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Abstract  
        In this paper we study some of the early proofs of Fermat’s Little Theorem. Many of the original sources to 

the proofs of these theorems are obscure. The sequence of the proofs appears chronologically, in order to 

display how the proofs involved throughout the 17th -21th centuries. 
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I. INTRODUCTION 
 

   Fermat‟s Little Theorem is one of the jewels of Number Theory and to mark the 400th anniversary of 

Fermat‟s birth. This little theorem, which was relatively easy to prove, but it has a vast range of mathematical 

consequences and one major practical application.Bernhard Frenicle de Bessy dated October 18, 1640; Pierre de 

Fermat first revealed his result. He did not, however, provide a proof, stating to Frenicle. The first proof of 

Fermat‟s Little Theorem was given nearly 100 years later by Euler. Burton also tells us that Leibnitz did not 

receive this recognition, „for he left an identical argument in an unpublished manuscript sometime before 1683.” 

From Beginning Number Theory by Neville Robbins [13, p.102], it is a proof found in many number theory 

textbooks, and we see later that it is essentially equivalent to Euler‟s first two proofs.In Dickson‟s History of the 

Theory of Numbers [7, Chapter 3], the original works to prove Fermat‟s Little Theorem are given. Among these 

proofs, worked by Leibniz, Euler, Lambert, Ivory, and Thue. 

Enter Leibniz in 1894 attention was called to a collection of unpublished manuscripts located in the Hanover 

Library attributed to Gottfried Wilhelm von Leibniz (1646-1716), most famous as one of the creators of  

calculus as well as for his philosophical theory of monads. We usually do not think of Leibniz as a Pioneer of 

number theory. However, among his works found in the Hanover Library are results believed to have been 

attained prior to 1683 which include proofs of Both Fermat‟s Little Theorem and Wilson‟s Theorem. Euler‟s 

first published proof of Fermat‟s little theorem before 60 years. 

 

A. The use of ‘little’ in the theorem 

     When theorem is start, to be called Fermat‟s little theorem.  The question is arise, who first use the word 

„Little‟ in the Fermat‟s little theorem. Actually not everyone calls it so. In Vol 1 [1919] of Dickson‟s 

monumental three volume [History of Mathematics] Theory of Numbers, there is an entire chapter devoted to 

„Fermat‟s and Wilson‟s Theorems. Hardy and Wright, Davenport, Nagell, simply use „Fermat‟s Theorem‟. And 

Sierpinski calls it „Simple theorem of Fermat‟ in 1964, a selection of problems in the theory of numbers.  

Of course everyone knows that Wilson‟s theorem is only one such theorem but „Fermat‟s theorem.  There are 

several claimants to find the beautiful result –to name but one- that every prime p, with p = 1 (mod 4), is 

represent table by p = a2 + b2 for some integers a andb, could well claim to be Fermat‟s theorem. 

 

B. Fermat’s ‘little’ Theorem with Examples 

         If p be a prime and a be any integer then the number  ap– a is an integer multiple of p. It is expressed in 

modular arithmetic as 

ap ≡ a(mod p) 

For example: If a= 2, p = 7, 27 = 128 and 128 – 2 = 7× 18 is an integer multiple of 7. 

In non-congruence language: Let p be any prime, and a be any integer not divisible by p, then  a(p−1) leaves 

remainder 1 on division by p.  Symbolically, 

ap−1 ≡ 1(mod p) 

Illustration: Let p =7 and a=2, then 𝑎(𝑝−1) = 26 = 64 = 7 × 9 + 1. 
 

1) Theorem:Let k be the order of a in the group Zp
x   Then by Lagrange, k divides the order of the group (p – 

1) . 
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 So,         p – 1= km, for some m. 

A more general result is Xα(N) ≡ 1(mod N), for X and N coprime, where α(N)Euler‟s function is, the number 

of integers strictly smaller than N coprime to N. Elegant group-theoretic proof too. 

ap−1 ≡ akm ≡  ak 
m
≡ 1m ≡ 1 (mod p) 

The following proof is given Beginning Number Theory by Neville Robbins [13, p.102]. It is a proof found in 

many number theory textbooks, and we see later that it is essentially equivalent to Euler‟s first two proofs. 

Proof:  Let 𝑆 =  {𝑎|𝑎𝑝 ≡ 𝑎  𝑚𝑜𝑑 p } for p prime and a ∈ N. Then 0∈ S because Op = O for all p.  So    

Op ≡  O  (mod p ).  

Now assume k ∈S   and 𝑘𝑝 ≡ 𝑘 (modp). 

Then we want to show that for  k + 1 ∈S , 

(𝑘 + 1 )𝑝 ≡(k+1)(modp). 

By Binomial Theorem, 𝑘 + 1 𝑝 =  𝑘 𝑝+ 1𝑝 +   𝑝
𝑗
  𝑘 𝑝−𝑗

𝑝−1
𝑗  =1  

  ≡ (k+1) (mod p) 

If gcd (a,p) = 1, then by cancellation 𝑎𝑝 ≡ 𝑎 (𝑚𝑜𝑑 𝑝), implies   𝑎𝑝−1 ≡ 1  𝑚𝑜𝑑 𝑝 . 

If a is negative, then 𝑎 ≡ 𝑟 (𝑚𝑜𝑑 𝑝) for some r, where 0 ≤ r ≤ p – 1.  

Thus      𝑎𝑝 ≡ 𝑟𝑝 ≡ 𝑟 ≡ 𝑎  𝑚𝑜𝑑 𝑝 . 
 

2) Theorem:Let p be a prime and let 𝑥 = 𝑎1 + 𝑎2 + ⋯+ 𝑎𝑚.and a number𝑥𝑝 − 𝑎i
𝑝𝑚

i−1  , show that 

  𝑝|  𝑥𝑝 − 𝑎i
𝑝𝑚

𝑖  1  . 
Proof:We know by the Multinomial Theorem, 

𝑥𝑝 =  (𝑎1 + 𝑎2 + ⋯+ 𝑎𝑚)𝑝 =   
𝑝

𝑘1, 𝑘2, … , 𝑘𝑚
 𝑎1

𝑘1 .

𝑘1+⋯+𝑘𝑚=𝑝

𝑎2
𝑘2 …𝑎𝑚

𝑘𝑚 . 

where 𝑝
𝑘1 ,𝑘2,…,𝑘𝑚

 =
𝑝!

𝑘1!…𝑘𝑚 !
 , when 𝑘𝑖⁡≠ 𝑝 for any i, then 𝑘i < 𝑝 for all i. Then there is no factor of p in the 

denominator of any coefficient, but there is a factor of p in the numerator. Thus for 𝑘𝑖≠p for all 𝑖,
𝑝!

𝑘1!…𝑘𝑚 !
≡

 0 (𝑚𝑜𝑑 𝑝).Thus 

x𝑝 − 𝑎𝑖
𝑝 ≡  (𝑎1

𝑝

𝑚

𝑖=1

+ 𝑎2
𝑝 …+ 𝑎𝑚

𝑝) −  𝑎1
𝑝 + 𝑎2

𝑝 …+ 𝑎𝑚
𝑝  

≡ 0(𝑚𝑜𝑑 𝑝) 

Thus 

𝑝|x𝑝 − 𝑎𝑖
𝑝

𝑚

𝑖=1

 

Taking, 𝑎1 = 𝑎2 = ⋯ = 𝑎𝑚 = 1. Then since 𝑥 = 𝑎1 + 𝑎2 + ⋯+ 𝑎𝑚 , it follows that    𝑝|(𝑥𝑝 − 𝑥), for any 

integer x (depending on the value of m). Thus 𝑥𝑝 − 𝑥 ≡ 0  𝑚𝑜𝑑 𝑝 , 
So𝑥𝑝 ≡ 𝑥  𝑚𝑜𝑑 𝑝 .  If gcd (x,p)= 1, then by cancellation 

 𝑥

𝑝−1

≡ 1  𝑚𝑜𝑑 𝑝 . 

 

C. Euler’s Proof with help of Fermat’s Little theorem 

Fermat‟s little theorem is an important property of integers to a prime modulus.  

  For prime p an any a∈ Z such that 

𝑎 ≢ 0( 𝑚𝑜𝑑 𝑝),    𝑎𝑝−1 ≡ 1( 𝑚𝑜𝑑 𝑝). 
If we want to extend Fermat‟s little theorem to a composite modulus, a false generalization would be: if a ≢ 0 

(mod m) then 𝑎𝑚−1≡ 1 (mod m). For a counter example, take m = 15 and  a=2: 

214≡ 4 ≢1(mod 15). 

A correct extension of Fermat„s little theorem to non-prime module requires a new way of thinking about the 

hypothesis in Fermat‟s little theorem. For prime p,a≢ 0 (mod p), gcd( a, p ) = 1. 

But these two conditions are not equivalent when p is replaced with a composite number. It is the relative 

primarily point of view on the right that lets Fermat‟s little theorem be extended to a general modulus, as Euler 

discovered. 

 

1)  Theorem:For m≥2 in 𝑍+and  any a∈Zsuch that (a ,m) =1, 

𝑎φ(m) ≡1 (mod m) 

Where   φ(m) is the number of invertible integers modulo m. 

When m = p is prime, all non-zero integers modulo p are invertible,         
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So φ(p ) = p - 1 and Euler‟s theorem becomes Fermat‟s little theorem. 

Now we compute φ(m). Consider m = 12. To count the number of invertible integers modulo 12, write down 

a set of representatives for integers modulo 12, such as 

1,2,3,4,5,6,7,8,9,10,11,12. 

The numbers here which are invertible modulo 12 are 1,5,7,11,  

So                                   φ(12) = 4.  

From Euler‟s theorem for m = 12 says 𝑎4 ≡ 1 (mod 12) when (a, 12) = 1. 

Being invertible modulo m is the same as being relatively prime to m,   i.e.  we can solve ax ≡ 1 (mod m) for 

x, exactly when (a, m) = 1, so we can describe φ(m) concretely as follows: φ(m ) = { a:1 ≤ a≤ m,(a,m) = 1 }. 

Here is a small table of values derived from this formula.  

 

 

 

 

 

where φ(m) is even for m> 2. 

 

We can explain this by observing that when a mod m is invertible, so is (-a) mod m. Therefore, using the 

standard representatives modulo m, invertible numbers modulo m come in pairs as {a, m – a}.  

Suppose a = m ─ a, then a = m/2, so m is even.  

But (m/2, m) = m/2, and this is bigger than 1 when m >2, so m/2 is not invertible modulo m. Thus, when m 

>2, the invertible numbers modulo m fall into pairs, and that shows φ(m) is even. 

 

2) Theorem:If a primep and a ≢0 mod p. To show 𝑎𝑝−1 ≡ 1 mod p, consider non-zero integers modulo p 

in the standard range: 

S= {1,2,3,….,p-1} 

We will compare S with the set obtained by multiplying the elements of S by a: 

aS= { a1 , a2 ,a.3,…., a(p-1) }. 

The elements of S represent the nonzero numbers modulo p. The key point is that the elements of aSalso 

represent the nonzero numbers modulo p. For any b≢ 0 mod p, we can solve the equation ax ≡ b mod p since a 

mod p is inventible and a solution x is nonzero modulo p too (since b mod p is nonzero). Choosing z to lie 

between 1 and p-1,ax∈aS, so b mod p is represented by an element of aS. There arep -1 elements in aS, so aS is a 

set of representatives for the nonzero numbers modulo p. 

Since S and aS, when reduced modulo p, becomes the same thing, the product of the numbers in each set must 

be the same modulo p: 

1.2.3……..(p - 1)≡a(a.2)(a.3)…(a(p - 1)) mod p. 

Pulling the (p – 1) copies of a to the front of the product on the right, we get 

1.2.3…… (𝑝 −  1) ≡ 𝑎𝑝−1(1.2.3……  𝑝 − 1 𝑚𝑜𝑑 𝑝 

Now we cancel each of 1,2,3,…p –1 on both sides (since they are all invertible modulo p) and we are left 

with1 ≡ 𝑎𝑝−1 (mod p). 

3) Theorem:Replace the condition “non-zero modulo p” with “relatively prime to m.” For positive integer 

m and a that (a,m) =1. 

We consider the units modulo m in the standard range: 

S =  u1 . u2.u3 ……uφ m  . 

Where 1 ≤ 𝑢𝑖 ≤ 𝑚 − 1,  𝑢𝑖 , 𝑚 = 1, and the uj‟s are distinct. (If m=p is prime we can use ui = 𝑖 for all i, but 

in general there isn‟t a simple formula for the ith unit modulo m.) We will compare S with the set obtained by 

multiplying the elements of S by a: 

𝑎𝑆 =  𝑎𝑢1. 𝑎𝑢2. 𝑎𝑢3 … . . 𝑎𝑢φ m  . 

Since (a,m)=1a mod m is a unit and therefore a S consists of units modulo m. We will show that aS represents 

all the units modulo m. Given any unit b mod m, the congruence ax ≡ b(modm) is solvable since a mod m is 

invertible. The solution x is a unit modulo m and placing x between 1 and m – 1 makes ax a member of aS. Thus 

b mod m is represented by an element of aS. Since aS has size φ(m),  it is a set of representatives for the units  

modulo m. 

Since the members of S and aS agree modulo m, the product of the numbers in each set must be the same 

modulo m: 

𝑢1𝑢2𝑢3𝑢φ(m) ≡  𝑎𝑢1  𝑎𝑢2  𝑎𝑢3  𝑎𝑢φ m  𝑚𝑜𝑑 𝑚. 

Pulling the φ(m) copies of a to the product on the right, we get  

𝑢1𝑢2𝑢3 … . 𝑢φ(m) ≡ 𝑎φ m 𝑢1𝑢2𝑢3 … . 𝑢φ(m)𝑚𝑜𝑑 𝑚. 

m 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

φ(

m) 

1 2 2 4 2 6 4 6   4 10   4  12  6   8   8 16 
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Now we cancel each Ui on both sides (since they are all invertible modulo m) and we are left with 1 ≡ 𝑎φ(m) 

mod m. 

Passing from Fermat‟s little theorem to Euler‟s theorem amounted to replacing non-zero numbers modulo a 

prime p with invertible numbers (not the non-zero numbers) for a general modulus m. There is a common 

notation for these numbers in elementary number theory courses. 

𝑈𝑚 = {𝑎 𝑚𝑜𝑑 𝑚 ∶ (𝑎,𝑚) = 1} 

The notation Um comes the fact that invertible numbers mod m are called units mod m.  

Example: We have U5  ={1,  2,  3,  4} and U18 = {1, 5, 7, 11, 13, 17 }. 

When p isUp = {1,2,3, … , 𝑝 − 1}. 

The functionφ(m) does not vary in a simple manner from one integer to the next. This is typical of functions 

that arise in number theory which are based on divisibility. The right way to think about φ(m) is by thinking 

about positive integers not in terms of the usual m → m+1 paradigm, but in terms of the progression 

Primes →prime powers→ general case. 

This progression is how the integers are best arranged from the viewpoint of divisibility Primes are the 

building we can get formulas for φ(m)directly from its definition in the first two cases of the above progression: 

 φ(p)=p – 1 since there are p – 1 integers from 1 to p which are relatively prime to p. 

 φ(𝑝k)=𝑝k − 𝑝k−1 = 𝑝k−1(𝑝 − 1) for prime p and k≥1 since among the integers from 1 to 𝑝𝑘 , those 

which are not relatively prime to 𝑝k  are the multiples of p: p, p2, p3,…𝑝𝑘  

There are 𝑝𝑘−1 such numbers, so we subtract this from𝑝𝑘  to compute 

𝜑(𝑝𝑘) =   𝑝𝑘 − 𝑝𝑘−1 . 

What about φ(m) when m is composite? We will treat one case here, which is important in elementary 

cryptography: m= pq is a product of two different primes. If1 ≤ a ≤ pqand (a, pq) =1, then a is neither a multiple 

of p nor a multiple of q. The multiples of p in this range are p, 2p,…,qp and the multiples of q in this range are q, 

2q,….pq. There are q numbers in the first case and p numbers in the second case. The two lists only overlap at 

pq(indeed, a positive integer divisible by p and q is divisible by pq, so can‟t be less than pq). Therefore, to 

compute φ(pq), we take away from pq the number of terms in both lists without double-counting the common 

term: 

φ(pq) =pq – p – q + 1 = p(q - 1) – 1(q - 1) = (p - 1)(q –1) 

This is interesting: φ(pq) = φ(p)φ(q) for different primes p and q. This formula is false when 𝑝 = 𝑞, φ(𝑝2) =
𝑝2 − 𝑝 = 𝑝(𝑝 − 1) rather than (𝑝 − 1)2 

With these formulas, we can make Euler‟s theorem more explicit for certain modulo. 

Example: When p is prime, 

(𝑎, 𝑝2) = 1 ⟹ 𝑎𝑝 𝑝−1 ≡ 1 mod 𝑝2 

Example: When p and q are different primes, 

(𝑎, 𝑝𝑞) = 1 ⟹ 𝑎𝑝 𝑝−1 (𝑞−1) ≡ 1 mod 𝑝𝑞 

Example will be crucial for the RSA cryptosystem. 

 

4) Theorem:Any reduced form fraction a/b with (10, b) = 1 can be written   as   a   fraction   with   

denominator    10d- 1for some≥ 1. Moreover, the period length of the decimal expansion for a/b is the smallest 

𝑑 ≥ 1 such that 10d ≡ 1(mod b). In particular, 𝑑 ≤ 𝜑 𝑏  and the period length is independent of the numerator 

a. 

Proof: Let the fraction be  a/b, where (10, b)  =  1. By Euler‟s theorem, 10φ (b) ≡ 1 (mod b). 

That means 10 φ (b)–1 is a multiple of b, so we can rewrite a/b asa fraction with denominator  10φ (b) – 

1. 

Let 𝑑 ≥ 1 be minimal such that 10d ≡ 1(mod b), so 𝑑 ≤ 𝜑 𝑏 . Write 10d-1 = bn, so           
𝑎

𝑏
  = 

𝑎𝑛

𝑏𝑛
  = 

𝑎𝑛

10𝑑−1
. 

Since a/b <1, an <bn = 10𝑑 - 1. Therefore the base 10 expansion of an requires no more than d digits, so we 

can write a.n = 𝑐210𝑑−1 +𝑐210𝑑−2 +……..+ 𝑐𝑑   for some digits ci. (Some of the top ci′s may be  0 if an is 

substantially less than 10d- 1.) 

Our earlier calculations showed that for any decimal digitsc1,….,cd , 

. 𝑐1𝑐2 …𝑐𝑑 =
𝑐110𝑑−1 𝑐210𝑑−2 … . |𝑐𝑑

10𝑑 − 1
 

So,a/b = (𝑐110𝑑−1 + ⋯+ 𝑐𝑑)/(10𝑑 − 1)has a periodic decimal expansion of length d. 

Example: A numerical computation suggests the decimal expansions of 1/7,2/7,3/7,4/7,5/7 and 6/7 all have 

period length 6 and the decimal expansions of 1/303 and 28/303 both have period length 4. To prove this, check 

the least d such that 10d ≡ 1 mod 7 is 6 and the least d such that 10d ≡ 1 mod 303 is 4. 

By seeing explicitly106 ≡ 1 is a multiple of 7 and 104 ≡ 1 is a multiple of 303, we take even figure then the 

decimal expansions of these fractions are  
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since106 ≡ 1 = 7.142857, 
3

7
=

3.142857

106 − 1 
=

428571

106 − 1 
= 428571428571… 

Since 104 − 1 = 303.33, 
28

303
=

28.33

104 − 1 
=

924

9999
= .092409240924… 

The whole theory of periodic decimal is explained by Euler‟s theorem and results related to it. So this is a 

concrete elementary application of number theory to explain a persistent mystery from mathematics familiar to 

all students. 

The requirement if theorem that a/b lie between 0 and 1 is a red herring. This is best explained by an 

example. Consider 1543/303. To find its decimal expansion, we first extract the integer part.  Since 1543 = 303 

– 5 + 28, 1543/303 = 5 + 28/303. So the decimal part of   1543 / 303  is  the  same  as  that  of  28 / 303,  which  

lies  between  0 and  1.  Now we can apply Theorem.  

          Since     28/303 = .092409240924…, 

                        1543/303=5.092409240924…..  

In general, check that for any reduced form fraction a/b> 1, subtracting its integer part leaves a fraction 

between 0 and 1 which still has b as its reduced form denominator, so the period of the decimal expansion of a/b 

is still completely determined by b. 

There are further interesting questions worth asking about decimal expansions: 

 Which numbers have finite decimal expansions (such as 5/16=.3125). 

 Which numbers have periodic decimal expansions with an initial non repeating block (such as 

7/15=.466666…). 

 If we compare all the reduced proper fractions with the same denominator b, they may all have the 

same expansion as 1/b except for a shift, e.g. 

1/7 =. 142857, 

2/7 =. 285714, 

3/7 =. 428571, 

4/7 =. 571428, 

5/7 =. 714285, 

6/7 =. 857142, 
We can explain when all the reduced fractions with denominator b have this feature.For some denominators, 

more than one digit sequence occurs. 

e.g., there are two possibilities when the denominator is 13: 
1

13
=. 076923, 

2/13 =. 153846, 

3/13 =. 230769, 

4/13 =. 307692, 

5/13 =. 384615, 

6/13 =. 461538, 

7/13 =. 538461, 

8/13 =. 615384, 

9/13 =. 692307, 

10/13 =. 769230, 

11/13 =. 846153, 

12/13 =. 923076, 
Every decimal expansion here is a shift of the expansion for 1/13 or 2/13. If we collect numerators of 

fractions above whose decimal expansions have the same digit sequence, the 12 numerators fall into two sets of 

size 6: {1,3,4,9,10,12} and {2,5,6,7,8,11}. 
 

II. CONCLUSION 
 

In this paper we have discussed some of the early proofs of Fermat‟s Little Theorem. We have also 

demonstrated the Fermat‟s Little Theorem through examples. 
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