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Abstract 
          we made an attempt to analyze the soret effect on convective heat and mass transfer through a porous 

medium in a vertical channel. The dissipative effects are also taken in to account . Assuming Eckkert number 

much less than 1,the governing equations are solved  and the velocity, temperature, concentration, shear stress 

and  rate of heat and mass transfer are analyzed for various parameters. 
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I. INTRODUCTION 

                          Convective heat transfer in a porous medium has been the subject of intensive studies for the 

last few decades owing to its applications in different fields such as Chemical Engineering, Geothermal, 

Petroleum and Reservoir Engineering , Environmental protection ,thermal insulation cooling , Processing the 

food etc .The majority of the studies pertain to fluid flow and heat transfer in porous medium based on the 

Darcy flow model(5). Darcy’s equation give satisfactory results for closely packed porous medium but does not 

explain the flow through sparsely distributed porous medium in later situation, Brinkman [3] proposed an 

alternate model by adding a term which accounts for the viscous shear in addition to the Darcy’s equation .The 

first theoretical investigation of natural convection in a porous enclosure using Brinkman model was made by 

Chan et al [4] , Vafai and Tien [19], Vafai [18],  Kim and Vafai [10]. They have worked on the problem of 

convective heat transfer in porous media relaxing some or all the limitations of Darcy’s model . Later on ,a 

series of investigations were carried out using the Brinkman model by a few authors notably, Poulikakos and 

Bejan[13],Tong and Subramanian[17], Prasad and Tuntomo[14]. Forcheiner [7] extended Darcy model to the 

natural convection flow through porous medium. 

  Convection flows driven by  temperature and concentration differences have been studied 

extensively in the past and various extensions of the problems have been reported in the 

literature[1],[9],[11],[15],[16],[20],[21] with both concentration and temperature interacting simultaneously, the 

convection can become quite complex . 

             Since many industrially and environmentally relevant fluids are not pure, it has been suggested 

that more attention should be paid to convective phenomena which can occur in mixtures, but are not present in 

common fluids such as air or water. Applications involving liquid mixtures include the casting of alloys, ground 

water pollutant migration and separation operations .In all of these situations multi-component liquids can 

undergo natural convection driven by buoyancy force resulting from simultaneous temperature and species 

gradients. In the case of binary mixtures, species gradients can be established by the applied solute boundary 

conditions such as species rejection associated with alloys casting or can be induced by coupled transport 

mechanisms such as Soret (thermo) diffusion. In the case of Soret diffusion, species gradients are established in 

an otherwise uniform concentration mixture in accordance with the onsager reciprocal relationships. Recently 

some importance has been attached to the Benard problem in a two component system in which an initially 

homogeneous mixture is subjected to a temperature gradient. Then thermal diffusion known as the Soret effect 

takes place and as a result a mass fraction distribution is established in the liquid layer. The sense of migration 

of the molecular species be determined by the sign of Soret coefficient .Keeping this view several authors have 

investigated the Soret effect under varied conditions [2],[6],[8],[12].   

 

II. FORMULATION OF THE PROBLEM 
 

       We consider the flow of a viscous, incompressible fluid through a  porous medium confined in a vertical 

channel bounded by two flat plates. We choose a rectangular cartesian coordinate system O(x ,y, z) with the 

plates in the x-y plane .The  z-axis is taken normal to the plane of the plates .The walls are maintained at 

constant temperature T1 & T2 and constant concentrations C1 & C2 in the presence of constant heat sources of 
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strength Q. All the field properties are assumed constant except that the influence of the density variation with 

the temperature and concentration is considered only in the body force term. The viscous dissipation and Darcy 

dissipation are taken into account. Also we  take into consideration the thermal diffusion(Soret effect). A linear 

density variation is assumed with 0 , T0 & C0 being the density, temperature and concentration of the fluid in 

the equilibrium state. The equations governing flow, heat and mass transfer in Cartesian coordinate O(x,y,z)  in 

the non–dimensional form are 
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The corresponding boundary conditions are  

               u = 0 on y = 1 

                = 1 , C = 1 on y = -1                                                                                                     (4) 

               = -1 , C = -1 on y = 1 

Assuming Ec(<<1) to be small, we take the asymptotic expansions of velocity , temperature and concentration 

as  
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Substituting (5) in (1)-(3),the zeroth order equations are 
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The respective boundary conditions are 
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The equations to the first order are 
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with the boundary conditions 
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Solving the differential equations (6)-(8) and (10)-(12) with respective boundary conditions (9) and (13) we 

obtain 
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Where the constants a1,a2,……,a63  are constants. 

             The shear stress on the plates are given by 
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which in the non-dimensional form reduces to 



International Journal of Mathematics Trends and Technology ( IJMTT ) – Volume 64 Number 1 – December 2018 

 

ISSN: 2231 – 5373                                http://www.ijmttjournal.org  Page 15 

    

42

1

1

1

1

31

1

1

1

1

)1()1()(

)1()1()(

Ecbb

Ecuu

Ecbb

Ecuu

oy

oy

















 

 the corresponding  expressions are  

42

1

1

1

1

31

1

1

1

1

)1()1()(

)1()1()(

Ecbb

Ecuu

and

Ecbb

Ecuu

oy

oy

















 

where the constants b1,b2,b3,b4  are given in the Appendix. 

From the temperature field, the rate of heat transfer coefficient in terms of Nusselt Number(Nu) is given by 
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And the corresponding expressions are 
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where the constants  b5,b6,b7,b8 are constants.   

The rate of mass transfer (Sherwood number) on the plates are given by 
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where the constants b9,b10,b11 and b12 are constants. 
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III. MATHEMATICAL MODEL AND VALIDATION 

 

  The set of partial differential equations (6)-(8) & (10)-(12) together with the boundary 

conditions (9) & (13) are numerically solved by employing perturbation technique. The following section, the 

results are discussed in detail with the aid of plotted graphs and tables. We made an attempt to discuss  the flow 

of a viscous incompressible fluid, heat and mass transfer of the flow through a  porous medium. In our 

numerical simulation the default values of the parameters are G=2 x 103,N=1, D-1 =103, =2,Sc=1.3,So= . In 

order to analyze the effects of various  parameters on velocity, temperature and concentration profiles, several 

graphs are plotted. 

    The profiles for velocity (u) for variation in the different governing parameters D-1,N,,Sc & 

S0 are presented in figs.(1)-(4). For all variations we find that the velocity gradually rises from its prescribed 

value at y = - 1  to  attain  a  maximum  at y = -0.6 and then falls to its prescribed value at y =1.  Lesser the 

permeability of the medium smaller the velocity in fluid region (fig.1). The effect of the molecular diffusivity on 

the velocity u shows that when Sc~0.24 we find an enhancement in u. For higher Sc~0.6 the velocity u 

fluctuates with maximum at y = -0.6 (fig.2).  When the Soret parameter So increases through positive values the 

velocity is in upward direction and enhance with So. When So increases through negative values u changes from 

upwards to downwards as we move from the left boundary y = -1 to the right boundary y =1 and the maximum u 

is attained at y = 0.4(fig.3).  In the presence of a heat source the velocity is upwards and is downwards in the 

case of a heat sink, We find that the magnitude of u enhances with increase in the intensity of either a heat 

source or a sink .In the case of a heat source maximum of u is attained at y = - 0.6 while in the case of heat sink 

the maximum occurs at y = 0.6(fig.4).   

 

        The temperature distribution () for different variations of the parameters is exhibited in figs.(5)-

(9). The temperature is positive or negative according as the actual temperature is greater or smaller than the 

mean temperature. We find that for variation in D-1, So, >0, N & Sc we find that in the region -1y0.5 the 

actual temperature is greater than the mean temperature while in the region 0.5<y1 the actual temperature is 

less than the mean temperature. The variation of  with Darcy parameter D-1 shows that the temperature 

decreases in magnitude with increase in D-1 5x103 but for higher D-1 104,  enhances in the fluid 

region(fig.5).When the Soret parameter So increases through positive values we find a reduction in  but for 

negative values of So  we notice an enhancement in (fig.6).Fig.7 shows  the variation of  with heat source 

parameter  .With an increase in the intensity of heat source we find an enhancement in      with maximum 

attained at y = -0.2 . In the case of heat sink the actual temperature is greater than the mean temperature in the 

region –0.8 y  -0.5 while in the remaining fluid region the actual temperature is less than the mean 

temperature.  enhances with  the intensity of the heat sink.  Maximum  is attained at y =0.2. When the 

concentration buoyancy force dominates over the thermal buoyancy force the magnitude of the temperature 

decreases irrespective of the directions of the buoyancy forces (fig.9). Also we find that an increase in the 

molecular diffusivity decreases the temperature in the fluid region (fig.8). 

 

  The concentration distribution (C) is shown in figs.(10)-(12). As in the case of temperature the 

concentration in the fluid region is positive or negative according as the actual concentration is greater or lesser 

than the mean concentration. The magnitude of the concentration enhances with D-15x103 but for higher D-

1104 we find a depreciation in  C with maximum attained at y = - 0.8(fig.10).When the Soret parameter So 

increases through positive values we find an enhancement in  C with maximum at  y= - 0.4 while for So 

increasing through negative values the actual concentration is less than the mean concentration with maximum 

at y =0.(fig.11).The variation of C with  shows that C is positive for  > 0 and negative for  <0 .The 

magnitude of the concentration enhances with increase in the intensity of a heat source or a sink(fig.12). 

 

  The shear stress () on the boundaries is evaluated for different variations of G,D-1,N,,Sc & 

So and are presented in tables.1-4.We find that the shear stress on the boundaries are almost negative except for 

 <0.It is noticed that the stress on both the plates increase with increase in thermal buoyancy G.A decrease in 

the permeability of the porous medium reduces the magnitude of the shear stress on both the plates .At y =1 an 

increase in the intensity of the heat source reduces  and increases it in the case of a heat sink .On the boundary 

y = -1 for D-1 5x103 the magnitude of the shear stress increases with 3 but for higher 4, enhances. For 

D-1104,  increases with all values of  while in the case of heat sink ,  increases with (<0).When the 

concentration buoyancy dominates over the thermal buoyancy  on both the boundaries increase when the 

forces act in the same direction , but when they act in opposing directions  decreases with N at the left 

boundary and increases it at the right boundary . As the Soret parameter So increases through negative values  

enhances on both the boundaries .When So increases through positive values,  enhances with So for D-15x103 
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and for higher D-1  104 , it increases with So at y =1 while    on y = -1 decreases with So for all D-1.Also an 

increase in the molecular diffusivity enhances  on both the plates(tables.1&4). 

 

  The rate of heat transfer (Nusselt number) on the plates for different variations of the 

governing parameters are presented in tables.5-8.We find that on the plate y = 1 for D-1103,the rate of heat 

transfer decreases with thermal buoyancy parameter G 3x103 but for higher G5x103, Nu increases. For D-

13x103 the rate of heat transfer  increases with G while at y = -1 for D-15x103 it  reduces with G but for D-

1104 it enhances with G.A decrease in the permeability of the porous medium reduces Nu on y =1 while on y =-

1 , Nu decreases  with D-13x103 and increases with D-15x103 .When the two buoyancy forces are in the same 

direction the rate of heat transfer on both the boundaries enhance with increase N .But when they are in 

opposing directions the magnitude of Nu reduces with |N |on y =1 and  on y = -1 ,Nu reduces with N for D-

1103 while for D-13x103 it increases with N .When the Soret parameter So increases through positive values 

the rate of heat transfer reduces with So while its magnitude enhances with So when it increases through 

negative values . An increase in the intensity of the heat source 5,we find  a depreciation in Nu for D-

13x103,while for D-15x103,Nu increases with 10.In the case of heat sink we find that the magnitude of Nu 

enhances with  .Also an increase in the molecular diffusivity reduces Nu on the boundary y =1 and enhances 

it on the boundary y = -1 (tables.5-8). 

 

    The rate of mass flux(Sherwood number) on the boundaries are presented in  tables. 9 - 12  

for different  variations  in  the  governing parameters .We find that for D-13x103 the rate of mass transfer 

reduces with G3x103 and enhances with G5x103 while for D-15x103 we find a reduction in the rate of mass 

flux on y =1 and an enhancement in it on y = -1 . A decrease in the permeability of the porous medium  reduces  

Sh  on both the  boundaries while  Sh  decreases with  D-13x103  and   increases   with 

 D-1103.  When the buoyancy forces act in the same directions the rate of mass transfer reduces with N at y =1 

and enhances at y = -1 but when they are in opposing directions Sh reduces with N . An increase in the intensity 

of the heat source increases Sh at y = 1 and at y =-1 it decreases with 5 and increases with 10.A reversed 

effect is observed in the case of heat sink .The variation of Sh with So shows that an increase in So enhances Sh   

.Also an increase in the molecular diffusivity reduces the magnitude of Sh  at  

y =1 and increases it on y =-1.  
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      G=103  , N=1,Sc=1.3,So=0.5, =2                                                D-1=103 ,G=103,N=1,So=0.5 

                   I           II        III        IV                                                                I        II        III       IV 

      D-1      3x103  5x103   104     2x104                                                     Sc   1.3    2.01    0.24     0.6   

  

 



International Journal of Mathematics Trends and Technology ( IJMTT ) – Volume 64 Number 1 – December 2018 

 

ISSN: 2231 – 5373                                http://www.ijmttjournal.org  Page 18 

- 0 . 4

- 0 . 2

0

0 . 2

0 . 4

0 . 6

0 . 8

1

1 . 2

- 1 - 0 . 8 - 0 . 6 - 0 . 4 - 0 . 2 0 0 . 2 0 . 4 0 . 6 0 . 8 1

y

I

II

III

IV

u

        

-1 .7

-1 .2

-0 .7

-0 .2

0 .3

0 .8

1 .3

-1 -0 .8 -0 .6 -0 .4 -0 .2 0 0 .2 0 .4 0 .6 0 .8 1

y

I

I I

I I I

IV

V

V I

u

 
     

                           Fig.3     u  with  So                                                                  Fig4      u   with                                                                                                                                                                                                                                                                                                                                                                                  

G= 103 , D-1 =103,Sc=1.3,N=1, =2                                              G=103 , D-1 =103,Sc=1.3,N=1, =2 

                      I        II       III        IV                                                     I      II       III      IV     V      VI 

            So    0.5       1      -0.5     -1.0                                                  2      5       10     -2       -5     -10 

 

 

  

   

 

    

                    

-1

-0 .8

-0 .6

-0 .4

-0 .2

0

0 .2

0 .4

0 .6

0 .8

1

1 .2

-1 -0 .8 -0 .6 -0 .4 -0 .2 0 0 .2 0 .4 0 .6 0 .8 1

y

I

I I

I I I

IV

0

      

- 1

- 0 . 7

- 0 . 4

- 0 . 1

0 . 2

0 . 5

0 . 8

1 . 1

1 . 4

- 1 - 0 . 8 - 0 . 6 - 0 . 4 - 0 . 2 0 0 . 2 0 . 4 0 . 6 0 . 8 1

y

I

II

III

IV

0

 
          

                                 Fig.5          with  D-1                                                                                                       Fig.6      with  So      
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                Fig.9       with  N                                                       Fig.10       C with D-1 

                               I        II      III     IV                                                 G=103,N=1,Sc=1.3,So=1.5  

                         N   1     -0.5     2     -0.8                                                         I         II       III     IV 

                                                                                               D-1  3x103  5x103   104   2x104 
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                        Fig.11     C with So                                                           Fig.12       C     with         

                      G =103, D-1=104, N=1,Sc=1.3                                               I    II     III    IV    V    VI 

                    I       II        III          IV                                           2    5     10   -2    -5    -10 

                       Sc    0.5     1.0     -0.5       -1.0 

                                                                                                                                       

                                                                

  

Table.1 

Shear stress () at y=1 

D-1 I II III IV V VI VII VIII IX 

103 0.5399 2.5674 15.898 2.3661 .5038 0.1183 0.6012 -1.436 -.5604 

3x103 -.0549 -.2254 -2.135 -.4437 .0612 .0007 -.0087 .2839 .1282 

5x103 -.0201 -.0372 -.2455 -.0978 .0419 .0023 -.0065 .1012 .0451 

104 -.0199 -.0307 -.0315 -.0236 .0323 .0006 -.0045 .0225 .0089 

2x104 -.0253 -.0496 -.0871 -.0197 .0284 -.0015 -.0021 -.0176 -.0252 

 

 

Table.2 

Shear Stress () at y = - 1 

D-1 I II III IV V VI VII VIII IX 

103 -13.713 -15.927 -24.354 -15.544 1.1961 -1.431 -5.038 -17.981 -16.625 

3x103 -6.4813 -9.805 -16.954 -9.346 0.0377 -0.937 -1.979 -8.776 -8.385 

5x103 -2.4813 -7.008 -9.301 -5.464 -0.1851 -0.574 0.4114 -4.977 -4.341 

104 2.4404 -4.199 -2.048 -3.0327 -0.1411 -0.299 2.0041 -3.165 -2.335 

2x104 1.5315 1.4182 5.2084 -0.3618 0.1308 0.1292 3.6895 -1.4708 -0.472 

 

G 2x103 3x103 5x103 2x103 2x103 2x103 2x103 2x103 2x103 

N 1 1 1 2 -.5 -.8 1 1 1 

Sc 1.3 1.3 1.3 1.3 1.3 1.3 2.01 0.24 0.6 

 

Table.3 

Shear Stress () at y = 1 

                                                             

D-1 I II III IV V VI VII VIII IX 

103 -3.582 0.0565 8.1739 0.5399 -.0782 0.7271 -8.137 -9.819 -7.348 

3x103 0.6854 0.0298 -1.588 -.0594 -.0151 .1422 -9.238 11.181 14.756 

5x103 0.2442 0.0340 -0.562 -.0202 -.0159 .1599 5.1483 9.656 11.238 

104 0.0849 0.0404 -.2015 -.0201 -.0134 .1484 2.3181 5.838 8.327 

2x104 -.201 0.0497 -.0631 -.0253 -.0115 .1299 1.2359 3.092 5.531 

 

Table.4 

Shear Stress () at y = -1 
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D-1 I II III IV V VI VII VIII IX 

103 -8.378 6.093 11.338  -

13.713 

-17.744 -11.558 68.123 98.569 112.145 

3x103 -7.453 3.414 -.0285 -6.253 -5.734 1.672 52.321 82.468 92.126 

5x103 -5.957 3.731 -5.698 -2.482 0.531 6.652 30.608 49.579 72.831 

104 -6.021 4.499 -8.251 2.441 2.483 8.533 20.338 33.591 50.067 

2x104 -6.701 5.619 -9.515 1.532 4.318 9.212 11.696 19.554 29.543 

 

S0 -.05 1 -1 0.5 0.5 0.5 0.5 0.5 0.5 

 2 2 2 2 5 10 -2 -5 -10 

 

Table.5 

Nusselt Number (Nu) at y = 1 

   

D-1 I II III IV V VI VII VIII IX 

103 -32.684 -3.029 -52.44 -35.02 -89.739 -65.114 -3.419 -79.679 -45.958 

3x103 -4.058 -5.517 -10.49 -4.855 -3.601 -3.239 -3.488 -5.068 -4.704 

5x103 -3.273 -3.611 -4.699 -3.532 -3.096 -3.026 -3.054 -3.6154 -3.4967 

104 -3.165 -3.366 -4.007 -3.343 -3.056 -2.998 -3.015 -3.393 -3.315 

 

Table.6 

Nusselt Number (Nu) at y = -1 

D-1 I II III IV V VI VII VIII IX 

103 19.5503 1.0634 -13.29 37.1287 38.3636 23.7567 36.238 -2.059 2.1934 

3x103 0.7957 0.5115 -0.4798 0.9888 0.8181 0.9599 1.4549 -0.0288 0.2297 

5x103 1.0346 1.0412 1.0163 1.2809 0.9269 0.9866 1.2262 0.7647 0.8542 

104 1.0479 1.0848 1.1772 1.2601 0.9551 0.9977 1.1615 0.8816 0.9377 

 

G 2x103 3x103 5x103 2x103 2x103 2x103 2x103 2x103 2x103 

N 1 1 1 2 -.5 -.8 1 1 1 

Sc 1.3 1.3 1.3 1.3 1.3 1.3 2.01 0.24 0.6 

 

Table.7 

Nusselt Number (Nu) at y = 1 

D-1 I II III IV V VI VII VIII IX 

103 -32.685 -55.004 19.548 -87.091 -21.091 -21.162 -12.847 1.047 18.514 

3x103 -4.058 -6.8767 -3.079 -8.721 -5.598 -7.381 -0.3126 0.0197 0.1105 

5x103 -3.273 -4.147 -2.8799 -4.627 -4.412 -5.641 0.3753 1.0609 1.656 

104 -3.165 -3.731 -2.8912 -4.022 -4.246 -5.387 0.5461 1.3211 2.0347 

 

Table.8 

Nusselt Number (Nu) at y = -1 

D-1 I II III IV V VI VII VIII IX 

103 19.551 -26.4058 51.4558 -40.4566 0.8943 -0.9451 61.1645 76.5728 86.2831 

3x103 0.7956 -0.8854 2.0681 -2.2941 1.4241 1.9545 -2.7001 -3.8194 -5.0369 

5x103 1.0346 0.4073 1.3921 0.1376 1.7679 2.3462 -3.4496 -4.9583 -6.6221 

104 1.0479 0.6473 1.2573 0.4561 1.8468 2.5276 -3.3301 -4.7203 -6.2286 

 

 

S0 -.05 1 -1 0.5 0.5 0.5 0.5 0.5 0.5 

 2 2 2 2 5 10 -2 -5 -10 

 

Table.9 

Sherwood Number (Sh) at y = 1 

D-1 I II III IV V VI VII VIII IX 

103 16.995 15.641 29.837 8.754 -35.546 -25.905 -2.588 7.9616 16.482 

3x103 -1.612 -.6639 2.569 -1.047 .8189 .4303 -2.519 -.992 -1.088 

5x103 -2.122 -1.902 -1.197 -1.477 1.477 .6035 -2.955 -1.166 -1.451 
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104 -2.192 -2.062 -1.645 -1.538 1.527 -.9751 -2.961 -1.193 -1.505 

 

Table.10 

Sherwood Number (Sh) at y = -1 

D-1 I II III IV V VI VII VIII IX 

103 -11.758 -2.898 9.589 -12.092 -12.973 10.865 -14.401 -.3928 -1.551 

3x103 .4328 .6175 1.262 -.3464 -3.836 -2.657 .5528 -.6365 -.1689 

5x103 .2775 .2732 .2894 -.4413 -3.695 -2.636 .7827 -.7318 -.3563 

104 .2688 .2448 .1848 -.4345 -3.658 -1.016 .8476 -.7458 -.3813 

 

G 2x103 3x103 5x103 2x103 2x103 2x103 2x103 2x103 2x103 

N 1 1 1 2 -.5 -.8 1 1 1 

Sc 1.3 1.3 1.3 1.3 1.3 1.3 2.01 0.24 0.6 

 

Table.11 

Sherwood Number (Sh) at y = 1 

D-1 I II III IV V VI VII VIII IX 

103 16.995 -19.503 -12,913 -35.712 13.123 6.905 9.311 1.569 -8.484 

3x103 -1.612 -2.221 -3.496 -5.837 -1.911 -2.053 1.153 2.237 3.478 

5x103 -2.122 -1.123 -3.756 -.5154 -2.683 -3.184 .7061 1.561 2.474 

104 -2.193 -.1745 -3.741 .2717 -2.791 -3.348 .5951 1.391 2.228 

 

Table.12 

Sherwood Number (Sh) at y = -1 

D-1 I II III IV V VI VII VIII IX 

103 -11.758 -20.116 -19.399 -26.494 0.5263 4.164 -36.736 -45.287 -56.671 

3x103 .4328 -3.525 .2114 -6.582 1.325 2.278 -2.495 -3.069 -3.576 

5x103 .2775 -2.995 1.091 -4.721 1.102 2.025 -2.007 -2.327 -2.546 

104 .2688 -2.529 1.265 -4.307 1.049 1.907 -2.085 -2.482 -2.802 

 

S0 -.05 1 -1 0.5 0.5 0.5 0.5 0.5 0.5 

 2 2 2 2 5 10 -2 -5 -10 

 

IV. CONCLUSIONS 
 

     The soret effect on convective heat and mass transfer flow of viscous incompressible fluid through a porous 

medium in a vertical channel have been analysed.For all variations we find that the velocity gradually rises from 

its prescribed value at y = - 1  to  attain  a  maximum  at y = -0.6 and then falls to its prescribed value at y =1. 

The temperature  and concentration is positive or negative according as the actual temperature or concentration 

is greater or smaller than the mean temperature and concentration respectively. We find that the shear stress on 

the boundaries are almost negative except for  <0. The rate of heat transfer  decreases with lower permeability 

and enhances with higher permeability for various parameters while Sherwood number reduces at the plate y=1 

and enhances at y=-1 for various parameters. 
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