On Some Topological Indices of Tensor Product Graphs

K.V.S.Sarma ${ }^{1}$, I.V.N. Uma ${ }^{2} \&$ I.H.N.Rao ${ }^{3}$
${ }^{1}$ Associate Prof., Department of Mathematics, Gayatri Vidyaparishad College for Degree and P.G courses, School of Engineering, Rushikonda, Visakhapatnam-45, India
${ }^{2}$ Senior Faculty, Delhi public school, Hyderabad,India
${ }^{3}$ Sr.Prof. G.V.P. - LIAS , GVP college of Enginering(A), Madhurawada, Visakhapatnam-48, India

Abstract

A topological Index of a graph is a real numbers associated with the graph that is invariant under its automorphisms. The elementary topological indices are numbers of vertices and edges of a finite graph. The wellknown one is Wiener Index due to Wiener [4]. It has wide applicability in molecular chemistry.

The concept of Geometric - Arithmetic degree Index of a graph H, denoted by G/H degree (H), is introduced by Mogharrab and Fath - Tabar [2] as follows.

Key words: Wiener Index, Geometric Arithmetic degree, Squared Geometric Arithmetic degree.

I. INTRODUCTION

In this paper, we consider topological indices of standard graphs and that of tensor product graphs.
A topological index of a graph is a real number associated with the graph that is invariant under its automorphism.

The elementary topological indices are the number of vertices/edges of a finite graph. The well known one is Wiener index due to Wiener [5]. It has wide applicability in molecular chemistry.

II. PRELIMINARIES

We now present the necessary definitions and observations needed for the development of further ones in the succeeding sections.

The concept of Geometric-Arthimetic degree (deg) index of a graph H, denoted by G/A $\operatorname{deg}(\mathrm{H})$, introduced by Mogharrab and Fath-Taber [2] is the following:

Definition 1.1: Let H be a non-empty, connected, simple and finite graph. Then
$G / A-\operatorname{deg}(\mathrm{H})=\sum_{u v \in E(H)} \frac{G \cdot M \text { of }\{\mathrm{d}(\mathrm{u}), \mathrm{d}(\mathrm{v})\}}{A \cdot M \text { of }\{\mathrm{d}(\mathrm{u}), \mathrm{d}(\mathrm{v})\}}$, where $\mathrm{u}, \mathrm{v} \in \mathrm{V}(\mathrm{H})($ vertex set H$), \mathrm{E}(\mathrm{H})$ is the edge set
of H and d_{H} is the degree function of H . (when there is only one graph under consideration we omit and write $\mathrm{V}(\mathrm{H})$, $E(H)$, and d_{H} as V, E and d respectively and the edge with ends u \& v is denoted by uv.

Similarly, we can define the squared Geometric-Arthimetic degree index of H as

$$
G^{2} / A-\operatorname{deg}(\mathrm{H})=\sum_{u v \in E(H)} \frac{(G \cdot M)^{2} \text { of }\{\mathrm{d}(\mathrm{u}), \mathrm{d}(\mathrm{v})\}}{A \cdot M \text { of }\{\mathrm{d}(\mathrm{u}), \mathrm{d}(\mathrm{v})\}} .
$$

The Geometric-twiced Arthimetic degree index of H denoted as

$$
G / 2 A-\operatorname{deg}(\mathrm{H})=\sum_{u v \in E(H)} \frac{(G . M) \text { of }\{\mathrm{d}(\mathrm{u}), \mathrm{d}(\mathrm{v})\}}{2(A . M) \text { of }\{\mathrm{d}(\mathrm{u}), \mathrm{d}(\mathrm{v})\}}
$$

and the squared Geometric-twice Arthimetic degree index of H , denoted as

$$
G^{2} / 2 A-\operatorname{deg}(\mathrm{H})=\sum_{u v \in E(H)} \frac{(G \cdot M)^{2} \text { of }\{\mathrm{d}(\mathrm{u}), \mathrm{d}(\mathrm{v})\}}{2(A \cdot M) \text { of }\{\mathrm{d}(\mathrm{u}), \mathrm{d}(\mathrm{v})\}} .
$$

Observations 1.2:

(a) If H is a regular graph then $d(u)=d(v)$ for all $u, v \in V$ and so $G . M$ of $\{d(u), d(v)\}=A . M$ of $\{d(u), d(v)\}$ for all $u, v \in V$ and hence

$$
\begin{aligned}
G / A-\operatorname{deg}(H) & =\sum_{u v \in E} 1 \\
& =|\mathrm{E}| \\
& =\text { The number of edges of } \mathrm{H}, \text { if } \mathrm{H} \text { is a finite graph }
\end{aligned}
$$

(b)
(i) $G / 2 A-\operatorname{deg}(H)=\frac{1}{2} G / \mathrm{A}-\operatorname{deg}(H)$ and
(ii) $G^{2} / 2 A-\operatorname{deg}(H)=\frac{1}{2} G^{2} / \mathrm{A}-\operatorname{deg}(H)$.
(c) There is no interest in either empty or infinite or disconnected graph.

So by a graph we mean a non-empty, finite, simple and connected one.
In the following section, we consider these indices for standard graphs.

§ 2. Basic results concerning standard graphs

Theorem 2.1: \quad For the complete graph $K_{n}(n$ being any integer $\geq 2)$,

$$
\begin{array}{ll}
\text { (i) } & \mathrm{G} / \mathrm{A}-\operatorname{deg}\left(\mathrm{K}_{\mathrm{n}}\right)=\mathrm{n}(\mathrm{n}-1) / 2 \text { and } \\
\text { (ii) } & \mathrm{G}^{2} / \mathrm{A}-\operatorname{deg}\left(\mathrm{K}_{\mathrm{n}}\right)=\mathrm{n}(\mathrm{n}-1)^{2} / 2 .
\end{array}
$$

Proof: We know that K_{n} has n vertices and any two vertices in K_{n} are adjacent. So it is a ($\mathrm{n}-1$)-regular graph with $\mathrm{n}(\mathrm{n}-1) / 2$ edges.

Hence $G / A-$ degree $\left(K_{n}\right)=\left|E\left(K_{n}\right)\right|=n(n-1) / 2$.
By definition, $\mathrm{G}^{2} / \mathrm{A}-\operatorname{deg}\left(\mathrm{K}_{\mathrm{n}}\right)=2 \sum_{e=u v \in E\left(K_{n}\right)} \frac{d(u) d(v)}{d(u)+d(v)}$

$$
\begin{gathered}
=2 \sum_{e \in E\left(K_{n}\right)} \frac{(n-1)^{2}}{2(n-1)} \\
=(\mathrm{n}-1)\left|\mathrm{E}\left(\mathrm{~K}_{\mathrm{n}}\right)\right| \\
=\mathrm{n}(\mathrm{n}-1)^{2} / 2 .
\end{gathered}
$$

Theorem 2.2: For the cycle C_{n} (n being any integer ≥ 3),
(i) $\mathrm{G} / \mathrm{A}-\operatorname{deg}\left(\mathrm{C}_{\mathrm{n}}\right)=\mathrm{n}$ and
(ii) $\mathrm{G}^{2} / \mathrm{A}-\operatorname{deg}\left(\mathrm{C}_{\mathrm{n}}\right)=2 \mathrm{n}$.

Proof. We know that C_{n} has n vertices and is a 2-regular graph; hence it has n edges. So, by the observation
(i) $\mathrm{G} / \mathrm{A}-\operatorname{deg}\left(\mathrm{C}_{\mathrm{n}}\right)==\left|\mathrm{E}\left(\mathrm{C}_{\mathrm{n}}\right)\right|=\mathrm{n}$ and
(ii) $\mathrm{G}^{2} / \mathrm{A}-\operatorname{deg}\left(\mathrm{C}_{\mathrm{n}}\right)=2 \sum_{e=u v \in E\left(C_{n}\right)} \frac{d(u) d(v)}{d(u)+d(v)}==2 \sum_{e \in E\left(C_{n}\right)} \frac{4}{4}=2\left|\mathrm{E}\left(\mathrm{C}_{\mathrm{n}}\right)\right|=2 \mathrm{n}$.

Theorem 2.3: For the path P_{n}, $(n$ being any integer $\geq 2)$,
(i)

$$
G / A-\operatorname{deg}\left(P_{n}\right)=\left\{\begin{array}{l}
1 \text { if } n=2, \\
(n-3)+\frac{4 \sqrt{2}}{3} \text { if } n \geq 3
\end{array}\right.
$$

(ii)

$$
G^{2} / A-\operatorname{deg}\left(P_{n}\right)=\left\{\begin{array}{l}
1 \text { if } n=2 \\
2(n-3)+\frac{8}{3} \text { if } n \geq 3
\end{array}\right.
$$

Proof. Since $\mathrm{P}_{2}=\mathrm{K}_{2}$, we have $\mathrm{G} / \mathrm{A}-\operatorname{deg}\left(\mathrm{P}_{2}\right)=1$.
Let n be any integer ≥ 3 and $\mathrm{V}\left(\mathrm{P}_{\mathrm{n}}\right)=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$.
Now $E\left(P_{n}\right)=\left\{u_{i} u_{i+1}: i=1,2, \ldots,(n-1)\right\}$,

$$
\left.\mathrm{d}\left(\mathrm{u}_{1}\right)=\mathrm{d}\left(\mathrm{u}_{\mathrm{n}}\right)=1 \text { and } \mathrm{d}\left(\mathrm{u}_{\mathrm{i}}\right)=2, \mathrm{i}=2, \ldots,(\mathrm{n}-1) .\right]
$$

So when $\mathrm{n}=3$,

$$
\begin{aligned}
& \mathrm{G} / \mathrm{A}-\operatorname{deg}\left(\mathrm{P}_{3}\right)=2\left\{\frac{\sqrt{d\left(u_{1}\right) d\left(u_{2}\right)}}{d\left(u_{1}\right)+d\left(u_{2}\right)}+\frac{\sqrt{d\left(u_{2}\right) d\left(u_{3}\right)}}{d\left(u_{2}\right)+d\left(u_{3}\right)}\right\} \\
&=2\left\{\frac{\sqrt{1.2}}{1+2}+\frac{\sqrt{2.1}}{2+1}\right\} \\
&=\frac{4 \sqrt{2}}{3} \\
&=(3-3)+\frac{4 \sqrt{2}}{3}
\end{aligned}
$$

Let n be any integer ≥ 4, Now,

$$
\mathrm{G} / \mathrm{A}-\operatorname{deg}\left(\mathrm{P}_{\mathrm{n}}\right)=2 \sum_{i=1}^{n-1} \frac{\sqrt{d\left(u_{i}\right) d\left(u_{i+1}\right)}}{d\left(u_{i}\right)+d\left(u_{i+1}\right)}
$$

$$
\begin{aligned}
& =2\left\{\frac{\sqrt{d\left(u_{1}\right) d\left(u_{2}\right)}}{d\left(u_{1}\right)+d\left(u_{2}\right)}+\sum_{i=2}^{n-2} \frac{\sqrt{d\left(u_{i}\right) d\left(u_{i+1}\right)}}{d\left(u_{i}\right)+d\left(u_{i+1}\right)}+\frac{\sqrt{d\left(u_{n-1}\right) d\left(u_{n}\right)}}{d\left(u_{n-1}\right)+d\left(u_{n}\right)}\right\} \\
& =2\left\{\frac{\sqrt{1.2}}{1+2}+\sum_{i=2}^{n-2} \frac{\sqrt{2.2}}{2+2}+\frac{\sqrt{2.1}}{2+1}\right\} \\
& =2\left\{\frac{\sqrt{2}}{3}+\frac{1}{2}(n-2-2+1)+\frac{\sqrt{2}}{3}\right\} \\
& =2\left\{\frac{2 \sqrt{2}}{3}+\frac{(n-3)}{2}\right\} \\
& =(n-3)+\frac{4 \sqrt{2}}{3} .
\end{aligned}
$$

Now let us consider $\mathrm{G}^{2} / \mathrm{A}-\operatorname{deg}\left(\mathrm{P}_{\mathrm{n}}\right)$.
$\mathrm{G}^{2} / \mathrm{A}-\operatorname{deg}\left(\mathrm{P}_{2}\right)=\mathrm{G}^{2} / \mathrm{A}-\operatorname{deg}\left(\mathrm{K}_{2}\right)$

$$
=\frac{2(2-1)^{2}}{2}=1 .
$$

When $\mathrm{n}=3, \mathrm{G}^{2} / \mathrm{A}-$ degree $\left(\mathrm{P}_{3}\right)=2\left\{\frac{d\left(u_{1}\right) d\left(u_{2}\right)}{d\left(u_{1}\right)+d\left(u_{2}\right)}+\frac{d\left(u_{2}\right) d\left(u_{3}\right)}{d\left(u_{2}\right)+d\left(u_{3}\right)}\right\}=2\left\{\frac{1.2}{1+2}+\frac{2.1}{2+1}\right\}$

$$
=8 / 3=2(3-3)+8 / 3 .
$$

Let $\mathrm{n} \geq 4$; now

$$
\begin{aligned}
& 2 \sum_{i=1}^{n-1} \frac{d\left(\mathbf{u}_{i}\right) d\left(\mathbf{u}_{i+1}\right)}{d\left(\mathbf{u}_{i}\right)+d\left(\mathrm{u}_{i+1}\right)} \\
& =2\left\{\frac{d\left(\mathrm{u}_{1}\right) d\left(u_{2}\right)}{d\left(\mathrm{u}_{1}\right)+d\left(u_{2}\right)}+\sum_{i=2}^{n-2} \frac{d\left(\mathrm{u}_{i}\right) d\left(\mathrm{u}_{i+1}\right)}{d\left(\mathrm{u}_{i}\right)+d\left(\mathrm{u}_{i+1}\right)}+\frac{d\left(\mathrm{u}_{n-1}\right) d\left(u_{n}\right)}{d\left(\mathrm{u}_{n-1}\right)+d\left(u_{n}\right)}\right\} \\
& =2\left\{\frac{1.2}{1+2}+\sum_{i=2}^{n-2} \frac{2.2}{2+2}+\frac{2.1}{2+1}\right\} \\
& =2\left\{\frac{4}{3}+((n-2)-2+1)\right\} \\
& \quad=2\left\{\frac{4}{3}+(n-3)\right\}
\end{aligned}
$$

$$
=2(n-3)+\frac{8}{3}
$$

Theorem 2.4: For the complete bipartite graph $\mathrm{K}_{\mathrm{m}, \mathrm{n}}$ (m, n being any positive integers)
(i) $\quad \mathrm{G} / \mathrm{A}-\operatorname{deg}\left(\mathrm{K}_{\mathrm{m}, \mathrm{n}}\right)=\frac{2(m n)^{3 / 2}}{m+n}$ and
(ii) $\mathrm{G}^{2} / \mathrm{A}-\operatorname{deg}\left(\mathrm{K}_{\mathrm{m}, \mathrm{n}}\right)=\frac{2(m n)^{2}}{m+n}$

Proof. We know that if $\{\mathrm{X}, \mathrm{Y}\}$ is a bipartition of $\mathrm{K}_{\mathrm{m}, \mathrm{n}}$ with $|\mathrm{X}|=\mathrm{m}$, and $|\mathrm{Y}|=\mathrm{n}$, then for any edge $\mathrm{e}=\mathrm{uv}$ of $\mathrm{K}_{\mathrm{m}, \mathrm{n}}$ with $u \in X$ and $v \in Y \Rightarrow \operatorname{deg}(u)=n$ and $\operatorname{deg}(v)=m$.
$\mathrm{K}_{\mathrm{m}, \mathrm{n}}$ has ($\mathrm{m}+\mathrm{n}$) vertices and mn edges. Now, by definition

$$
\begin{aligned}
\mathrm{G} / \mathrm{A}-\operatorname{deg}\left(\mathrm{K}_{\mathrm{m}, \mathrm{n}}\right) & =2 \sum_{e=u v \in E} \frac{\sqrt{n m}}{n+m} \\
& =2 \frac{\sqrt{m n}}{m+n}\left|\mathrm{E}\left(\mathrm{~K}_{\mathrm{m}, \mathrm{n}}\right)\right| \\
& =2 \frac{(m n)^{3 / 2}}{m+n}
\end{aligned}
$$

(Observe that $\mathrm{K}_{1,1}=\mathrm{K}_{2}$ and $\mathrm{G} / \mathrm{A}-\operatorname{deg}\left(\mathrm{K}_{1,1}\right)=1$).

By definition, $\mathrm{G}^{2} / \mathrm{A}-\operatorname{deg}\left(\mathrm{K}_{\mathrm{m}, \mathrm{n}}\right)=2 \frac{n m}{n+m}\left|\mathrm{E}\left(\mathrm{K}_{\mathrm{m}, \mathrm{n}}\right)\right|$

$$
=2 \frac{(m n)^{2}}{m+n}
$$

(Observe that $G^{2} / A-\operatorname{deg}\left(K_{1,1}\right)=1$).
Theorem 2.5. For the star graph $S_{1, n}$, where n is any integer ≥ 3.
(i) $\mathrm{G} / \mathrm{A}-\operatorname{deg}\left(\mathrm{S}_{1, \mathrm{n}}\right)=2 \frac{n^{3 / 2}}{(n+1)}$.
(ii) $\mathrm{G}^{2} / \mathrm{A}-\operatorname{deg}\left(\mathrm{S}_{1, \mathrm{n}}\right)=2 \frac{n^{2}}{(n+1)}$

(Observe that $\mathrm{S}_{1,1}=\mathrm{K}_{2}=\mathrm{P}_{2}$ and $\mathrm{S}_{1,2}=\mathrm{P}_{3}=\mathrm{K}_{1,2}$. So we consider the case when $\mathrm{n} \geq 3$).
Proof: Let $\mathrm{V}\left(\mathrm{S}_{1, \mathrm{n}}\right)=\left\{\mathrm{u}_{0}, \mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$,
where $\operatorname{deg}\left(u_{0}\right)=n$ and $\operatorname{deg} v_{j}=1$ for $j=1,2, \ldots n$.
By definition,

$$
\begin{aligned}
& \mathrm{G} / \mathrm{A}-\operatorname{deg}\left(\mathrm{S}_{1, \mathrm{n}}\right)=2 \sum_{j=1}^{n} \frac{\sqrt{\operatorname{deg}\left(u_{0}\right) \operatorname{deg}\left(v_{j}\right)}}{\left(\operatorname{deg}\left(u_{0}\right)+\operatorname{deg}\left(v_{j}\right)\right)} \\
&=2 \sum_{j=1}^{n} \frac{\sqrt{\mathrm{n}(1)}}{(\mathrm{n}+1)} \\
&=2 \frac{\sqrt{n}}{(\mathrm{n}+1)} \sum_{j=1}^{n} 1 \\
&=2 \frac{\sqrt{n}}{(\mathrm{n}+1)} n \\
&=2 \frac{n^{3 / 2}}{(\mathrm{n}+1)} .
\end{aligned}
$$

By definition, $\mathrm{G}^{2} / \mathrm{A}-\operatorname{deg}\left(\mathrm{S}_{1, \mathrm{n}}\right)=2 \sum_{j=1}^{n} \frac{\operatorname{deg}\left(u_{0}\right) \operatorname{deg}\left(v_{j}\right)}{\left(\operatorname{deg}\left(u_{0}\right)+\operatorname{deg}\left(v_{j}\right)\right)}=2 \sum_{j=1}^{n} \frac{(n)(1)}{(n+1)}=2 \frac{n}{(n+1)} \sum_{j=1}^{n} 1=\frac{2 n^{2}}{(n+1)}$.

Theorem 2.6: For the wheel graph $K_{1} V_{n}(n$ being any integer $\geq 3), G / A-\operatorname{deg}\left(K_{1} V C_{n}\right)=$
$\left(1+\frac{2 \sqrt{3 n}}{n+3} n\right)$.
(i) $\mathrm{G}^{2} / \mathrm{A}-\operatorname{deg}\left(\mathrm{K}_{1} \vee \mathrm{C}_{\mathrm{n}}\right)=9 \mathrm{n}(\mathrm{n}+1) /(\mathrm{n}+3)$.

Proof: Let the vertex set $\mathrm{V}\left(\mathrm{K}_{1} \mathrm{~V} \mathrm{C}_{\mathrm{n}}\right)=\left\{\mathrm{u}_{0}, \mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}-1}, \mathrm{u}_{\mathrm{n}}\right\}$.
Now $E\left(K_{1} V_{C}\right)=\left\{u_{0} v_{j}: j=1,2, \ldots, n\right\} \quad U\left\{v_{j} v_{j+1}: j=1,2, \ldots, n\right\}$
(with the convention $v_{n+1}=v_{1}$). So

$d\left(u_{0}\right)=n, \operatorname{deg}\left(v_{j}\right)=3$ for $j=1,2, \ldots, n$
By definition,G/A-deg $\left(\mathrm{K}_{1} \mathrm{~V} \mathrm{C}_{\mathrm{n}}\right)=2 \sum_{j=1}^{n} \frac{\sqrt{\mathrm{~d}\left(u_{0}\right) \mathrm{d}\left(v_{j}\right)}}{\left(\mathrm{d}\left(u_{0}\right)+\mathrm{d}\left(v_{j}\right)\right)}+2 \sum_{j=1}^{n} \frac{\sqrt{\mathrm{~d}\left(v_{j}\right) \mathrm{d}\left(v_{j+1}\right)}}{\left(\mathrm{d}\left(v_{j}\right)+\mathrm{d}\left(v_{j+1}\right)\right)}$

$$
\begin{aligned}
& =2 \sum_{j=1}^{n} \frac{\sqrt{(n)(3)}}{(\mathrm{n}+3)}+2 \sum_{j=1}^{n} \frac{\sqrt{(3)(3)}}{(3+3)} \\
& =2 \frac{\sqrt{3 n}}{(\mathrm{n}+3)} n+n
\end{aligned}
$$

$$
\begin{aligned}
& =2\left(\frac{\sqrt{3 n}}{(\mathrm{n}+3)}+1\right) n \\
& =\left(1+2 \frac{\sqrt{3 n}}{(\mathrm{n}+3)}\right) n . \\
\mathrm{G}^{2} / \mathrm{A}-\operatorname{deg}\left(\mathrm{K}_{1} \mathrm{~V} \mathrm{C}_{\mathrm{n}}\right)= & 2 \sum_{j=1}^{n} \frac{\sqrt{\mathrm{~d}\left(u_{0}\right) \mathrm{d}\left(v_{j}\right)}}{\left(\mathrm{d}\left(u_{0}\right)+\mathrm{d}\left(v_{j}\right)\right)}+2 \sum_{j=1}^{n} \frac{\sqrt{\mathrm{~d}\left(v_{j}\right) \mathrm{d}\left(v_{j+1}\right)}}{\left(\mathrm{d}\left(v_{j}\right)+\mathrm{d}\left(v_{j+1}\right)\right)} \\
= & 2 \sum_{j=1}^{n} \frac{\sqrt{(n)(3)}}{(\mathrm{n}+3)}+2 \sum_{j=1}^{n} \frac{\sqrt{(3)(3)}}{(3+3)} \\
= & 6 \frac{n^{2}}{(\mathrm{n}+3)}+3 n \\
& =3 n\left(1+\frac{2 n}{n+3}\right)=3 n\left(\frac{3(n+1)}{(n+3)}\right)=\frac{9 n(n+1)}{(n+3)} .
\end{aligned}
$$

§3. Results related to Tensor Product Graphs

For the development of these results, we need the following:
Definition 3.1 [3]: H_{1} and H_{2} are disjoint graphs, then the tensor product of H_{1} and H_{2}, denoted by $\mathrm{H}_{1} \wedge \mathrm{H}_{2}$ is the graph whose vertex set is $V\left(H_{1}\right) U V\left(H_{2}\right)$ and the edge set being the set of all elements of the form $\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right)$, where $u_{1} u_{2} \in V\left(H_{1}\right), v_{1}, v_{2} \in V\left(H_{2}\right), u_{1} u_{2} \in E\left(H_{1}\right)$ and $v_{1} v_{2} \in E\left(H_{2}\right)$.

Result 3.2 [3]: $\mathrm{H}_{1}, \mathrm{H}_{2}$ be simple and connected graphs, then $\mathrm{H}_{1} \wedge \mathrm{H}_{2}$ is connected iff either H_{1} or H_{2} contains an odd cycle.

Result 3.3 [1]: A non-empty connected graphs is Eulerian iff every vertex of the graph is of even degree.
Result 3.4 [1]: A simple graph is bipartite iff it contains no odd cycle.
Result 3.5 [4]: For integers $m, n \geq 2, \mathrm{~K}_{\mathrm{m}} \wedge \mathrm{K}_{\mathrm{n}}$ is a simple, finite and ($\mathrm{m}-1$)($\mathrm{n}-1$)-regular graph with mn vertices and $1 / 2 m n(m-1)(n-1)$ edges. Further it is connected if one of m, n is ≥ 3.

Theorem 3.6: For integers $m, n \geq 2$, with $m+n \geq 5$,
(i) $\mathrm{G} / \mathrm{A}-\operatorname{deg}\left(\mathrm{K}_{\mathrm{m}} \wedge^{\wedge} \mathrm{K}_{\mathrm{n}}\right)=1 / 2 \mathrm{mn}(\mathrm{m}-1)(\mathrm{n}-1)$
(ii) $\mathrm{G}^{2} / \mathrm{A}-\operatorname{deg}\left(\mathrm{K}_{\mathrm{m}} \wedge^{\wedge} \mathrm{K}_{\mathrm{n}}\right)=1 / 2 \mathrm{mn}[(\mathrm{m}-1)(\mathrm{n}-1)]^{2}$.

Proof: $\mathrm{K}_{\mathrm{m}}{ }^{\wedge} \mathrm{K}_{\mathrm{n}}$ is a connected, regular graph. By the observation (1.2)(a) follows that

$$
\begin{aligned}
\mathrm{G} / \mathrm{A}-\operatorname{deg}\left(\mathrm{K}_{\mathrm{m}} \wedge \mathrm{~K}_{\mathrm{n}}\right)= & \left|\mathrm{E}\left(\mathrm{~K}_{\mathrm{m}} \wedge \mathrm{~K}_{\mathrm{n}}\right)\right| \\
& =1 / 2 \mathrm{mn}(\mathrm{~m}-1)(\mathrm{n}-1)(\text { By Result } 3.5)
\end{aligned}
$$

Let $\mathrm{w}_{1}=\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right), \mathrm{w}_{2}=\left(\mathrm{u}_{2}, \mathrm{v}_{2}\right) \in \mathrm{V}\left(\mathrm{K}_{\mathrm{m}}{ }^{\wedge} \mathrm{K}_{\mathrm{n}}\right)$
Now, by definition,

$$
\begin{aligned}
& \mathrm{G}^{2} / \mathrm{A}-\operatorname{deg}\left(\mathrm{K}_{\mathrm{m}} \wedge \mathrm{~K}_{\mathrm{n}}\right)=2 \sum_{w_{1} w_{2} \in E\left(K_{m} \wedge K_{n}\right)} \frac{d\left(w_{1}\right) d\left(w_{2}\right)}{d\left(w_{1}\right)+d\left(w_{2}\right)} \\
&=2 \sum_{w_{1}, w_{2} \in E\left(K_{m} \wedge K_{n}\right)} \frac{\{(m-1)(\mathrm{n}-1)\}^{2}}{2(m-1)(n-1)} \\
&=(\mathrm{m}-1)(\mathrm{n}-1)\left|\mathrm{E}\left(\mathrm{~K}_{\mathrm{m}} \wedge \mathrm{~K}_{\mathrm{n}}\right)\right| \\
&= 1 / 2 \mathrm{mn}[(\mathrm{~m}-1)(\mathrm{n}-1)]^{2} .
\end{aligned}
$$

Result 3.7 [4]: For integers $m, n \geq 3, C_{m} \wedge C_{n}$ is a simple 4-regular graph with $m n$ vertices and $4 m n$ edges. Further, it is connected iff atleast one of m, n is odd.

Theorem 3.8: For integers $m, n \geq 3$, when one of m, n is odd,
(i) $\mathrm{G} / \mathrm{A}-\operatorname{deg}\left(\mathrm{C}_{\mathrm{m}} \wedge \mathrm{C}_{\mathrm{n}}\right)=2 \mathrm{mn}$ and
(ii) $\mathrm{G}^{2} / \mathrm{A}-\operatorname{deg}\left(\mathrm{C}_{\mathrm{m}}{ }^{\wedge} \mathrm{C}_{\mathrm{n}}\right)=8 \mathrm{mn}$.

Proof: Since $\mathrm{C}_{\mathrm{m}}{ }^{\wedge} \mathrm{C}_{\mathrm{n}}$ is a 4-regular graph, it follows that
$\mathrm{G} / \mathrm{A}-\operatorname{deg}\left(\mathrm{C}_{\mathrm{m}}{ }^{\wedge} \mathrm{C}_{\mathrm{n}}\right)=\left|\mathrm{E}\left(\mathrm{C}_{\mathrm{m}}{ }^{\wedge} \mathrm{C}_{\mathrm{n}}\right)\right|$

$$
=2 \mathrm{mn}
$$

Further, $\mathrm{G}^{2} / \mathrm{A}-\operatorname{deg}\left(\mathrm{C}_{\mathrm{m}}{ }^{\wedge} \mathrm{C}_{\mathrm{n}}\right)=2 \sum_{e \in E\left(C_{m}{ }^{\wedge} C_{n}\right)} \frac{(4)(4)}{4+4}$

$$
=4\left|\mathrm{E}\left(\mathrm{C}_{\mathrm{m}}{ }^{\wedge} \mathrm{C}_{\mathrm{n}}\right)\right|
$$

$$
=8 \mathrm{mn}
$$

Result 3.9[4]: $\mathrm{K}_{2}{ }^{\wedge} \mathrm{C}_{\mathrm{n}}$ is a connected graph iff n is odd. Further it is isomorphic to $\mathrm{C}_{2 \mathrm{n}}$.
Result 3.10[4]: $\mathrm{K}_{\mathrm{m}} \wedge \mathrm{C}_{\mathrm{n}}(\mathrm{m}>2, \mathrm{n} \geq 3)$ is a simple, finite and 2($\mathrm{m}-1$)-regular graph with $m n$ vertices and ($\mathrm{m}-$ 1)(mn) edges.

Theorem 3.11: For the graph $\mathrm{K}_{2} \wedge \mathrm{C}_{\mathrm{n}}$ (n being an odd integer ≥ 3),
(i) $\mathrm{G} / \mathrm{A}-\operatorname{deg}\left(\mathrm{K}_{2} \wedge \mathrm{C}_{\mathrm{n}}\right)=2 \mathrm{n}$ and
(ii) $\mathrm{G}^{2} / \mathrm{A}-\operatorname{deg}\left(\mathrm{K}_{2}{ }^{\wedge} \mathrm{C}_{\mathrm{n}}\right)=4 \mathrm{n}$.

Proof: By Result 3.9, $\mathrm{K}_{2}{ }^{\wedge} \mathrm{C}_{\mathrm{n}}$ is isomorphic to $\mathrm{C}_{2 \mathrm{n}}$.
Hence, by Th.2.2,
(i) $\mathrm{G} / \mathrm{A}-\operatorname{deg}\left(\mathrm{K}_{2} \wedge \mathrm{C}_{\mathrm{n}}\right)=2 \mathrm{n}$ and
(ii) $G^{2} / A-\operatorname{deg}\left(K_{2} \wedge C_{n}\right)=4 n$.

Theorem 3.12: For the graph $K_{m} \wedge C_{n}(m, n \geq 3)$
(i) $\mathrm{G} / \mathrm{A}-\operatorname{deg}\left(\mathrm{K}_{\mathrm{m}}{ }^{\wedge} \mathrm{C}_{\mathrm{n}}\right)=(\mathrm{m}-1) \mathrm{mn}$ and
(ii) $\mathrm{G}^{2} / \mathrm{A}-\operatorname{deg}\left(\mathrm{K}_{\mathrm{m}}{ }^{\wedge} \mathrm{C}_{\mathrm{n}}\right)=2(\mathrm{~m}-1)^{2} \mathrm{mn}$.

Proof: By the result $3.10, \mathrm{~K}_{\mathrm{m}}{ }^{\wedge} \mathrm{C}_{\mathrm{n}}$ is a $2(\mathrm{~m}-1)$ - regular graph with mn vertices and $(\mathrm{m}-1) \mathrm{mn}$ edges. So

$$
\begin{aligned}
& \mathrm{G} / \mathrm{A}-\operatorname{deg}\left(\mathrm{K}_{\mathrm{m}} \wedge \mathrm{C}_{\mathrm{n}}\right)=2 \sum_{e=w_{1} w_{2} \in E\left(K_{m^{\wedge}} \wedge_{n}\right)} \frac{\sqrt{d\left(w_{1}\right) d\left(w_{2}\right)}}{d\left(w_{1}\right)+d\left(w_{2}\right)} \\
& =2 \frac{2(m-1)}{4(m-1)}\left|\mathrm{E}\left(\mathrm{~K}_{\mathrm{m}} \wedge \mathrm{C}_{\mathrm{n}}\right)\right| \\
& =\left|\mathrm{E}\left(\mathrm{~K}_{\mathrm{m}} \wedge \mathrm{C}_{\mathrm{n}}\right)\right| \\
& =(\mathrm{m}-1) \mathrm{mn} . \\
& \begin{aligned}
& \mathrm{G}^{2} / \mathrm{A}-\operatorname{degree}\left(\mathrm{K}_{\mathrm{m}} \wedge \mathrm{C}_{\mathrm{n}}\right)= 2 \sum \frac{d\left(w_{1}\right) d\left(w_{2}\right)}{d\left(w_{1}\right)+d\left(w_{2}\right)} \\
&=2 \frac{4(m-1)^{2}}{4(m-1)}\left|\mathrm{E}\left(\mathrm{~K}_{\mathrm{m}} \wedge \mathrm{C}_{\mathrm{n}}\right)\right| \\
&=2(\mathrm{~m}-1)\left|\mathrm{E}\left(\mathrm{~K}_{\mathrm{m}} \wedge \mathrm{C}_{\mathrm{n}}\right)\right| \\
&= 2(\mathrm{~m}-1)^{2} \mathrm{mn} .
\end{aligned}
\end{aligned}
$$

III. CONCLUSIONS

In this paper, we obtain the Geometric-Arthimetic degree, squared Geometric-Arthimetic degree, and Geometric-twiced Arthimetic degree index of H and the basic results concerning to $K_{n}, C_{n}, P_{n}, K_{m, n}, S_{1, n}$ and $K_{1} v C_{n}$ graphs. The results regarding tensor product of graphs are also discussed.

REFERENCES

[1] Bondy J.A., and Murthy U.S.R., Graph Theory with Applications, North Holand, NewYork, 1976.
[2] Mogharrab, H.E., Fath -Tabar, G.H.: Some bounds on GA , Index of Graphs, MATCH Commun,Math, Comput.Chem 65 (2011), 33-38.
[3] Sampath Kumar E, On Tensor Product graphs, International Jour., Hust, Math.Soc.,(20)(Serin) (1975), 268 - 273.
[4] Sarma K.V.S., Some Contributions in Graph Theory, Ph.D. Thesis, Dravidian Univ., Kuppam, 2009 (Awarded 2015).
[5] Wiener, H., Structural determination of Paraffin Boiling Points, Hour.Amer.Chemi.Soc.,69 (1947), 17-20.

