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Abstract

In recent years, higher order topological indices have gained enormous importance because of their greater
correlation with many chemical properties. One among them is leap hyper-Zagreb index which is based on both
distance and degree. In this paper, we compute the expressions for first and second leap hyper-Zagreb indices of some
nanostructures.
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I. INTRODUCTION

Let G = (V,E) be afinite, undirected, connected graph without loops and multiple edges. The k-neighbourhood
[23] of a vertex v € V(G) is denoted and defined by N, (v/G) = {u € V(G):d(u,v) = k} in which d(u,v) is a
distance between the vertices u and v in G. The k-distance degree of a vertex v € V(G) is denoted and defined by
d,(v/G) = |N,(v/G)|. Also, we denote N;(v) by N;(v/G) and d;(v) by di(v/G). The degree of an edge
e=uv in G is denoted by d;(e/G) (or d;(e))is defined by d,(e/G) = di(u/G) + di(v/G) — 2. If all the
vertices of G have same degree equal to r € Z*, then G is called an r - regular graph. For undefined graph
terminology and notations, refer [11] and [17].

In chemical graph theory and in mathematical chemistry, a molecular graph or chemical graph is representation of
structural formula of a chemical compound in terms of graph theory. A molecular graph is a graph whose vertices
correspond to the atoms of the chemical compound and edges to the chemical bonds. Chemical graph theory is a
branch of mathematical chemistry which has an important role and also effective on the development of the chemical
sciences. A single number that can be used to characterize the properties of a molecule is called a topological index of
that graph. There are numerous molecular descriptors, which are also referred to as topological indices, see [10], have
found some applications in theoretical chemistry, especially in QSPR/QSAR research. There are innumerable
topological indices defined in the literature. Wiener index [24], Zagreb indices [10], F-index [1, 9], connectivity index
(or Randi¢ index) [6] are few of them. Very recently, indices such as Sanskruti index [12], second order first Zagreb
index [4] are introduced. Higher order topological indices have advanced chemical applications in QSPR/QSAR
study. The authors in these papers [4,5,9,13,15,20,21,22] have calculated various topological indices for some of the
nanostructures. Many topological indices are there for various nanostructures such as armchair polyhex nanotube,
armchair polyhex nanotorus, V-phenylenic nanotube, V-phenylenic nanotorus, H-tetracenic nanotube, V-tetracenic
nanotube and tetracenic nanotorus could be found in [2,3,7,8,15,20]. In [19], Naji et al. has introduced leap Zagreb
indices. Basavanagoud et al. in [5], has computed leap Zagreb indices of some transformation graphs.

Recently, Kulli in [18], has introduced leap hyper-Zagreb indices. The first leap hyper-Zagreb index and second
leap hyper-Zagreb index are given by

HLM;(G) = Yuver) (d2(u/G) + dy(v/6))?* and HLM,(G) = Yuver(c) (d2(u/G)d,(v/G))?, respectively.
In this paper, we compute expressions for first and second leap hyper-Zagreb indices for some nanostructures.

I1. ORDER AND SIZE OF SOME NANOSTRUCTURES

TABLE 1
Order And Size Of Nanostructures

SI. No. Graph Order Size
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Armchair polyhex nanotube 2pq 3pq —2p
1 TUACs[2p, q]
Armchair polyhex nanotorus 2pq 3pq
2 TUACs[p, q]
V-Phenylenic nanotube 6pq 9pq —p
3 VPHX[p,q]
V-Phenylenic nanotorus 6pq 9pq
4 VPHY[p,q]
18pq 27pq —4p
5 V-Tetracenic nanotube G[p,q]
18pq 27pq — 2q
6 H-Tetracenic nanotube G[p,q]
18pq 27pq
7 Tetracenic nanotorus G[p,q]

For convenience purpose, we use the names A, B, C, D, E, F, H for the molecular graphs of armchair polyhex
nanotube, armchair polyhex nanotorus, V-phenylenic nanotube, V-phenylenic nanotorus, V-tetracenic nanotube,
H-tetracenic nanotube, tetracenic nanotorus, respectively.

I11. LEAP HYPER-ZAGREB INDICES OF SOME NANOSTRUCTURES

fffff q ) : ] -
' ] '
Fig.1 (A) armchair polyhex nanotube Fig.2 (B) armchair polyhex nanotorus
TABLE 2
EDGE SET PARTITION OF GRAPH A. HERE uv € E(4).
No. of edges d,(u/A) d,(v/A)

2p 3 3
4p 3 5
2p 5 5
4p 5 6
3pq — 14p 6 6

Theorem 3.1. If A is an armchair polyhex nanotube TUACg[2p, q], where p(> 1) is number of cycles in a row
and q(> 1) is number of stages, then

(i) HLM, (A) = 432pq — 1004p,

(i) HLM,(A) = 3888pq — 12232p.

Proof. The graph A = TUACs[2p, q] has 2pq vertices and 3pq — 2p edges. Using the definitions of first and
second leap hyper-Zagreb indices and edge set partition of the graph A given in Table 2 we get,
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HLM,(A) = Z [dy(u/A) + dy(v/A)]?
uv€E(A4)
= (3+3)*(2p) + B +5)*(4p) + (5 +5)*(2p) + (5 + 6)*(4p) + (6 + 6)*(3pq — 14p)
= 432pq — 1004p.
HLM,(A) = Z [dy(u/A)d, (v/A)]?
uv€eE(A)

= (3-3)%(2p) + (3-5)*(4p) + (5-5)*(2p) + (5 - 6)*(4p) + (6 - 6)*(3pq — 14p)
= 3888pq — 12232p.

O
TABLE 3
EDGE SET PARTITION OF GRAPH B. HERE uv € E(B)
No. of edges d,(u/B) d,(v/B)
3pq 6 6

Theorem 3.2. If B is an armchair polyhex nanotorus TUACg[p, q], where p(> 1) is number of cycles in a row
and q(> 1) is number of rows, then

(i) HLM,(B) = 432pq,

(i) HLM,(B) = 3888pq.

Proof. The graph B = TUAC¢[p, q] has 2pq vertices and 3pq edges. Using the definitions of first and second leap
hyper-Zagreb indices and edge set partition of the graph B given in Table 3 we get,

HLMGB) = ) [dy(/B) +dy(o/B)

= (6 +6)*(3pq)
= 432pq.

HLMGB) = ) [do(u/B)da(v/ D)

= (6-6)*(3pq) |
=3888pq.

Fig. 3 (C) V-phenylenic nanotube Fig. 4 (D) V-phenylenic nanotorus
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TABLE 4
EDGE SET PARTITION OF GRAPH C. HERE uv € E(C)
No. of edges d,(u/0) d,(v/C)
6p 4 4
4p 4 5
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2p(2q —3) 5 5
4p(g—1) 5 6
p(g—1) 6 6

Theorem 3.3. If C is a V-phenylenic nanotube VPHX[p, q], where p(> 1) is number of cycles inarow and q(> 1)
is number of rows, then

0) HLM;(C) = 1028pq — 520p,
(i)  HLM,(C) = 7396pq — 4896p.

Proof. The graph € = VPHX[p, q] has 6pq vertices and 9pq — p edges. The definition of first and second leap
hyper-Zagreb indices and edge set partition of the graph C given in Table 4 gives,

HLM(C) = ) i[O+ OOF

= (4+4)?%(6p) + (4 + 5)°(4p) + (5 +5)*[2p(29 — 3)] + (5 + 6)*[4p(q — 1)]

+(6+6)*[p(q — 1)]
= 1028pq — 520p.

HLM,(C) = Z [dy(u/C)d, (v/C)]?
uveE(C)
= (4-4)%(6p) + (4-5)*(4p) + (5-5)*[2p(2q — 3)] + (5 - 6)*[4p(q — 1)]

+(6-6)*[p(q — 1)]
= 7396pq — 4896p.

O
TABLE 5
EDGE SET PARTITION OF GRAPH D. HERE uv € E(D)
No. of edges d,(w) d,(v)
4pq 5 5
4pq 5 6
pq 6 6

Theorem 3.4. If D isa V-phenylenic nanotorus VPHY [p, q], where p(> 1) is number of cycles in a row and
q(> 1) is number of rows, then

0] HLM,(D) = 1028pq,

(i) HLM,(D) = 7396pq.

Proof. The graph D = VPHY|[p,q] has 6pq vertices and 9pq edges. Using the definition of first and second leap
hyper-Zagreb indices and edge set partition of the graph D given in Table 5 we get,

HLMGD) = ) [dy(u/D)+da(v/D)F
= (5+5)°(4p9) + (5 + 6)*(4pq) + (6 + 6)*(P9)
= 1028pgq.
HLMD) = ) (/D) oD

= (5-5)*(4pq) + (5 - 6)*(4pq) + (6 - 6)*(pq)
= 7396pq. O
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Fig.5 (E) V-tetracenic nanotube

TABLE 6
EDGE SET PARTITION OF GRAPH E. HERE uv € E(E)
No. of edges d,(u/E) d,(v/E)
18p 4 4
4p 4 5
6p 4 6
4p 5 6
9p(Bqg—4) 6 6

Theorem 3.5. If E isa V-tetracenic nanotube G[p, q], where p(> 1) is number of cyclesinarowand q(> 1) is
number of rows, then

(i) HLM,(E) = 3888pq — 2624p,

(ii) HLM,(E) = 34992pq — 33392p.

Proof. The graph E = G[p,q] has 18pq vertices and 27pq — 4p edges. Using the definition of first and second
leap hyper-Zagreb indices and edge set partition of the graph E given in Table 6 we get,

HLM,(E) = 2 [dy(u/E)+dy(v/E)]?
uveE(E)
= (4+4)*(18p) + (4 +5)*(4p) + (4 + 6)*(6p) + (5 + 6)*(4p) + (6 + 6)*[9p(3q — 4)]
= 3888pqg — 2624p.
HLM,(E) = Z [dy(u/E)d,(v/E)]?
uv€eE(E)

= (4-4)*(18p) + (4 - 5)*(4p) + (4 - 6)*(6p) + (5 - 6)*(4p) + (6 - 6)*[9p(3q — 4)]
= 34992pq — 33392p. O

Fig. 6 (F) H-tetracenic nanotube
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TABLE 7
EDGE SET PARTITION OF GRAPH F. HERE uv € E(F).
No. of edges d,(u/F) d,(v/F)
rq 3 3
2pq 3 5
3pq 5 5
2pq 5 6
19pq — 2¢q 6 6

Theorem 3.6. If F is a H-tetracenic nanotube G|[p, q],, where p(> 1) is humber of cycles inarow and q(> 1) is
is number of rows, then

(i) HLM, (F) = 3442pq — 288q,
(i)  HLM,(F) = 28830pq — 25924.

Proof. The graph F = G[p,q] has 18pq verticesand 27pq — 2q edges. Using the definition of first and second
leap hyper-Zagreb indices and edge set partition of the graph F given in Table 7 we get,

HLMGE) = ) [ @/F) e/

= (3+3)%(pq) + B +5)*(2pq) + (5 +5)*(3pq) + (5 + 6)*(2pq) + (6 + 6)*[(19pq — 29)]
= 3442pq — 288q.

HLM,(F) = 2 EE(F)[dz(u/F)dz(v/F)]z

= (3-3)%(pq) + (3-5)%(2pq) + (5-5)*Bpq) + (5- 6)*(2pq) + (6 - 6)*[(19pq — 2q)]
= 28830pq — 2592q.

O

Fig. 7 (H) tetracenic nanotorus

TABLE 8
EDGE SET PARTITION OF GRAPH H. HERE uv € E(H)
No. of edges d,(u/H) d,(v/H)
4pq 5 5
4pq 5 6
19pq 6 6

Theorem 3.7. If H is a tetracenic nanotorus G[p, q], where p(> 1) is number of cycles in a row and q(> 1) is
number of rows, then

() HLM,(H) = 3620pq,
(ii) HLM,(H) = 30724pq.

Proof. The graph H = G[p, q] has 18pq vertices and 27pq edges. Using the definition of first and second leap
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hyper-Zagreb indices and edge set partition of the graph H given in Table 8 we get,

HLM(H) = ) [dy(u/H) + dy(o/H)F
uv€eE(H)

= (5-5)*(4pq) + (5 6)*(4pq) + (6 - 6)*(19pq)

= 3620pq.

HLM,(H) = ZWE [d(u/H)d,(v/H)]?

E(H)

= (5-5)*(4pq) + (5- 6)*(4pq) + (6 - 6)*(19pq)
= 30724pq.
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