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Abstract 

         In recent years, higher order topological indices have gained enormous importance because of their greater 

correlation with many chemical properties. One among them is leap hyper-Zagreb index which is based on both 

distance and degree. In this paper, we compute the expressions for first and second leap hyper-Zagreb indices of some 

nanostructures. 
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I. INTRODUCTION  
 

 

     Let 𝐺 = (𝑉, 𝐸) be a finite, undirected, connected graph without loops and multiple edges. The k-neighbourhood 

[23] of a vertex 𝑣 ∈ 𝑉(𝐺) is denoted and defined by  𝑁𝑘(𝑣/𝐺) = {𝑢 ∈ 𝑉(𝐺): 𝑑(𝑢, 𝑣) = 𝑘} in which 𝑑(𝑢, 𝑣) is a 

distance between the vertices 𝑢 and 𝑣 in 𝐺. The k-distance degree of a vertex 𝑣 ∈ 𝑉(𝐺) is denoted and defined by 

𝑑𝑘(𝑣/𝐺) = |𝑁𝑘(𝑣/𝐺)|. Also, we denote 𝑁𝐺(𝑣) by  𝑁1(𝑣/𝐺) and 𝑑𝐺 𝑣  by 𝑑1(𝑣/𝐺) . The degree of an edge 

𝑒 = 𝑢𝑣  in 𝐺  is denoted by 𝑑1(𝑒/𝐺)   (or  𝑑𝐺(𝑒))is defined by 𝑑1(𝑒/𝐺) = 𝑑1(𝑢/𝐺) + 𝑑1(𝑣/𝐺) − 2 .
 
If all the 

vertices of 𝐺  have same degree equal to 𝑟 ∈ 𝑍+ , then 𝐺  is called an 𝑟  - regular graph. For undefined graph 

terminology and notations, refer [11] and [17]. 

   In chemical graph theory and in mathematical chemistry, a molecular graph or chemical graph is representation of 

structural formula of a chemical compound in terms of graph theory. A molecular graph is a graph whose vertices 

correspond to the atoms of the chemical compound and edges to the chemical bonds. Chemical graph theory is a 

branch of mathematical chemistry which has an important role and also effective on the development of the chemical 

sciences. A single number that can be used to characterize the properties of a molecule is called a topological index of 

that graph. There are numerous molecular descriptors, which are also referred to as topological indices, see [10], have 

found some applications in theoretical chemistry, especially in QSPR/QSAR research. There are innumerable 

topological indices defined in the literature. Wiener index [24], Zagreb indices [10], F-index [1, 9], connectivity index  

(or Randi𝑐  index) [6] are few of them. Very recently, indices such as Sanskruti index [12], second order first Zagreb 

index [4] are introduced. Higher order topological indices have advanced chemical applications in QSPR/QSAR 

study. The authors in these papers [4,5,9,13,15,20,21,22] have calculated various topological indices for some of the 

nanostructures. Many topological indices are there for various nanostructures such as armchair polyhex nanotube, 

armchair polyhex nanotorus, V-phenylenic nanotube, V-phenylenic nanotorus, H-tetracenic nanotube, V-tetracenic 

nanotube and tetracenic nanotorus could be found in [2,3,7,8,15,20]. In [19], Naji et al. has introduced leap Zagreb 

indices. Basavanagoud et al. in [5], has computed leap Zagreb indices of some transformation graphs. 

   Recently, Kulli in [18], has introduced leap hyper-Zagreb indices. The first leap hyper-Zagreb index and second 

leap hyper-Zagreb index are given by  
 

𝐻𝐿𝑀1(𝐺) =  𝑢𝑣∈𝐸(𝐺) (𝑑2(𝑢/𝐺) + 𝑑2(𝑣/𝐺))2 and 𝐻𝐿𝑀2(𝐺) =  𝑢𝑣∈𝐸(𝐺) (𝑑2(𝑢/𝐺)𝑑2(𝑣/𝐺))2, respectively. 

 

   In this paper, we compute expressions for first and second leap hyper-Zagreb indices for some nanostructures. 

II.  ORDER AND SIZE OF SOME NANOSTRUCTURES 
 

TABLE 1 

Order And Size Of Nanostructures 

 

Sl. No. 

 

Graph 

 

 

Order 

 

Size 
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1 

Armchair polyhex nanotube 

𝑇𝑈𝐴𝐶6[2𝑝, 𝑞] 
2𝑝𝑞 3𝑝𝑞 − 2𝑝 

 

2 

Armchair polyhex nanotorus 

𝑇𝑈𝐴𝐶6[𝑝, 𝑞] 
2𝑝𝑞 3𝑝𝑞 

 

3 

V-Phenylenic nanotube 

𝑉𝑃𝐻𝑋[𝑝, 𝑞] 
6𝑝𝑞 9𝑝𝑞 − 𝑝 

 

4 

V-Phenylenic nanotorus 

𝑉𝑃𝐻𝑌[𝑝, 𝑞] 
6𝑝𝑞 9𝑝𝑞 

 

5 

 

V-Tetracenic nanotube G[p,q] 
18𝑝𝑞 27𝑝𝑞 − 4𝑝 

 

6 

 

H-Tetracenic nanotube G[p,q] 
18𝑝𝑞 27𝑝𝑞 − 2𝑞 

 

7 

 

Tetracenic nanotorus G[p,q] 
18𝑝𝑞 27𝑝𝑞 

      

   For convenience purpose, we use the names 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹, 𝐻 for the molecular graphs of armchair polyhex 

nanotube, armchair polyhex nanotorus, V-phenylenic nanotube, V-phenylenic nanotorus, V-tetracenic nanotube, 

H-tetracenic nanotube, tetracenic nanotorus, respectively. 

 

III.  LEAP HYPER-ZAGREB INDICES OF SOME NANOSTRUCTURES 

          
       
   Fig. 1  (A)  armchair polyhex nanotube                          Fig. 2  (B)  armchair polyhex nanotorus  

           
 

TABLE 2 

EDGE SET PARTITION OF GRAPH 𝐴. HERE 𝑢𝑣 ∈ 𝐸(𝐴). 

No. of edges 𝒅𝟐(𝒖/𝑨) 𝒅𝟐(𝒗/𝑨) 

2𝑝 3 3 

4𝑝 3 5 

2𝑝 5 5 

4𝑝 5 6 

3𝑝𝑞 − 14𝑝 6 6 

 

Theorem 3.1.  If 𝐴 is an armchair polyhex nanotube 𝑇𝑈𝐴𝐶6[2𝑝, 𝑞], where 𝑝(> 1) is number of cycles in a row 

and 𝑞(> 1) is number of stages, then  

(i) 𝐻𝐿𝑀1 𝐴 = 432𝑝𝑞 − 1004𝑝,  

(ii) 𝐻𝐿𝑀2(𝐴) = 3888𝑝𝑞 − 12232𝑝.  

 

Proof. The graph 𝐴 = 𝑇𝑈𝐴𝐶6[2𝑝, 𝑞] has 2𝑝𝑞 vertices and 3𝑝𝑞 − 2𝑝  edges. Using the definitions of first and 

second leap hyper-Zagreb indices and edge set partition of the graph 𝐴 given in Table 2 we get,  
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          𝐻𝐿𝑀1(𝐴)     =     [𝑑2(𝑢/𝐴) + 𝑑2(𝑣/𝐴)]2

𝑢𝑣∈𝐸(𝐴)

              = (3 + 3)2(2𝑝) + (3 + 5)2(4𝑝) + (5 + 5)2(2𝑝) + (5 + 6)2(4𝑝) + (6 + 6)2(3𝑝𝑞 − 14𝑝)
              =  432𝑝𝑞 − 1004𝑝.

 

 

𝐻𝐿𝑀2(𝐴)     =      [𝑑2(𝑢/𝐴)𝑑2(𝑣/𝐴)]2

𝑢𝑣∈𝐸(𝐴)

    = (3 ⋅ 3)2(2𝑝) + (3 ⋅ 5)2(4𝑝) + (5 ⋅ 5)2(2𝑝) + (5 ⋅ 6)2(4𝑝) + (6 ⋅ 6)2(3𝑝𝑞 − 14𝑝)
    = 3888𝑝𝑞 − 12232𝑝.

 

                                                                                                         □                                                                            

 

TABLE 3 

EDGE SET PARTITION OF GRAPH 𝐵. HERE 𝑢𝑣 ∈ 𝐸(𝐵) 

No. of edges 𝒅𝟐(𝒖/𝑩) 𝒅𝟐(𝒗/𝑩) 

3𝑝𝑞 6 6 

 

Theorem 3.2.  If B  is an armchair polyhex nanotorus 𝑇𝑈𝐴𝐶6[𝑝, 𝑞], where 𝑝(> 1) is number of cycles in a row 

and 𝑞(> 1) is number of rows, then  

(i) 𝐻𝐿𝑀1 𝐵 = 432𝑝𝑞,  

(ii) 𝐻𝐿𝑀2(𝐵) = 3888𝑝𝑞.  

 

Proof. The graph 𝐵 = 𝑇𝑈𝐴𝐶6[𝑝, 𝑞] has 2𝑝𝑞 vertices and 3𝑝𝑞 edges. Using the definitions of first and second leap 

hyper-Zagreb indices and edge set partition of the graph 𝐵 given in Table 3 we get,  

 

             𝐻𝐿𝑀1(𝐵)     =      [𝑑2(𝑢/𝐵) + 𝑑2(𝑣/𝐵)]2

𝑢𝑣∈𝐸(𝐵)

                       = (6 + 6)2(3𝑝𝑞)
                       =  432𝑝𝑞.

 

 
 

𝐻𝐿𝑀2 𝐵 =  [𝑑2(𝑢/𝐵)𝑑2(𝑣/𝐵)]2

𝑢𝑣∈𝐸(𝐵)
 

                                                                     = (6 ⋅ 6)2(3𝑝𝑞)                             □ 

                                      =3888pq.                                                                                                                                                                                         

                                                                                            

           
                                          

Fig. 3  (C) V-phenylenic nanotube                             Fig. 4  (D) V-phenylenic nanotorus 
 

                                                    

                                                         TABLE 4 

                                  EDGE SET PARTITION OF GRAPH 𝐶. HERE 𝑢𝑣 ∈ 𝐸(𝐶)   

No. of edges 𝒅𝟐(𝒖/𝑪) 𝒅𝟐(𝒗/𝑪) 

6𝑝 4 4 

4𝑝 4 5 
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2𝑝(2𝑞 − 3) 5 5 

4𝑝(𝑞 − 1) 5 6 

𝑝(𝑞 − 1) 6 6 

 

Theorem 3.3. If 𝐶 is a V-phenylenic nanotube 𝑉𝑃𝐻𝑋[𝑝, 𝑞], where 𝑝(> 1) is number of cycles in a row and 𝑞(> 1) 

is number of rows, then  

(i) 𝐻𝐿𝑀1 𝐶 = 1028𝑝𝑞 − 520𝑝, 
(ii) 𝐻𝐿𝑀2(𝐶) = 7396𝑝𝑞 − 4896𝑝.  

    

Proof. The graph 𝐶 = 𝑉𝑃𝐻𝑋[𝑝, 𝑞] has 6𝑝𝑞 vertices and 9𝑝𝑞 − 𝑝 edges. The definition of first and second leap 

hyper-Zagreb indices and edge set partition of the graph 𝐶 given in Table 4 gives,  

 

                                𝐻𝐿𝑀1 𝐶    =      [𝑑2(𝑢/𝐶)+𝑑2(𝑣/𝐶)]2

𝑢𝑣∈𝐸 𝐶 

                                  = (4 + 4)2(6𝑝) + (4 + 5)2(4𝑝) + (5 + 5)2[2𝑝(2𝑞 − 3)] + (5 + 6)2[4𝑝(𝑞 − 1)]

                                        +(6 + 6)2[𝑝(𝑞 − 1)]
                                  = 1028𝑝𝑞 − 520𝑝.

 

 

                                𝐻𝐿𝑀2 𝐶    =      [𝑑2(𝑢/𝐶)𝑑2(𝑣/𝐶)]2

𝑢𝑣∈𝐸 𝐶 

                                  = (4 ⋅ 4)2(6𝑝) + (4 ⋅ 5)2(4𝑝) + (5 ⋅ 5)2[2𝑝(2𝑞 − 3)] + (5 ⋅ 6)2[4𝑝(𝑞 − 1)]

                                        +(6 ⋅ 6)2[𝑝(𝑞 − 1)]
                                  = 7396𝑝𝑞 − 4896𝑝.

 

 

      

                                                                                                                    □ 

TABLE 5 

EDGE SET PARTITION OF GRAPH 𝐷.  HERE 𝑢𝑣 ∈ 𝐸(𝐷)   

No. of edges 𝒅𝟐(𝒖) 𝒅𝟐(𝒗) 

4𝑝𝑞 5 5 

4𝑝𝑞 5 6 

𝑝𝑞 6 6 

 

Theorem  3.4.  If 𝐷 is a V-phenylenic nanotorus 𝑉𝑃𝐻𝑌[𝑝, 𝑞], where 𝑝(> 1) is number of cycles in a row and 

𝑞(> 1) is number of rows, then  

(i) 𝐻𝐿𝑀1 𝐷 = 1028𝑝𝑞,  

(ii) 𝐻𝐿𝑀2(𝐷) = 7396𝑝𝑞. 
 

Proof. The graph 𝐷 = 𝑉𝑃𝐻𝑌[𝑝, 𝑞]  has 6𝑝𝑞  vertices and 9𝑝𝑞 edges. Using the definition of first and second leap 

hyper-Zagreb indices and edge set partition of the graph 𝐷 given in Table 5 we get,  

 

𝐻𝐿𝑀1(𝐷)     =      [𝑑2(𝑢/𝐷)+𝑑2(𝑣/𝐷)]2

𝑢𝑣∈𝐸(𝐷)

    = (5 + 5)2(4𝑝𝑞) + (5 + 6)2(4𝑝𝑞) + (6 + 6)2(𝑝𝑞)
    = 1028𝑝𝑞.

 

 

                                        𝐻𝐿𝑀2(𝐷)     =      [𝑑2(𝑢/𝐷)𝑑2(𝑣/𝐷)]2

𝑢𝑣∈𝐸(𝐷)

                                             = (5 ⋅ 5)2(4𝑝𝑞) + (5 ⋅ 6)2(4𝑝𝑞) + (6 ⋅ 6)2(𝑝𝑞)

                                             = 7396𝑝𝑞.                                                                                                                      □
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Fig. 5  (E) V-tetracenic nanotube 

 
TABLE 6 

EDGE SET PARTITION OF GRAPH 𝐸.  HERE 𝑢𝑣 ∈ 𝐸(𝐸)   

No. of edges 𝒅𝟐(𝒖/𝑬) 𝒅𝟐(𝒗/𝑬) 

18𝑝 4 4 

4𝑝 4 5 

6𝑝 4 6 

4𝑝 5 6 

9𝑝(3𝑞 − 4) 6 6 

 

Theorem  3.5.  If 𝐸 is a V-tetracenic nanotube 𝐺[𝑝, 𝑞], where 𝑝(> 1) is number of cycles in a row and 𝑞(> 1) is 

number of rows,  then  

(i) 𝐻𝐿𝑀1 𝐸 = 3888𝑝𝑞 − 2624𝑝, 
(ii) 𝐻𝐿𝑀2(𝐸) = 34992𝑝𝑞 − 33392𝑝.  

 

Proof. The graph 𝐸 = 𝐺[𝑝, 𝑞]  has 18𝑝𝑞 vertices and 27𝑝𝑞 − 4𝑝  edges. Using the definition of first and second 

leap hyper-Zagreb indices and edge set partition of the graph 𝐸 given in Table 6 we get,  

 

   𝐻𝐿𝑀1(𝐸)     =      [𝑑2(𝑢/𝐸)+𝑑2(𝑣/𝐸)]2

𝑢𝑣∈𝐸(𝐸)

    = (4 + 4)2(18𝑝) + (4 + 5)2(4𝑝) + (4 + 6)2(6𝑝) + (5 + 6)2(4𝑝) + (6 + 6)2[9𝑝(3𝑞 − 4)]
    =  3888𝑝𝑞 − 2624𝑝.

 

 

                     𝐻𝐿𝑀2(𝐸)     =      [𝑑2(𝑢/𝐸)𝑑2(𝑣/𝐸)]2

𝑢𝑣∈𝐸(𝐸)

                      = (4 ⋅ 4)2(18𝑝) + (4 ⋅ 5)2(4𝑝) + (4 ⋅ 6)2(6𝑝) + (5 ⋅ 6)2(4𝑝) + (6 ⋅ 6)2[9𝑝(3𝑞 − 4)]

                      =  34992𝑝𝑞 − 33392𝑝.                                                                                                                                  □                                                                    

 

                  

 
 

  Fig. 6  (F) H-tetracenic nanotube  
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TABLE 7 

EDGE SET PARTITION OF GRAPH 𝐹.  HERE 𝑢𝑣 ∈ 𝐸 𝐹 . 

No. of edges 𝒅𝟐(𝒖/𝑭) 𝒅𝟐(𝒗/𝑭) 

𝑝𝑞 3 3 

2𝑝𝑞 3 5 

3𝑝𝑞 5 5 

2𝑝𝑞 5 6 

19𝑝𝑞 − 2𝑞 6 6 

 

Theorem 3.6.  If 𝐹 is a H-tetracenic nanotube 𝐺[𝑝, 𝑞],, where 𝑝(> 1) is number of cycles in a row and 𝑞(> 1) is 

is number of rows, then  

(i) 𝐻𝐿𝑀1 𝐹 = 3442𝑝𝑞 − 288𝑞,  

(ii) 𝐻𝐿𝑀2(𝐹) = 28830𝑝𝑞 − 2592𝑞.  

 

Proof. The graph 𝐹 = 𝐺[𝑝, 𝑞]  has 18𝑝𝑞  vertices and 27𝑝𝑞 − 2𝑞  edges. Using the definition of first and second 

leap hyper-Zagreb indices and edge set partition of the graph 𝐹 given in Table 7 we get,  

 

𝐻𝐿𝑀1(𝐹)     =      [𝑑2(𝑢/𝐹)+𝑑2(𝑣/𝐹)]2

𝑢𝑣∈𝐸(𝐹)

    = (3 + 3)2(𝑝𝑞) + (3 + 5)2(2𝑝𝑞) + (5 + 5)2(3𝑝𝑞) + (5 + 6)2(2𝑝𝑞) + (6 + 6)2[(19𝑝𝑞 − 2𝑞)]
    = 3442𝑝𝑞 − 288𝑞.

 

           

  

𝐻𝐿𝑀2(𝐹)     =      [𝑑2(𝑢/𝐹)𝑑2(𝑣/𝐹)]2

𝑢𝑣∈𝐸(𝐹)

    = (3 ⋅ 3)2(𝑝𝑞) + (3 ⋅ 5)2(2𝑝𝑞) + (5 ⋅ 5)2(3𝑝𝑞) + (5 ⋅ 6)2(2𝑝𝑞) + (6 ⋅ 6)2[(19𝑝𝑞 − 2𝑞)]
    = 28830𝑝𝑞 − 2592𝑞.

 

                                                                             □ 

 

 
                                    

Fig. 7  (H) tetracenic nanotorus 
 

TABLE 8 

EDGE SET PARTITION OF GRAPH 𝐻.  HERE 𝑢𝑣 ∈ 𝐸(𝐻)   

No. of edges 𝒅𝟐(𝒖/𝑯) 𝒅𝟐(𝒗/𝑯) 

4𝑝𝑞 5 5 

4𝑝𝑞 5 6 

19𝑝𝑞 6 6 

 

Theorem 3.7. If 𝐻 is a tetracenic nanotorus 𝐺[𝑝, 𝑞], where 𝑝(> 1) is number of cycles in a row and 𝑞(> 1) is 

number of rows, then  

(i) 𝐻𝐿𝑀1 𝐻 = 3620𝑝𝑞,  

(ii) 𝐻𝐿𝑀2(𝐻) = 30724𝑝𝑞. 

 

Proof. The graph 𝐻 = 𝐺[𝑝, 𝑞] has 18𝑝𝑞 vertices and 27𝑝𝑞 edges. Using the definition of first and second leap 
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hyper-Zagreb indices and edge set partition of the graph 𝐻 given in Table 8 we get,   

    

𝐻𝐿𝑀1(𝐻)     =      [𝑑2(𝑢/𝐻) + 𝑑2(𝑣/𝐻)]2

𝑢𝑣∈𝐸(𝐻)

    = (5 ⋅ 5)2(4𝑝𝑞) + (5 ⋅ 6)2(4𝑝𝑞) + (6 ⋅ 6)2(19𝑝𝑞)
    = 3620𝑝𝑞.

 

 

𝐻𝐿𝑀2(𝐻)     =      [𝑑2(𝑢/𝐻)𝑑2(𝑣/𝐻)]2

𝑢𝑣∈𝐸(𝐻)

    = (5 ⋅ 5)2(4𝑝𝑞) + (5 ⋅ 6)2(4𝑝𝑞) + (6 ⋅ 6)2(19𝑝𝑞)
    = 30724𝑝𝑞.

 

                                                                                       □ 
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