# On Leap Hyper-Zagreb Indices of Some Nanostructures

B.Basavanagoud and Chitra.E Department of Mathematics, Karnatak University, Dharwad - 580 003 Karnataka, India

#### Abstract

In recent years, higher order topological indices have gained enormous importance because of their greater correlation with many chemical properties. One among them is leap hyper-Zagreb index which is based on both distance and degree. In this paper, we compute the expressions for first and second leap hyper-Zagreb indices of some nanostructures.

**Keywords** – degree, distance, nanostructure, leap hyper-Zagreb index. AMS Classification – 05C07, 05C12, 05C90.

#### I. INTRODUCTION

Let G = (V, E) be a finite, undirected, connected graph without loops and multiple edges. The *k*-neighbourhood [23] of a vertex  $v \in V(G)$  is denoted and defined by  $N_k(v/G) = \{u \in V(G): d(u, v) = k\}$  in which d(u, v) is a distance between the vertices u and v in G. The *k*-distance degree of a vertex  $v \in V(G)$  is denoted and defined by  $d_k(v/G) = |N_k(v/G)|$ . Also, we denote  $N_G(v)$  by  $N_1(v/G)$  and  $d_G(v)$  by  $d_1(v/G)$ . The degree of an edge e = uv in G is denoted by  $d_1(e/G)$  (or  $d_G(e)$ ) is defined by  $d_1(e/G) = d_1(u/G) + d_1(v/G) - 2$ . If all the vertices of G have same degree equal to  $r \in Z^+$ , then G is called an r - regular graph. For undefined graph terminology and notations, refer [11] and [17].

In chemical graph theory and in mathematical chemistry, a molecular graph or chemical graph is representation of structural formula of a chemical compound in terms of graph theory. A molecular graph is a graph whose vertices correspond to the atoms of the chemical compound and edges to the chemical bonds. Chemical graph theory is a branch of mathematical chemistry which has an important role and also effective on the development of the chemical sciences. A single number that can be used to characterize the properties of a molecule is called a topological index of that graph. There are numerous molecular descriptors, which are also referred to as topological indices, see [10], have found some applications in theoretical chemistry, especially in QSPR/QSAR research. There are innumerable topological indices defined in the literature. Wiener index [24], Zagreb indices [10], F-index [1, 9], connectivity index (or Randić index) [6] are few of them. Very recently, indices such as Sanskruti index [12], second order first Zagreb index [4] are introduced. Higher order topological indices have advanced chemical applications in QSPR/QSAR study. The authors in these papers [4,5,9,13,15,20,21,22] have calculated various topological indices for some of the nanostructures. Many topological indices are there for various nanostructures such as armchair polyhex nanotube, armchair polyhex nanotorus, V-phenylenic nanotube, V-phenylenic nanotorus, H-tetracenic nanotube, V-tetracenic nanotube and tetracenic nanotorus could be found in [2,3,7,8,15,20]. In [19], Naji et al. has introduced leap Zagreb indices. Basavanagoud et al. in [5], has computed leap Zagreb indices of some transformation graphs.

Recently, Kulli in [18], has introduced leap hyper-Zagreb indices. The first leap hyper-Zagreb index and second leap hyper-Zagreb index are given by

 $HLM_1(G) = \sum_{uv \in E(G)} (d_2(u/G) + d_2(v/G))^2$  and  $HLM_2(G) = \sum_{uv \in E(G)} (d_2(u/G)d_2(v/G))^2$ , respectively.

In this paper, we compute expressions for first and second leap hyper-Zagreb indices for some nanostructures.

## II. ORDER AND SIZE OF SOME NANOSTRUCTURES

|           | TA   | BLE  | 1      |          |
|-----------|------|------|--------|----------|
| Order And | Size | Of N | anosti | ructures |

| Sl. No. | Graph | Order | Size |
|---------|-------|-------|------|

|   | Armchair polyhex nanotube    | 2 <i>pq</i>  | 3pq - 2p  |
|---|------------------------------|--------------|-----------|
| 1 | $TUAC_6[2p,q]$               |              |           |
|   | Armchair polyhex nanotorus   | 2pq          | 3pq       |
| 2 | $TUAC_6[p,q]$                |              |           |
|   | V-Phenylenic nanotube        | 6 <i>pq</i>  | 9pq - p   |
| 3 | VPHX[p,q]                    |              |           |
|   | V-Phenylenic nanotorus       | 6 <i>pq</i>  | 9pq       |
| 4 | VPHY[p,q]                    |              |           |
|   |                              | 18 <i>pq</i> | 27pq - 4p |
| 5 | V-Tetracenic nanotube G[p,q] |              |           |
|   |                              | 18 <i>pq</i> | 27pq - 2q |
| 6 | H-Tetracenic nanotube G[p,q] |              |           |
|   |                              | 18pq         | 27pq      |
| 7 | Tetracenic nanotorus G[p,q]  | • •          |           |

For convenience purpose, we use the names A, B, C, D, E, F, H for the molecular graphs of armchair polyhex nanotube, armchair polyhex nanotorus, V-phenylenic nanotube, V-phenylenic nanotorus, V-tetracenic nanotube, H-tetracenic nanotube, tetracenic nanotorus, respectively.



## **III. LEAP HYPER-ZAGREB INDICES OF SOME NANOSTRUCTURES**



Fig. 1 (A) armchair polyhex nanotube

Fig. 2 (B) armchair polyhex nanotorus

| TABLE 2                                             |            |            |  |  |
|-----------------------------------------------------|------------|------------|--|--|
| EDGE SET PARTITION OF GRAPH A. HERE $uv \in E(A)$ . |            |            |  |  |
| No. of edges                                        | $d_2(u/A)$ | $d_2(v/A)$ |  |  |
| 2 <i>p</i>                                          | 3          | 3          |  |  |
| 4p                                                  | 3          | 5          |  |  |
| 2 <i>p</i>                                          | 5          | 5          |  |  |
| 4p                                                  | 5          | 6          |  |  |
| 3pq – 14p                                           | 6          | 6          |  |  |

**Theorem 3.1.** If A is an armchair polyhex nanotube  $TUAC_6[2p,q]$ , where p(>1) is number of cycles in a row and q(>1) is number of stages, then

(i)  $HLM_1(A) = 432pq - 1004p$ ,

(*ii*)  $HLM_2(A) = 3888pq - 12232p.$ 

**Proof.** The graph  $A = TUAC_6[2p,q]$  has 2pq vertices and 3pq - 2p edges. Using the definitions of first and second leap hyper-Zagreb indices and edge set partition of the graph A given in Table 2 we get,

$$HLM_{1}(A) = \sum_{uv \in E(A)} [d_{2}(u/A) + d_{2}(v/A)]^{2}$$
  
=  $(3+3)^{2}(2p) + (3+5)^{2}(4p) + (5+5)^{2}(2p) + (5+6)^{2}(4p) + (6+6)^{2}(3pq-14p)$   
=  $432pq - 1004p$ .  
$$HLM_{2}(A) = \sum_{uv \in E(A)} [d_{2}(u/A)d_{2}(v/A)]^{2}$$

$$= (3 \cdot 3)^{2}(2p) + (3 \cdot 5)^{2}(4p) + (5 \cdot 5)^{2}(2p) + (5 \cdot 6)^{2}(4p) + (6 \cdot 6)^{2}(3pq - 14p)$$
  
= 3888pq - 12232p.

| TABLE 3                                           |   |   |  |  |
|---------------------------------------------------|---|---|--|--|
| EDGE SET PARTITION OF GRAPH B. HERE $uv \in E(B)$ |   |   |  |  |
| No. of edges $d_2(u/B)$ $d_2(v/B)$                |   |   |  |  |
| 3na                                               | 6 | 6 |  |  |

**Theorem 3.2.** If B is an armchair polyhex nanotorus  $TUAC_6[p,q]$ , where p(>1) is number of cycles in a row and q(>1) is number of rows, then

- $(i) \qquad HLM_1(B) = 432pq,$
- (*ii*)  $HLM_2(B) = 3888pq$ .

**Proof.** The graph  $B = TUAC_6[p,q]$  has 2pq vertices and 3pq edges. Using the definitions of first and second leap hyper-Zagreb indices and edge set partition of the graph B given in Table 3 we get,

$$HLM_1(B) = \sum_{uv \in E(B)} [d_2(u/B) + d_2(v/B)]^2$$
  
= (6 + 6)<sup>2</sup>(3pq)  
= 432pq.

$$HLM_{2}(B) = \sum_{uv \in E(B)} [d_{2}(u/B)d_{2}(v/B)]^{2}$$
  
= (6 \cdot 6)^{2}(3pq)  
= 3888pq.







Fig. 4 (D) V-phenylenic nanotorus

| TABLE 4                                           |            |            |  |
|---------------------------------------------------|------------|------------|--|
| EDGE SET PARTITION OF GRAPH C. HERE $uv \in E(C)$ |            |            |  |
| No. of edges                                      | $d_2(u/C)$ | $d_2(v/C)$ |  |
| 6p                                                | 4          | 4          |  |
| 4 <i>p</i>                                        | 4          | 5          |  |

| 2p(2q-3) | 5 | 5 |
|----------|---|---|
| 4p(q-1)  | 5 | 6 |
| p(q-1)   | 6 | 6 |

**Theorem 3.3.** If C is a V-phenylenic nanotube VPHX[p,q], where p(>1) is number of cycles in a row and q(>1) is number of rows, then

- (*i*)  $HLM_1(C) = 1028pq 520p$ ,
- (*ii*)  $HLM_2(C) = 7396pq 4896p$ .

**Proof.** The graph C = VPHX[p,q] has 6pq vertices and 9pq - p edges. The definition of first and second leap hyper-Zagreb indices and edge set partition of the graph C given in Table 4 gives,

$$\begin{split} HLM_1(C) &= \sum_{uv \in E(C)} [d_2(u/C) + d_2(v/C)]^2 \\ &= (4+4)^2(6p) + (4+5)^2(4p) + (5+5)^2[2p(2q-3)] + (5+6)^2[4p(q-1)] \\ &+ (6+6)^2[p(q-1)] \\ &= 1028pq - 520p. \end{split}$$

$$\begin{split} HLM_2(C) &= \sum_{uv \in E(C)} [d_2(u/C)d_2(v/C)]^2 \\ &= (4\cdot4)^2(6p) + (4\cdot5)^2(4p) + (5\cdot5)^2[2p(2q-3)] + (5\cdot6)^2[4p(q-1)] \\ &+ (6\cdot6)^2[p(q-1)] \\ &= 7396pq - 4896p. \end{split}$$

| TABLE 5<br>EDGE SET PARTITION OF GRAPH $D$ . HERE $uv \in E(D)$ |          |          |  |
|-----------------------------------------------------------------|----------|----------|--|
| No. of edges                                                    | $d_2(u)$ | $d_2(v)$ |  |
| 4pq                                                             | 5        | 5        |  |
| 4pq                                                             | 5        | 6        |  |
| pq                                                              | 6        | 6        |  |

**Theorem 3.4.** If D is a V-phenylenic nanotorus VPHY[p,q], where p(> 1) is number of cycles in a row and q(> 1) is number of rows, then

(*i*)  $HLM_1(D) = 1028pq$ ,

(*ii*)  $HLM_2(D) = 7396pq.$ 

**Proof.** The graph D = VPHY[p,q] has 6pq vertices and 9pq edges. Using the definition of first and second leap hyper-Zagreb indices and edge set partition of the graph D given in Table 5 we get,

$$HLM_1(D) = \sum_{uv \in E(D)} [d_2(u/D) + d_2(v/D)]^2$$
  
= (5 + 5)<sup>2</sup>(4pq) + (5 + 6)<sup>2</sup>(4pq) + (6 + 6)<sup>2</sup>(pq)  
= 1028pq.

$$HLM_{2}(D) = \sum_{uv \in E(D)} [d_{2}(u/D)d_{2}(v/D)]^{2}$$
  
= (5 \cdot 5)^{2}(4pq) + (5 \cdot 6)^{2}(4pq) + (6 \cdot 6)^{2}(pq)  
= 7396pq. \Box



Fig. 5 (E) V-tetracenic nanotube

|   | EDGE SET PA | RTITION OF GRAPH E. | HERE | uv | €. | E(E) |
|---|-------------|---------------------|------|----|----|------|
| - | o -         | • • • • •           |      |    |    | ·>   |

| No. of edges | $d_2(u/E)$ | $d_2(v/E)$ |
|--------------|------------|------------|
| 18p          | 4          | 4          |
| 4 <i>p</i>   | 4          | 5          |
| 6 <i>p</i>   | 4          | 6          |
| 4 <i>p</i>   | 5          | 6          |
| 9p(3q - 4)   | 6          | 6          |

**Theorem 3.5.** If E is a V-tetracenic nanotube G[p,q], where p(>1) is number of cycles in a row and q(>1) is number of rows, then

- (*i*)  $HLM_1(E) = 3888pq 2624p$ ,
- (*ii*)  $HLM_2(E) = 34992pq 33392p.$

**Proof.** The graph E = G[p,q] has 18pq vertices and 27pq - 4p edges. Using the definition of first and second leap hyper-Zagreb indices and edge set partition of the graph E given in Table 6 we get,

$$HLM_{1}(E) = \sum_{uv \in E(E)} [d_{2}(u/E) + d_{2}(v/E)]^{2}$$

$$= (4 + 4)^{2}(18p) + (4 + 5)^{2}(4p) + (4 + 6)^{2}(6p) + (5 + 6)^{2}(4p) + (6 + 6)^{2}[9p(3q - 4)]$$

$$= 3888pq - 2624p.$$

$$HLM_{2}(E) = \sum_{uv \in E(E)} [d_{2}(u/E)d_{2}(v/E)]^{2}$$

$$= (4 \cdot 4)^{2}(18p) + (4 \cdot 5)^{2}(4p) + (4 \cdot 6)^{2}(6p) + (5 \cdot 6)^{2}(4p) + (6 \cdot 6)^{2}[9p(3q - 4)]$$

$$= 34992pq - 33392p.$$

Fig. 6 (F) H-tetracenic nanotube

| EDGE SET PARTITION OF GRAPH F. HERE $uv \in E(F)$ . |            |            |  |
|-----------------------------------------------------|------------|------------|--|
| No. of edges                                        | $d_2(u/F)$ | $d_2(v/F)$ |  |
| pq                                                  | 3          | 3          |  |
| 2pq                                                 | 3          | 5          |  |
| 3pq                                                 | 5          | 5          |  |
| 2pq                                                 | 5          | 6          |  |
| 19pq — 2q                                           | 6          | 6          |  |

TABLE 7 DGE SET PARTITION OF GRAPH F HERE  $uv \in I$ 

**Theorem 3.6.** If F is a H-tetracenic nanotube G[p,q], where p(>1) is number of cycles in a row and q(>1) is is number of rows, then

(*i*)  $HLM_1(F) = 3442pq - 288q$ ,

(*ii*)  $HLM_2(F) = 28830pq - 2592q$ .

**Proof.** The graph F = G[p,q] has 18pq vertices and 27pq - 2q edges. Using the definition of first and second leap hyper-Zagreb indices and edge set partition of the graph F given in Table 7 we get,

$$HLM_1(F) = \sum_{uv \in E(F)} [d_2(u/F) + d_2(v/F)]^2$$
  
= (3 + 3)<sup>2</sup>(pq) + (3 + 5)<sup>2</sup>(2pq) + (5 + 5)<sup>2</sup>(3pq) + (5 + 6)<sup>2</sup>(2pq) + (6 + 6)<sup>2</sup>[(19pq - 2q)]  
= 3442pq - 288q.

$$\begin{aligned} HLM_2(F) &= \sum_{uv \in E(F)} [d_2(u/F)d_2(v/F)]^2 \\ &= (3 \cdot 3)^2(pq) + (3 \cdot 5)^2(2pq) + (5 \cdot 5)^2(3pq) + (5 \cdot 6)^2(2pq) + (6 \cdot 6)^2[(19pq - 2q)] \\ &= 28830pq - 2592q. \end{aligned}$$



Fig. 7 (H) tetracenic nanotorus

| TABLE 8                                                   |            |            |
|-----------------------------------------------------------|------------|------------|
| EDGE SET PARTITION OF GRAPH <i>H</i> . HERE $uv \in E(H)$ |            |            |
| No. of edges                                              | $d_2(u/H)$ | $d_2(v/H)$ |
| 4 <i>pq</i>                                               | 5          | 5          |
| 4 <i>pq</i>                                               | 5          | 6          |
| 19pg                                                      | 6          | 6          |

**Theorem 3.7.** If H is a tetracenic nanotorus G[p,q], where p(>1) is number of cycles in a row and q(>1) is number of rows, then

 $(i) \qquad HLM_1(H) = 3620pq,$ 

(*ii*)  $HLM_2(H) = 30724pq.$ 

**Proof.** The graph H = G[p,q] has 18pq vertices and 27pq edges. Using the definition of first and second leap

hyper-Zagreb indices and edge set partition of the graph H given in Table 8 we get,

$$HLM_{1}(H) = \sum_{uv \in E(H)} [d_{2}(u/H) + d_{2}(v/H)]^{2}$$
  
=  $(5 \cdot 5)^{2}(4pq) + (5 \cdot 6)^{2}(4pq) + (6 \cdot 6)^{2}(19pq)$   
=  $3620pq$ .  
$$HLM_{2}(H) = \sum_{uv \in E(H)} [d_{2}(u/H)d_{2}(v/H)]^{2}$$
  
=  $(5 \cdot 5)^{2}(4pq) + (5 \cdot 6)^{2}(4pq) + (6 \cdot 6)^{2}(19pq)$   
=  $30724pq$ .

### ACKNOWLEDGEMENT

<sup>\*</sup> This work is partially supported by the University Grants Commission (UGC), New Delhi, through UGC-SAP DRS-III for 2016-2021: F.510/3/DRS-III/2016(SAP-I).

<sup>1</sup> This work is supported by the DST INSPIRE Fellowship 2017: No.DST/INSPIRE Fellowship/[IF170465].

#### REFERENCES

- [1] K.Agilarasan, A. Selvakumar, Some bounds on forgotten topological index, Int. J. Math. Trends and Tech., vol. 56(7), pp. 521-523, 2018.
- [2] A.R.Ashrafi, A. Loghman, PI index of armchair polyhex nanotubes, Ars Combinatoria, Vol. 80, pp. 193, 2006.
- [3] A.Bahrami, J. Yazdani, Vertex PI index of V-phenylenic nanotubes and nanotori, Digest J. Nanomaterials and Biostructures, vol. 4(1), 141-144, 2009.
- [4] B.Basavanagoud, S. Patil, H. Deng, On the second order first Zagreb index, Iranian J. Math. Chem., vol. 8(3), pp. 299-311, 2017.
- [5] B.Basavanagoud, E. Chitra, On the leap Zagreb indices of generalized xyz-point-line transformation graphs  $T^{xyz}(G)$  when z=1, Int. J. Math. Combin., vol. 2, pp. 44-66, 2018.
- [6] H.Deng, Catacondensed benzenoids and phenylenes with the extremal third-order Randi c' index, MATCH Commun. Math. Comput.Chem., vol. 64, pp. 471-496, 2010.
- [7] M.R.Farahani, Computing GA 5 index of V-phenylenic nanotubes and nanotori, Int. J. Chem. Model., vol. 5(1), pp. 479-484, 2014.
- [8] M. R.Farahani, Computing theta polynomial and theta index of V-phenylenic planar, nanotubes and nanotoris, Int. J. Theoretical Chem., vol.Vol. 1(1), pp. 01-09, 2013.
- [9] B.Furtula, I. Gutman, A forgotten topological index, J. Math. Chem., vol. 53, pp. 1184-1190, 2015.
- [10] I.Gutman, N. Trinajstić, Graph theory and molecular orbitals, total  $\pi$  electron energy of alternant hydrocarbons, Chem. Phys. Lett., vol. 17, pp. 535-538, 1972.
- [11] F.Harary, Graph Theory, Addison-Wesely, Reading, Mass, 1969.
- [12] S.M.Hosamani, Computing Sanskruti index of certain nanostructures, J. Appl. Math. Comput., 2016, DOI. 10.1007/s12190-016-1016-9.
- [13] A.Heydari, B. Taeri, szeged index of nanotubes, MATCH Commun. Math. Comput. Chem., vol. 57, pp. 463-477, 2007.
- [14] A.Heydari, B. Taeri, Wiener and Schultz indices of TUC<sub>4</sub>C<sub>8</sub>(S) nanotubes, MATCH. Commun. Math. Comput. Chem., vol. 57, pp. 665-676, 2007.
- [15] H.Jiang, M. S. Sardar, M. R. Farahani, M. Rezaei, M. K. Siddiqui, Computing Sanskruti index of V-phenylenic nanotubes and nanotori, Int. J. pure Appl. Math., vol. 115(4), pp. 859-865, 2017.
- [16] K.G.Mirajkar, Y. B. Priyanka, On the reformulated Zagreb indices of certain nanostructures, Global J. Pure Appl. Math., vol. 13(2), pp.817-827, 2017.
- [17] V.R.Kulli, College Graph Theory, Vishwa Int. Publ., Gulbarga, India, 2012.
- [18] V.R.Kulli, Leap hyper-Zagreb indices and their polynomials of certain graphs, Int. J. current research in life Sci., vol. 7(10), pp. 2783-2791, 2018.
- [19] A.M.Naji, N. D. Soner, I. Gutman, On leap Zagreb indices of graphs, Commun. Comb. Optim., vol. 2(2), pp. 99-117, 2017.
- [20] M.J.Nikmehr, M. Veylaki, N. Soleimani, Some topological indices of V-phenylenic nanotube and nanotori, Optoelectron Adv. Mater-Rapid Comm., vol. 9(9), pp. 1147-1149, 2015.
- [21] N.Soleimani, M. J. Nikmehr, H. A. Tavallae, Computation of the different topological indices of nanostructures, J. Natn. Sci. Foundation Sri-Lanka, vol. 43(2), pp. 127-133, 2015.
- [22] N.Soleimani, E. Mohseni, F. Rezaei, F. Khati, Some formulas for the polynomials and topological indices of nanostructures, Acta Chem. Iasi, vol. 24(2), pp. 122-138, 2016.
- [23] N.D.Soner, A. M. Naji, The k-distance neighbourhood polynomial of a graph, Int. J. Math. Comput. Sci.WASET Conference Proceedings, Vol. 3(9) part XV, pp. 2359-2364, 2016.
- [24] H.Wiener, Structural determination of paraffin boiling points, J. Amer. Chem. Soc., vol. 69, pp. 17-20, 1947.