)$

$$
\begin{aligned}
& =\left(\mathrm{x}_{1} * \mathrm{x}_{1}, \mathrm{x}_{2} * \mathrm{x}_{2}\right) \\
& =(1,1) .
\end{aligned}
$$

(2) $(1,1) \otimes u=(1,1) \otimes\left(x_{1}, x_{2}\right)$

$$
\begin{aligned}
& =\left(1 * x_{1}, 1 * x_{2}\right) \\
& =\left(x_{1}, x_{2}\right) \\
& =u .
\end{aligned}
$$

(3) Let $u=\left(x_{1}, x_{2}\right), v=\left(y_{1}, y_{2}\right)$ and $w=\left(z_{1}, z_{2}\right)$ be any three elements of $Y$.

Then $\mathrm{u} \otimes(\mathrm{v} \otimes \mathrm{w})=\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \otimes\left(\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right) \otimes\left(\mathrm{z}_{1}, \mathrm{z}_{2}\right)\right)$

$$
\begin{aligned}
& =\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \otimes\left(\mathrm{y}_{1} * \mathrm{z}_{1}, \mathrm{y}_{2} * \mathrm{z}_{2}\right) \\
& =\left(\mathrm{x}_{1} *\left(\mathrm{y}_{1} * \mathrm{z}_{1}\right), \mathrm{x}_{2} *\left(\mathrm{y}_{2} * \mathrm{z}_{2}\right)\right) \\
& =\left(\mathrm{y}_{1} *\left(\mathrm{x}_{1} * \mathrm{z}_{1}\right), \mathrm{y}_{2} *\left(\mathrm{x}_{2} * \mathrm{z}_{2}\right)\right) \\
& =\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right) \otimes\left(\mathrm{x}_{1} * \mathrm{z}_{1}, \mathrm{x}_{2} * \mathrm{z}_{2}\right) \\
& =\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right) \otimes\left(\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \otimes\left(\mathrm{z}_{1}, \mathrm{z}_{2}\right)\right) \\
& =\mathrm{v} \otimes(\mathrm{u} \otimes \mathrm{w}) .
\end{aligned}
$$

Hence $(\mathrm{Y} ; \otimes,(1,1))$ is a CI-algebra.
Corollary 3.2. - If $(\mathrm{X} ; *, 1)$ and $(\mathrm{Y} ; \mathrm{o}, \mathrm{e})$ are two CI -algebras, then $\mathrm{Z}=\mathrm{X} \times \mathrm{Y}$ is also a CIalgebra under the binary operation defined as follows:

$$
\text { For } \begin{aligned}
\mathrm{u}=\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \text { and } \mathrm{v} & =\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right) \text { in } \mathrm{Z}, \\
\mathrm{u} \otimes \mathrm{v} & =\left(\mathrm{x}_{1} * \mathrm{x}_{2}, \mathrm{y}_{1} \mathrm{o} \mathrm{y}_{2}\right)
\end{aligned}
$$

Here the distinct element of Z is $(1, \mathrm{e})$.
Note 3.3. - The above result can be extended for finite number of CI-algebras.
Theorem 3.4. - Let $(\mathrm{X} ; *, 1)$ be a CI-algebra and let $\mathrm{F}(\mathrm{X})$ be the class of all functions $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{X}$. Let a binary operation o be defined in $\mathrm{F}(\mathrm{X})$ as follows:

$$
\text { For } f, g \in F(X) \text { and } x \in X,
$$

$$
(\mathrm{fog})(\mathrm{x})=\mathrm{f}(\mathrm{x}) * \mathrm{~g}(\mathrm{x}) .
$$

Then $\left(\mathrm{F}(\mathrm{X}) ; \mathrm{o}, 1^{\sim}\right)$ is a CI-algebra where $1^{\sim}$ is defined as $1^{\sim}(\mathrm{x})=1$ for all $\mathrm{x} \in \mathrm{X}$.
Here two functions $f, g \in F(X)$ are equal iff $f(x)=g(x)$ for all $x \in X$.
Proof: Let $f, g, h \in F(X)$. Then for $x \in X$, we have
(i) $\quad(\mathrm{fof})(\mathrm{x})=\mathrm{f}(\mathrm{x}) * \mathrm{f}(\mathrm{x})=1=1^{\sim}(\mathrm{x}) \Rightarrow \mathrm{fof}=1^{\sim}$;
(ii) $\quad\left(1^{\sim}\right.$ of $f(x)=1^{\sim}(x) * f(x)=f(x) \Rightarrow 1^{\sim}$ of $f$ f;
(iii) $\quad(\mathrm{fo}(\mathrm{goh}))(\mathrm{x})=\mathrm{f}(\mathrm{x}) *(\mathrm{~g} \circ \mathrm{~h})(\mathrm{x})$

$$
=\mathrm{f}(\mathrm{x}) *(\mathrm{~g}(\mathrm{x}) * \mathrm{~h}(\mathrm{x}))
$$

$$
=\mathrm{g}(\mathrm{x}) *(\mathrm{f}(\mathrm{x}) * \mathrm{~h}(\mathrm{x}))
$$

$$
=\mathrm{g}(\mathrm{x}) *(\mathrm{fo} \mathrm{~h})(\mathrm{x})
$$

$$
=(\mathrm{g} o(\mathrm{foh}))(\mathrm{x}) .
$$

$$
\Rightarrow \mathrm{fo}(\mathrm{~g} \circ \mathrm{oh})=\mathrm{g} \circ(\mathrm{foh}) .
$$

This proves that $\left(\mathrm{F}(\mathrm{X}) ; \mathrm{o}, 1^{\sim}\right)$ is a CI-algebra.
Theorem 3.5.- Let $(X ; *, 1)$ be a CI-algebra and let $M(X)$ be the class of all $m \mathrm{x} n$ matrices $\left(\mathrm{a}_{\mathrm{ij}}\right)_{\mathrm{m} \times \mathrm{n}}$ with entries $\mathrm{a}_{\mathrm{ij}} \in \mathrm{X}$. For $\mathrm{A}=\left(\mathrm{a}_{\mathrm{ij}}\right)_{\mathrm{m} \times \mathrm{n}}, \mathrm{B}=\left(\mathrm{b}_{\mathrm{ij}}\right)_{\mathrm{m} \times \mathrm{n}}$ we define
(a) $A=B$ iff $a_{i j}=b_{i j} ; 1 \leq i \leq m, 1 \leq j \leq n$,
(b) a binary operation o in $\mathrm{M}(\mathrm{X})$ as

$$
\text { AoB=C=(cij })_{m \times n}
$$

Where $\mathrm{c}_{\mathrm{ij}}=\mathrm{a}_{\mathrm{ij}} * \mathrm{~b}_{\mathrm{ij}} ; 1 \leq \mathrm{i} \leq \mathrm{m}, 1 \leq \mathrm{j} \leq \mathrm{n}$.
Then $(\mathrm{M}(\mathrm{X}) ; \mathrm{o}, \mathrm{I})$ is a CI-algebra with distinct element
$\mathrm{I}=\left(\mathrm{e}_{\mathrm{ij}}\right)_{\mathrm{m} \times \mathrm{n}}$ where $\mathrm{e}_{\mathrm{ij}}=1$ for $1 \leq \mathrm{i} \leq \mathrm{m}, 1 \leq \mathrm{j} \leq \mathrm{n}$.
Proof :- Let $A=\left(a_{i j}\right)_{m \times n} \in M(X)$. Then
(i) $\quad \mathrm{A} \circ \mathrm{A}=\left(\mathrm{l}_{\mathrm{ij}}\right)_{\mathrm{mxn}}$ where $\mathrm{l}_{\mathrm{ij}}=\mathrm{a}_{\mathrm{ij}} * \mathrm{a}_{\mathrm{ij}}=1=\mathrm{e}_{\mathrm{ij}}$; $1 \leq \mathrm{i} \leq \mathrm{m}, 1 \leq \mathrm{j} \leq \mathrm{n}$, which means that A o $\mathrm{A}=\mathrm{I}$;
(ii) I I A $=\left(\mathrm{k}_{\mathrm{ij}}\right)_{\mathrm{mxn}}$ where $\mathrm{k}_{\mathrm{ij}}=\mathrm{e}_{\mathrm{ij}} * \mathrm{a}_{\mathrm{ij}}=1 * \mathrm{a}_{\mathrm{ij}}=\mathrm{a}_{\mathrm{ij}}$;
$1 \leq \mathrm{i} \leq \mathrm{m}, 1 \leq \mathrm{j} \leq \mathrm{n}$, which means that I o $\mathrm{A}=\mathrm{A}$;
(iii) Let $\mathrm{A}=\left(\mathrm{a}_{\mathrm{ij}}\right)_{\mathrm{m} \times \mathrm{n}}, \mathrm{B}=\left(\mathrm{b}_{\mathrm{ij}}\right)_{\mathrm{m} \times \mathrm{n}}$ and $\mathrm{C}=\left(\mathrm{c}_{\mathrm{ij}}\right)_{\mathrm{m} \times \mathrm{n}}$ be elements of $\mathrm{M}(\mathrm{X})$. Then A o (BoC) $=\left(\mathrm{x}_{\mathrm{ij}}\right)_{\mathrm{mxn}}$

Where $\mathrm{x}_{\mathrm{ij}}=\left(\mathrm{a}_{\mathrm{ij}} *\left(\mathrm{~b}_{\mathrm{ij}} * \mathrm{c}_{\mathrm{ij}}\right)\right) ; 1 \leq \mathrm{i} \leq \mathrm{m}, 1 \leq \mathrm{j} \leq \mathrm{n}$.
Also $\mathrm{Bo}(\mathrm{AoC})=\left(\mathrm{y}_{\mathrm{ij}}\right)_{\mathrm{m} \times \mathrm{n}}$

Where $\mathrm{y}_{\mathrm{ij}}=\left(\mathrm{b}_{\mathrm{ij}} *\left(\mathrm{a}_{\mathrm{ij}} * \mathrm{c}_{\mathrm{ij}}\right)\right) ; 1 \leq \mathrm{i} \leq \mathrm{m}, 1 \leq \mathrm{j} \leq \mathrm{n}$.
Since $\left(\mathrm{a}_{\mathrm{ij}} *\left(\mathrm{~b}_{\mathrm{ij}} * \mathrm{c}_{\mathrm{ij}}\right)\right)=\left(\mathrm{b}_{\mathrm{ij}} *\left(\mathrm{a}_{\mathrm{ij}} * \mathrm{c}_{\mathrm{ij}}\right)\right) ; 1 \leq \mathrm{i} \leq \mathrm{m}, 1 \leq \mathrm{j} \leq \mathrm{n}$,
we see that $\mathrm{A} \circ(\mathrm{B} \circ \mathrm{C})=\mathrm{B}$ o $(\mathrm{A} \circ \mathrm{C})$.
Hence ( $\mathrm{M}(\mathrm{X}) ; \mathrm{o}, \mathrm{I})$ is a CI-algebra.
Conclusion: Here we discussed some special type of Cl -algebras such as Cartesian product of CI-algebras, function algebra of CI-algebras and CI-algebra of matrices from a given CI-algebra. There is a scope of further study in different structures of Cl-algebra relating to Cartesian product of CI-algebras, function algebra of CI -algebras and CI -algebra of matrices etc.

## References

[1] Hu Q.P.,Li X, "On BCH-algebras",Math.Seminer Notes 11 (1983). p.313-320
[2] Imai Y.,Iseki k.,"On axiom systems of propositional calculi XIV", Proc.Japan.Academy 42 (1966),p.19-22
[3] Iseki k.,"An algebra related with a propositional calculus",Proc.Japan Acad.42(1966), p. 26-29
[4] Jun Y.B.,Roh E.H.,Kim H.S.,'"On BH-algebras",Sci.Math. 1 (1998),p.347-354
[5] Kim H.S.,Kim Y.H.,"On BE-algebras",Sci.Math.Japonicae 66 (2007),p.113-116
[6] Kim H.K.,"A Note On Cl-algebras" Int. Mathematical Forum,Vol. 6.2011,no.1.p.1-5
[7] Meng B.L.,"CI-algebras",Sci.Math.japonicae,e-2009 p. 695-701
[8] Negger J.,Kim H.S., "On d-algebras",Math.Slovaca 40 (1999) p.19-26
[9] Sabhapandit, P. and Chetia, B.C., "CI-Algebras and its Fuzzy Ideals", Int. J. of Trends and Tech.,Vol. 33 (2) (2016), pp. 135-141

Dr. Pulak Sabhapandit (corresponding author)
Department of mathematics
Biswanath College
Biswanath chariali-784176
Sonitpur, Assam
India

