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ABSTRACT

In this paper we introduce some special type of Cl-algebras which are obtained from a given CI-
algebra. They are Cartesian product of Cl-algebra, function algebra of Cl-algebra and CI-
algebra of matrices.
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1. INTRODUCTION

In 1966,Y.Imai and K.Iseki [2] introduced the notion of a BCK-algebra. There exist several
generalizations of BCK-algebras,such as BCl-algebras [3],BCH-algebras [1],BH-algebras [4],d-
algebras [8],etc. In [5], H.S.Kim and Y.H.kim introduced the notion of a BE-algebra as a
dualization of a generalization of a BCK-algebra.As a generalization of BE-algebras,B.L.Meng [7]
introduced the notion of Cl-algebras and discussed its important properties. In this paper we
introduce some special type of Cl-algebras which are obtained from a given Cl-algebra.They are
Cartesian product of Cl-algebra, function algebra of Cl-algebra and Cl-algebra of matrices.

2. PRELIMINARIES

Definition 2.1. ([5]) = A system (X; *, 1) of type (2, 0) consisting of a non-empty set X, a binary
operation * and a fixed element 1 is called a BE—algebra if the following conditions are satisfied:

1. BE1)x*xx=1
2. BE2)xx1=1
3. BE3) 1*xx=1
4. (BE 4) x*(y*2) =y*(x+7)

forallx,y,z € X.
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Definition 2.2 ([7]) - A Cl-algebra is an algebra (X; *, 1) of type (2, 0) consisting of a non-
empty set X, a binary operation * and a fixed element 1satisfying the following conditions:

CI)x*x=1

(CI2)1 *x=x

(CI3)x*(y*2)=y* (X *2)
forall x,y,z € X.

Example 2.3.[9]-Let X=R ' ={xeR:x >0}

Forx,y € X, we define
X*y=Yy. i
Then (X; *, 1) is a CI— algebra
Example 2.4.- The simplest example of a BE—algebra and a CI —algebra are the following.

Let X = {0, 1}. We consider binary operations * and o given by the Cayley tables

) 0 1 0] 0 1
0|1 1 of1 0
110 1 1{0 1
Table 2.1 Table 2.2

Then (i) (X; *, 1) is a BE—algebra,
(i1) (X; o, 1) is a Cl—algebra but not a BE—algebra.

Example 2.5 ([7]):- Let X = {1, a, b, ¢, d} and let the binary operation * be given by the Cayley

table

ISSN: 2231 - 5373 http://www.ijmttjournal.org Page 7



International Journal of Mathematics Trends and Technology ( IJMTT )  - Volume 64 Number 1  - December 2018

ISSN: 2231  - 5373                                http://www.ijmttjournal.org                               Page 7



International Journal of Mathematics Trends and Technology (IJMTT ) - Volume 64 Number 1 - December 2018

Then (X; *, 1) is a Cl-algebra.

Lemma 2.6. ([6]) - In a Cl-algebra following results are true:

(D) x*((x*y)xy)=1
Q) xxy)*1=x=*=D=*(y=*1)
3) 1<ximply x=1

forallx,y € X.
§.3 SOME SPECIAL CI-ALGEBRAS
Here we establish the following results:

Theorem 3.1.- Let (X; *, 1) be a system consisting of a non—empty set X, a binary operation *
and a distinct element 1. Let Y = X x X = {( X1, X2) : X}, X2 € X}. Foru, v € Y with u = (xj, X2),
v = (Y1, ¥2), we define an operation ® in Y as

u®v=(X1 %y, X2 *Yy2)
Then (Y; ®, (1, 1)) is a Cl-algebra iff (X; *, 1) is a Cl-algebra.

Proof: Suppose that (Y; ®, (1, 1)) is a Cl-algebra. Let x € X and we choose u =
(x, 1) € Y. Then
(1 uw®u=(1,1H=>xx*x,1x1)=(,1)
= x*x=1,sincel *x1=1.
2 (L,DH®u=u=0=x*x,1*x1)=(x,1)
= 1*xx=xX.
(3) Letx,y,z e Xand we chooseu=(x,1),v=(y, 1)and w=(z, 1). Then
U (VROW)=vR® (u®w)
= (xx(y*2) 1 x (1% D)= (y*(x*x2), 1 *(1 1))
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=>x*(y*xz)=y* (X *2z).
Thus we see that (X; *, 1) is a Cl-algebra .

Conversely, suppose that (X; *, 1) is a Cl-algebra. Let
U = (x1, X2) € Y. Then
(1) u®u=(x1,x2) ® (x1, x2)

= (Xl * X1, X2 * Xz)

= (1, 1).
2) (1,1) ®u=(1,1)® (x, x2)
:(1 * X1, 1 *Xz)
= (x1,X2)
=u.

(3) Letu=(x1,Xx2), v=(y1, y2) and w = (z1, z2) be any three elements of Y.
Thenu ® (v ® w) = (x1, X2) ® ((y1, y2) ® (21, 22))

= (X1, X2) ® (y1 * Z1, Y2 * Z2)
= (x1 * (y1 * 21), X2 * (Y2 * 22))

=(y1* (X1 * 21), y2 * (X2 * 22))
= (Y1, ¥2) ® (X1 * Z1, X2 % 23)
= (¥1, ¥2) ® ((x1, X2) ® (21, 22))
=vR® (u®w).

Hence (Y; ®, (1, 1)) is a Cl-algebra.

Corollary 3.2. - If (X; *, 1) and (Y; o, e) are two Cl-algebras, then Z = X x Y is also a CI-
algebra under the binary operation defined as follows:

Foru=(xj,y1)and v=(x2, y2) in Z,
u® v=(X] *X2, Y1 0V2)
Here the distinct element of Z is (1, e).
Note 3.3. - The above result can be extended for finite number of Cl-algebras.

Theorem 3.4. - Let (X; *, 1) be a Cl-algebra and let F(X) be the class of all functions f: X — X.
Let a binary operation o be defined in F(X) as follows:

Forf, g € F(X) and x € X,

(fo g)(x) = f(x) * gx).
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Then (F(X); 0, 17) is a Cl-algebra where 17 is defined as 17(x) = 1 for all x € X.

Here two functions f, g € F(X) are equal iff f(x) = g(x) for all x € X.

Proof: Let f, g, h € F(X). Then for x € X, we have

() (FoDX)=fx)*fx)=1=1"x)=fof =17
(i) ("o Hx)=1"(x)* f(x)=f(x) = 170 f=f:
(i) (fo (go h))(x) = f(x) * (g 0 h)(x)
= f(x) * (g(x) * h(x))
= g(x) * (f(x) * h(x))
= g(x) * (foh)(x)
=(go (foh)) (x).
=fo(goh)=go(foh).
This proves that (F(X); 0, 17) is a Cl-algebra.

Theorem 3.5.- Let (X; *, 1) be a Cl-algebra and let M(X) be the class of all m x n matrices
(aij)m xn With entries ajj € X. For A = (ajj)mxn, B = (bij)mxnwe define

(a) A=Biffaij=bij;1§i§m,1§j§n,
(b)  abinary operation o in M(X) as
AoB=C= (Cij)mxn

Where cij=a;; *bjj; 1 <i<m,1<j< n.
Then (M(X); o, I) is a Cl-algebra with distinct element
I=(€ij)mxn Whereejj=1for 1 <i<m,1<j< n.

Proof :- Let A = (aj))mxn € M (X). Then

(1) AoA= (lij)mxn where lij = aj * a5 = l=e ij s
1 <i<m, 1<j<n,which meansthat Ao A=1;
(11) IoA= (kij)mxn where kij =¢j*xa; = 1 * ajj = aj 5

1 <i<m,1<j<n,which meansthatlo A=A

(111) Let A= (ai)mxn> B = (bi)mxn and C = (Cij)m x n be elements of M(X). Then
Ao (B o C) = (Xij)mxn

Where x;;= (ajj * (bj * ¢;j))); | <i<m, 1 <j<n.

Also B o (A0 C)=(¥i)mxn
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Where y;; = (b * (aj * ¢jj)) ; 1 <1<m, I <j<n.
Since (ajj * (bsj * cjj )) = (bjj * (aj * ¢ij)) ; 1 <i<m, 1<j< n,
we see that Ao (BoC)=Bo(AoC).
Hence (M (X); o, I) is a Cl-algebra.

Conclusion: Here we discussed some special type of Cl-algebras such as Cartesian product of
Cl-algebras, function algebra of Cl-algebras and Cl-algebra of matrices from a given Cl-algebra.
There is a scope of further study in different structures of Cl-algebra relating to Cartesian
product of Cl-algebras, function algebra of Cl-algebras and Cl-algebra of matrices etc.

References

[1]Hu Q.P.,Li X, “On BCH-algebras”,Math.Seminer Notes 11 (1983). p.313-320

[2] Imai Y.,Iseki k.,”“On axiom systems of propositional calculi XIV”, Proc.Japan.Academy 42
(1966),p.19-22

[3] Iseki k.,“An algebra related with a propositional calculus”,Proc.Japan Acad.42(1966), p.
26 -29

[4] Jun Y.B.,Roh E.H.,Kim H.S.,”On BH-algebras”,Sci.Math.1 (1998),p.347-354

[5] Kim H.S.,Kim Y.H.,”On BE-algebras”,Sci.Math.Japonicae 66 (2007),p.113-116

[6] Kim H.K.,” A Note On Cl-algebras” Int. Mathematical Forum,Vol. 6.2011,n0.1.p.1-5

[7] Meng B.L.,”Cl-algebras”,Sci.Math.japonicae,e-2009 p. 695-701

[8] Negger J.,Kim H.S., “On d-algebras”,Math.Slovaca 40 (1999) p.19-26

[9] Sabhapandit, P. and Chetia, B.C., “CI-Algebras and its Fuzzy Ideals”, Int. J. of Trends and

Tech.,Vol. 33 (2) (2016), pp. 135 - 141

Dr. Pulak Sabhapandit (corresponding author)
Department of mathematics

Biswanath College

Biswanath chariali-784176

Sonitpur, Assam

India

ISSN: 2231 - 5373 http://www.ijmttjournal.org Page 11


International Journal of Mathematics Trends and Technology ( IJMTT )  - Volume 64 Number 1  - December 2018

ISSN: 2231  - 5373                                http://www.ijmttjournal.org                             Page 11





