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I. INTRODUCTION 

 

       In 1987, Di Maio and Noiri [8] introduced and studied a new class of compact spaces called s-closed spaces 

using semi-open sets.  Balachandran et al [4] introduced the concept of GO-compactness using g-open sets. Devi [7] 

introduced the notions of  GO-compactness by using g-open sets. Recently Gnanambal et al [10] and Sheik John 

[19] introduced and investigated generalized pre-regular compact spaces (briefly GPR-compact) 

The aim of this paper is to introduce the concepts of  gp-compact,  gp-continuous function  and by 

using gp-open sets in topological spaces and investigate some of their properties.  

 

II. PRELIMINARIES 

 

         Throughout this paper, the space (X, τ) (or simply X), the space (Y, 𝜎) ( or simply Y), always means 

a topological spaces on which no separation axioms are assumed unless explicitly stated. For a subset A of 

a space (X, τ),  Ac denote the closure of A. 

 

DEFINITION 2.1 : A subset A of a space X is said to be  

(i) semiopen [11] if  A  Cl (Int (A)). 

(ii) semi-closed set[6] if Int(cl(A))  A. 

(iii) preopen [14] If A   Int (Cl (A)) 

(iv) preclosed [16]  ifCl (Int (A)) A 

(v)  - open [17] if A   Int (Cl (Int A))) 

(vi)  - closed [15]  ifCl (Int (Cl (A))) A 

(vii) Semi - preopen [2] (=  - open [1]) if A   Cl (Int (Cl (A))) 

(viii) a semi- pre closed set [1]  if  Int(cl(Int(A)))  A 

 

(ix) generalized closed (briefly, g-closed) [12]  if  Cl(A)  U whenever A  U and Uis open in X. 

(x) generalized preclosed (briefly, gp-closed) [18] if pCl (A)  U whenever A  U and U is open in X. 

(xi)  - generalized closed (briefly, g-closed) [13] if Cl (A)  U whenever A  U and U is open in X. 

(xii) generalized preregularclosed (briefly, gpr-closed) [9] if pCl (A)  U whenever A  U and U is regular 

open in X. 

(xiii) a generalized semi-closed (briefly gs-closed) set [3]  if  scl(A)  U  

whenever  A  U  and  U  is  open in X. 
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(xiv) a semi-generalized-closed (briefly sg-closed) set [5] if scl(A)  U  

                   whenever A  U and U is semiopen in X 

Clearly, every open set is semiopen (resp.preopen,  - open, semipreopen (or  - open)). The complement of a 

semiopen (resp. preopen,  - open, semipreopen (or  - open)) is called semiclosed [6] (resp. preclosed [16],  - 

closed [15], semipreclosed [2] (or  - closed [1] ).  

Also every closed set is preclosed (resp. semiclosed,  - closed, semipreclosed (or  - closed)). 

Every closed is g-closed, every preclosed is gp-closed.  Every  - closed is g-closed, every gp-closed is gpr-closed.                                                                              

The complement of a g-closed set (resp. g –closed, gp-closed, gpr–closed, sg-closed, gs-closed ) set in X is g –

open [12] (resp. g –open [13], gp-open [18], gpr-open [9], sg-open [5], gs-open [3] ) set of X.Let  PO(X)  (resp. 

SO(X), O(X), SPO(X), GO(X), GO(X), GPO(X), GPRO(X)) denotes the family of all preopen (resp. semiopen, 

-open, semipreopen, g-open, g –open, gp-open, gpr-open) sets of X. 

The family of all preclosed (resp. semiclosed,  -, g-closed, g - closed, gp-closed, gpr-closed) sets of X is denoted 

by PF(X) (resp. SF(X), F(X), GF(X), GF(X), GPRF(X)).Also, every open is g-open, every preopen is gp-open, 

every   - open is g –open  

III. GP-COMPACT IN A TOPOLOGICAL SPACE 

DEFINITION 3.1:  A collection {Ai: iI} of gp-open sets in a topological space X is called gp-open cover of a 

subset A in X if A  
Ii

i
A



. 

DEFINITION 3.2:  A topological space X is called  gp-compact if every gp-open cover of X has a finite subcover. 

DEFINITION 3.3:  A subset A of a topological space X is called gp-compact relative to X if for every collection 

{Ai: iI} of gp-open subsets of X such that A  
Ii

i
A



there exists a finite subset I0 of I such that   A  
0

Ii

i
A



. 

DEFINITION 3.4:  A subset A of a topological space X is called  gp-compact if  A is gp-compact of the subspace 

of X. 

THEOREM  3.5: A gp -closed subset of gp-compact space is gp-compact relative to X. 

PROOF: Let A be a gp-closed subset of a topological space X. Then Ac is gp-open in X. Let S = {Ai: iI} be a gp-

open cover of A by gp-open subsets in X. Then S* = S  Ac is a gp-open cover of X. That is X = [ {Ai: iI}] Ac. 

By hypothesis X is gp-compact and hence S* is reducible to a finite subcover of X say X = Ai1  Ai2  ... Ain  

Ac, Aik  S*. But A and Ac are disjoint. Hence A  Ai1  Ai2  ….. Ain  S. Thus a gp-open cover S of A 

contains a finite subcover. That is A is gp-compact relative to X. 

THEOREM 3.6: Let f: X  Y be surjective, gp-continuous function. If  X  is gp-compact, then Y is compact. 

PROOF: Let {Ai: iI} be an open cover of Y. Since f is gp-continuous function, then {f-1(Ai): iI} is gp-open 

cover of X has a finite subcover say {f-1(Ai): i=1…..n}. Therefore X =  
n

i

i

1

1
Af




 which implies f(X) = 

n

i

i

1

A

  
. 

Since f is surjective, that is Y = 
n

i

i

1

A



. Thus {A1, A2, ... An} is a finite subcover of {Ai: iI} for Y. Hence Y is 

compact. 

THEOREM 3.7: If a function f: X  Y is gp-irresolute and a subset B of  X is gp-compact relative to X, then the 

image f(B) is gp-compact relative to Y. 
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PROOF: Let {Ai: iI} be any collection of gp-open sets in Y such that  f(B) = 
Ii

i



A . Then B   
i

Ii

Af
1





, 

where {f-1(Ai: i  I} is gp-open set in X. Since B is gp-compact relative to X, there exists finite subcollection {A1, 

A2, ..., An} such that B   
i

Ii

Af

0

1





 Therefore f(B)  

0
Ii

i
A



.  Hence f(B) is gp-compact relative to Y. 

THEOREM 3.8: If a function f: X  Y is strongly gp-continuous from a compact space X onto a topological space 

Y, then Y is gp-compact. 

PROOF: Let {Ai: iI} be a gp-open cover of Y. Since f is strongly gp-continuous, {f-1(Ai) : iI} is an open cover 

of X. Again since X is compact space, the open cover {f -1(Ai): iI} of X has a finite subcover say {f -1(Ai): i = 1 ... 

n}. Therefore X =  
n

i

i

1

1
Af




 which implies f(X) = 

n

i

i

1

A



so that Y = 
n

i

i

1

A



. That is {A1, A2 …... An} is a finite 

subcover of {Ai : iI} for Y. Hence Y is gp-compact. 

THEOREM 3.9: A function f: X  Y is perfectly gp-continuous from a compact space X onto a topological space 

Y, then Y is gp-compact. 

PROOF: Since every perfectly gp-continuous function is a strongly gp-continuous and by Theorem 5.2.8, Y is gp-

compact. 

THEOREM 3.10: Let f: X  Y be a gp-continuous function from a gp-compact space X onto a topological space 

Y. If Y is gpT*1/2-space, then Y is gp-compact. 

PROOF: Let {Ai: iI} be a gp-open cover of Y, by gp-open sets in Y. As Y is gpT*1/2-space, {Ai, iI} is an open 

cover of Y. Since f is gp-continuous, {f-1(Ai): iI} is a gp-open cover of X. Again since X is gp-compact, the gp-

open cover {f-1(Ai):iI} of X has a finite subcover say    {f-1(Ai): i = 1, …., n}. Therefore X =  
n

i

i

1

1
Af




 which 

implies f(X) = 
n

i

i
A

1

. So that Y =  .

1


n

i

i
A



 That is {A1, A2 ..., An} is a finite subcover of {Ai: iI} for Y. Hence Y 

is gp-compact. 

THEOREM 3.11: Every gp-compact space is compact. 

PROOF: Let X be a gp-compact space. Let {Ai : iI} be an open cover of X. Then {Ai: iI} is a gp-open cover of 

X as every open set is gp-open set. Since X is gp-compact, the gp-open cover {Ai: iI} of X has a finite subcover 

say {Ai: i=1...n} for X. Hence X is compact. 

THEOREM 3.12: If X is compact and gpT*1/2-space, then X is gp-compact. 

PROOF: Let {Ai: iI} be a gp-open cover of X. As X is gpT*1/2-space,   {Ai: iI} is an open cover of X. Since X is 

compact, the open cover {Ai: iI} of X has a finite subcover say {Ai: i=1,..., n}. Hence X is gp-compact. 

THEOREM 3.13: Every GO-compact space is gp-compact. 

PROOF: Let X be a GO-compact space. Let {Ai: iI} be a gp-open cover of X by gp-open set in X. By Theorem 

1.2.44 (v), {Ai: i  I} is g-open cover of X. Since X is GO-compact, the g-open cover {Ai: iI} of X has a 

finite subcover say {Ai: i=1...n} of X. Hence X is gp-compact.  

THEOREM 3.14: A topological space X is gp-compact if and only if every family of gp-closed sets of X having 

finite intersection property has a non-empty intersection. 
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PROOF: Suppose X is gp-compact. Let {Ai: iI} be a family of gp-closed sets with finite intersection property. To 

prove that 




Ii

i
A .Suppose 




Ii

i
A . Then .XX 




Ii

i
A . Which implies  .X)AX( 




Ii

i
. Thus the 

cover {X – Ai; iI} is a gp-open cover of X. Since X is gp-compact, the gp-open cover {X – Ai; iI} has a finite 

subcover say {X – Ai; i=1…...n}. This implies X = 
n

i

i

1

)AX(



    which implies that X = X – 
n

1i

i
A



which 

implies X – X = X - 













n

i

i
A

1

X     implies that 
n

i

i
A

1

 . This contradicts the assumption. Hence  
n

1i

i
A



 . 

Conversely, suppose every family of gp-closed sets of X with finite intersection property has a non-empty 

intersection. To prove that X is gp-compact. Suppose X is not a gp-compact. Then there exists a gp-open cover of X 

say {Gi: iI} having no finite subcover. This implies for any finite sub family {Gi: i =1...n} of {Gi: iI} we have  

X

1






n

i

i
G  which implies that 

n

i

i
G

1

X





 

 X – X, which implies   




n

i

i
G

1

X . Then the family {X – Gi: 

iI} of gp-closed sets has a finite intersection property. Also by assumption   




n

i

i
G

1

X   which implies X 

– 




n

i

i
G

1

. So that X

1






n

i

i
G . This implies {Gi: i  I} is not a cover of X. This contradicts the fact that {Gi: 

iI} is a cover for X. Thus a gp-open cove {Gi: iI} has a finite subcover {Gi: i =1…..n}. Hence X is gp-compact. 

THEOREM 3.15: The image of a gp-compact space under a strongly gp-continuous function is gp-compact. 

PROOF: Let f: X  Y be a strongly gp-continuous function from a gp-compact space X onto a topological space 

Y. Let {Ai : iI} be a gp-open cover of Y. Then {f-1(Ai) : iI} is an open cover of X as f is strongly gp-continuous 

and so {f-1(Ai) : iI} is gp-open cover of X. Since X is gp-compact, the gp-open cover {f-1(Ai): iI} of X has a 

finite subcover say  {f-1(Ai): i=1…..n}. Therefore X =  
n

i

i

1

1
Af




 which implies f(X) = 

n

i

i
A

1

. Thus   Y =  

.

1


n

i

i
A

  

That is {A1, A2, ….., An} is a finite subcover of {Ai: iI} for Y. Hence Y is gp-compact. 

 

IV. CONCLUSION 

        In this paper, we have introduced the new class of  generalized form of  sets namely gp- compactness  

established their relationships with some generalized sets in topological space.  
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