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Abstract - A topological Index of a graph is a real numbers associated with the graph that is invariant under its 

automorphisms. The elementary topological indices are numbers of vertices and edges of a finite graph. The well-

known one is Wiener Index due to Wiener [4 ].  It has wide applicability in molecular chemistry. 

 The concept of Geometric – Arithmetic degree Index of a graph H, denoted by G/H degree (H), is 

introduced by Mogharrab and Fath – Tabar [2] as follows. 

 

Key words: Wiener Index, Geometric Arithmetic degree, Squared Geometric Arithmetic degree. 

I. INTRODUCTION 

 In this paper, we consider topological indices of standard graphs and that of tensor product graphs. 

 A topological index of a graph is a real number associated with the graph that is invariant under its 

automorphism. 

 The elementary topological indices are the number of vertices/edges of a finite graph. The well known one 

is Wiener index due to Wiener [5].  It has wide applicability in molecular chemistry. 

II. PRELIMINARIES 

 We now present the necessary definitions and observations needed for the development of further ones in 

the succeeding sections. 

 The concept of Geometric-Arthimetic degree (deg) index of a graph H, denoted by G/A deg(H), introduced 

by Mogharrab and Fath-Taber [2] is the following: 

Definition 1.1: Let H be a non-empty, connected, simple and finite graph. Then 

 
( )

.  o f  { d (u ) ,d (v )}
/ d e g (H )=

.  o f  { d (u ) ,d (v )}u v E H

G M
G A

A M

  , where u, v V(H) (vertex set H), E(H) is the edge set 

of H and dH is the degree function of  H. (when there is only one graph under consideration we omit and write V(H), 

E(H), and dH as V, E and d respectively and the edge with ends u & v is denoted by uv. 

 Similarly, we can define the squared Geometric-Arthimetic degree index of H as 

2

2

( )

( . )  o f { d (u ),d (v )}
/ d eg  (H )= .

.  o f { d (u ),d (v )}u v E H

G M
G A

A M
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The  Geometric-twiced Arthimetic degree index of H denoted as 

( )

( . )  o f  { d (u ) ,d (v )}
/ 2 d e g (H )=

2 ( . )  o f  { d (u ) ,d (v )}u v E H

G M
G A

A M

   

and the squared Geometric-twice Arthimetic degree index of H, denoted as    

2

2

( )

( . )  o f { d (u ),d (v )}
/ 2 d eg  (H )= .

2 ( . )  o f { d (u ),d (v )}u v E H

G M
G A

A M

  . 

Observations 1.2: 

(a) If H is a regular graph then d(u) = d(v)  for all u, v  V and so G.M of {d(u), d(v)} = A.M of {d(u), d(v)}  

for  all u, v   V and hence                                                

/ d e g ( ) 1

                         = |E |

                         = T h e  n u m b e r o f  e d g e s  o f  H , if  H  is  a  f in ite  g ra p h

u v E

G A H



  

.

 

(b)   

2 2

1
( ) / 2 d e g ( ) / A d e g ( )  a n d

2

1
(ii)  / 2 d e g ( ) / A d e g ( ) .

2

i G A H G H

G A H G H

  

  

 

(c) There is no interest in either empty or infinite or disconnected graph. 

So by a graph we mean  a non-empty, finite, simple and connected one. 

In the following section, we consider these indices for standard graphs. 

§ 2. Basic results concerning standard graphs 

Theorem 2.1:  For the complete graph Kn (n being any integer ≥ 2), 

(i) G/A – deg(Kn) = n(n – 1)/2 and 

(ii) G2/A – deg(Kn) = n(n – 1)2/2. 

Proof: We know that Kn has n vertices and any two vertices in Kn are adjacent.  So it is a (n – 1)-regular graph with 

n(n-1)/2 edges. 

Hence G/A – degree (Kn) =|E(Kn)| =  n(n – 1)/2. 

By definition, G2/A – deg(Kn) = 2 
( )

( ) ( )

( ) ( )
n

e u v E K

d u d v

d u d v  
  

                                                             = 2 

2

( )

( 1)

2 ( 1)
n

e E K

n

n




  

        = (n – 1)|E(Kn)| 

        = n(n – 1)2/2. 

Theorem 2.2: For the cycle Cn (n being any integer ≥ 3), 
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(i) G/A – deg (Cn) = n and 

(ii) G2/A – deg (Cn) = 2n. 

Proof. We know that Cn has n vertices and is a 2-regular graph; hence it has n edges. So, by the observation 

(i) G/A – deg(Cn) = =|E(Cn)| =  n and 

(ii) G2/A – deg(Cn) = 2 
( )

( ) ( )

( ) ( )
n

e u v E C

d u d v

d u d v  
 == 2 

( )

4

4
n

e E C

 =2|E(Cn)| = 2n. 

Theorem 2.3: For the path Pn, (n being any integer ≥ 2), 

(i)  

G/A – deg (Pn) = 

1 if  n = 2 ,

4 2
(n -3 )  +  if  n 3 .

3








  

(ii)  

G2/A – deg(Pn )=

 

1 if  n = 2 ,

8
2 (n -3 ) +  if  n 3 .

3








 

Proof. Since P2 = K2, we have G/A – deg (P2) = 1.  

Let n be any integer ≥ 3 and V(Pn) = {v1, v2, …, vn}. 

Now E(Pn) = { ui ui+1 : i = 1, 2, …,(n-1)},  

 d(u1) = d(un) = 1 and d(ui) =2, i = 2, …, (n-1).] 

So when n=3, 

G/A – deg (P3) = 2
2 31 2

1 2 2 3

( ) ( )( ) ( )

( ) ( ) ( ) ( )

d u d ud u d u

d u d u d u d u

  
 

   

 

                                 = 2
1 .2 2 .1

1 2 2 1

  
 

   

 

                                      = 
4 2

3
 

                                     = (3 -3) + 
4 2

3
. 

Let n be any integer ≥ 4, Now, 

G/A – deg(Pn) = 2

1

1

1 1

( ) ( )

( ) ( )

n

i i

i i i

d u d u

d u d u
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                                         =2

2

1 11 2

21 2 1 1

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

n

i i n n

i i i n n

d u d u d u d ud u d u

d u d u d u d u d u d u



 

  

  
  

    

  

                                         =2

2

2

1 .2 2 .2 2 .1

1 2 2 2 2 1

n

i





  
  

    

  

                                         =2
2 1 2

( 2 2 1)
3 2 3

n
  

     
  

 

                                         =2
2 2 ( 3)

3 2

n  
 

  

 

                                         =
4 2

( 3 )
3

n   . 

Now let us consider G2/A – deg (Pn). 

G2/A – deg (P2) = G2/A – deg (K2) 

                                             = 

2
2 ( 2 1)

2


=1. 

When n = 3, G2/A – degree (P3) = 2 2 31 2

1 2 2 3

( ) ( )( ) ( )

( ) ( ) ( ) ( )

d u d ud u d u

d u d u d u d u

 
 

  

=2
1 .2 2 .1

1 2 2 1

 
 

  
 

                                                                                                            =8/3 = 2(3-3)+8/3. 

Let n ≥ 4; now  

G2/A – degree (Pn) =                     

1

1

1 1

2

1 11 2

21 2 1 1

(u ) (u )
2

(u ) (u )

(u ) (u ) (u ) ( )(u ) ( )
2
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n
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2
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n
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4
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3
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     =
4

2 ( 3 )
3

n
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     =
8

2 ( 3)
3

n    

Theorem 2.4: For the complete bipartite graph Km,n (m, n being any positive integers) 

(i) G/A – deg (Km,n) = 

3 / 2
2 ( )m n

m n
 and 

(ii) G2/A – deg (Km,n) = 

2
2 ( )m n

m n
 

Proof. We know that if {X, Y} is a bipartition of Km,n with |X| = m, and |Y| = n, then for any edge e=uv of Km,n with 

u   X and v   Y   deg(u) = n and deg(v) = m. 

Km,n has (m+n) vertices and mn edges. Now, by definition 

G/A – deg(Km,n) = 2 

e u v E

n m

n m  
  

                            = 2 
m n

m n
|E(Km,n)| 

                            = 2 

3 / 2
( )m n

m n
. 

(Observe that K1,1 = K2 and G/A -deg(K1,1) =1). 

By definition, G2/A – deg (Km,n) =  2 
n m

n m
|E(Km,n)| 

                                                              = 2 

2
( )m n

m n
 

   (Observe that  G2/A – deg (K1,1) =1). 

Theorem 2.5. For the star graph S1,n, where n is any integer ≥ 3. 

(i) G/A – deg (S1,n) =   2 

3 / 2

( 1)

n

n 
.     

 (ii) G2/A – deg (S1,n) =   2 

2

( 1)

n

n 
 

(Observe that S1,1 = K2 = P2 and S1,2 = P3 = K1,2. So we consider the case when n ≥ 3). 

Proof: Let V(S1,n) = {u0,v1, v2, …, vn}, 

where deg(u0) = n and deg vj = 1 for j=1,2,…n. 

By definition,  

u0 

v1 

v2 

vn 
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G/A – deg (S1,n) = 2 
0

1 0

d e g ( ) d e g ( )

(d e g ( ) d e g ( ))

n
j

j j

u v

u v 
  

     = 2 

1

n (1)

(n 1)

n

j  
  

     = 2 

1

1
(n 1)

n

j

n


  

     = 2 
(n 1)

n
n


 

      = 2 

3 / 2

(n 1)

n


. 

 

By definition, G2/A – deg (S1,n) =  2
0

1 0

d eg ( ) d eg ( )

(d eg ( ) d eg ( ))

n

j

j j

u v

u v 
  =

1

( ) (1)
2

( 1)

n

j

n

n 
  =

1

2 1
( 1)

n

j

n

n 
 =

2
2

( 1)

n

n 
.                                                          

 

Theorem 2.6: For the wheel graph K1 V Cn (n being any integer ≥ 3),G/A – deg (K1 V Cn) = 

 (1 + 
2 3

3

n
n

n 
). 

(i) G2/A-deg(K1 V Cn) = 9n(n+1)/(n+3). 

Proof:  Let the vertex set V(K1 V Cn) = {u0, u1, u2, …, un-1, un}. 

Now E(K1 V Cn) = {u0vj: j=1, 2, …, n}  U {vjvj+1: j = 1, 2, …, n} 

(with the convention vn+1 = v1). So 

d(u0) = n, deg(vj) =3 for j = 1, 2, …, n 

By definition,G/A-deg (K1 V Cn) =  
0

1 0

d ( ) d ( )
2

(d ( ) d ( ))

n
j

j j

u v

u v 
 + 

1

1 1

d ( ) d ( )
2

(d ( ) d ( ))

n
j j

j j j

v v

v v



 


  

                                                 = 

1

( )(3)
2

(n 3)

n

j

n

 
 +  

1

(3)(3)
2

(3 3)

n

j  


 

                                                  = 2
3

(n 3)

n
n n


  

 

u0 vn-1 

vn v1 

v2 
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                                               = 2 
3

( 1)
(n 3)

n
n


 

                                               =  
3

(1 2 )
(n 3)

n
n


. 

G2/A-deg(K1 V Cn) = 
0

1 0

d ( ) d ( )
2

(d ( ) d ( ))

n
j

j j

u v

u v 
 +

1

1 1

d ( ) d ( )
2

(d ( ) d ( ))

n
j j

j j j

v v

v v



 


  

                                 = 

1

( )(3)
2

(n 3)

n

j

n

 
 +

1

(3)(3)
2

(3 3)

n

j  
  

                                 = 

2

6 3
(n 3 )

n
n


 

                                  =
2 3( 1) 9 ( 1)

3 1 3 .
3 ( 3) ( 3)

n n n n
n n

n n n

   
    

     

 

§3. Results related to Tensor Product Graphs 

For the development of these results, we need the following: 

Definition 3.1 [ 3 ]: H1 and H2 are disjoint graphs, then the tensor product of H1 and H2, denoted by H1^ H2 is the 

graph whose vertex set is V(H1) U V(H2) and the edge set being the set of all elements of the form  (u1, v1), (u2, v2), 

where u1u2 V(H1), v1,v2 V(H2), u1u2 E(H1) and  v1v2 E(H2). 

Result 3.2 [ 3]: H1, H2 be simple and  connected graphs, then H1^ H2 is connected iff either H1 or H2 contains an odd 

cycle. 

Result 3.3 [1]: A non-empty connected graphs is Eulerian iff every vertex of the graph is of  even degree. 

Result 3.4 [1]: A simple graph is bipartite iff it contains no odd cycle. 

Result 3.5 [4]: For integers m, n ≥ 2, Km ^ Kn is a simple, finite and (m-1)(n-1)-regular graph with mn vertices and 

½mn(m – 1)(n – 1) edges.  Further it is connected if one of m, n is  ≥ 3. 

Theorem 3.6: For integers m, n ≥ 2, with m+n ≥ 5, 

(i) G/A – deg (Km^Kn) = ½ mn(m-1)(n-1)  

(ii) G2/A – deg (Km^Kn) = ½ mn[(m-1)(n-1)]2. 

Proof: Km^ Kn is a connected, regular graph. By the observation  (1.2)(a) follows that  

             G/A – deg (Km^Kn) = |E(Km^Kn)|  

                                                   =  ½ mn(m-1)(n-1) (By Result 3.5) 

    Let w1 = (u1, v1), w2 = (u2, v2)  V(Km^Kn) 

Now, by definition, 
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G2/A – deg (Km^Kn) =

1 2

1 2

( ^ ) 1 2

( ) ( )
2

( ) ( )
m n

w w E K K

d w d w

d w d w 
   

                                      =

1 2

2

( ^ )

{ ( 1)(n 1)}
2

2 ( 1)( 1)
m n

w w E K K

m

m n

 

 
   

                                                       = (m – 1)(n – 1) | E(Km^Kn)| 

                                                       = ½ mn [(m – 1)(n – 1)]2. 

Result  3.7 [ 4 ]: For integers m, n ≥ 3, Cm^ Cn is a simple 4-regular graph with mn vertices and 4mn edges.  Further,  

it is connected iff atleast one of m, n is odd. 

Theorem 3.8: For  integers m, n ≥ 3, when one of  m, n is odd, 

(i) G/A – deg (Cm^ Cn) = 2mn and 

(ii) G2/A – deg (Cm^ Cn) = 8mn. 

 Proof: Since Cm^ Cn is a 4-regular  graph, it follows that 

G/A – deg (Cm^ Cn) = |E(Cm^Cn)| 

                                      = 2mn. 

Further, G2/A – deg (Cm^ Cn) = 
( ^ )

( 4 ) ( 4 )
2

4 4
m n

e E C C 
  

                                                     = 4|E(Cm^Cn)| 

                                                     = 8mn. 

Result 3.9[4]: K2 ^ Cn is a connected graph iff n is odd. Further it is isomorphic to C2n. 

Result 3.10[4]: Km ^ Cn (m >2, n ≥ 3) is a simple, finite and 2(m – 1)-regular graph with mn vertices and (m – 

1)(mn) edges. 

Theorem 3.11: For the graph K2 ^ Cn (n being an odd integer ≥ 3), 

(i) G/A – deg (K2^ Cn) = 2n and 

(ii) G2/A – deg (K2 ^ Cn) = 4n. 

Proof: By Result 3.9, K2 ^ Cn is isomorphic to C2n. 

Hence, by Th.2.2, 

(i) G/A – deg (K2^ Cn) = 2n and 

(ii) G2/A – deg (K2 ^ Cn) = 4n. 

Theorem 3.12: For the graph Km ^ Cn (m, n ≥ 3) 

(i) G/A – deg (Km^ Cn) = (m – 1)mn   and 

(ii) G2/A – deg (Km ^ Cn) = 2(m – 1)2 mn. 

Proof: By the result 3.10, Km^ Cn is a 2(m – 1)- regular graph with mn vertices and (m – 1)mn edges. So 
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G/A – deg (Km^ Cn) =

1 2

1 2

( ^ ) 1 2

( ) ( )
2

( ) ( )
m n

e w w E K C

d w d w

d w d w  
   

= 2
2 ( 1)

4 ( 1)

m

m




|E(Km^ Cn)| 

                                     = |E(Km^ Cn)| 

                                     = (m – 1)mn. 

G2/A – degree (Km^ Cn) = 
1 2

1 2

( ) ( )
2

( ) ( )

d w d w

d w d w
  

   = 2

2
4 ( 1)

4 ( 1)

m

m




|E(Km^ Cn)| 

                                       =2(m – 1)|E(Km^ Cn)| 

                                       = 2(m – 1)2mn. 

III. CONCLUSIONS 

       In this paper, we obtain the Geometric-Arthimetic degree, squared Geometric-Arthimetic degree, and 

Geometric-twiced Arthimetic degree index of H and the basic results concerning to Kn, Cn, Pn, Km,n, S1,n and K1vCn 

graphs.  The results regarding tensor product of graphs are also discussed.   
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